
QUALITY OF SERVICE FOR DATABASE IN THE CLOUD

Flávio R. C. Sousa, Leonardo O. Moreira, Gustavo A. C. Santos and Javam C. Machado
Departament of Computer Science, Federal University of Ceara, Fortaleza, Brazil

Keywords: Cloud Computing, Data Management and Quality of Service.

Abstract: Cloud computing is a recent trend of technology that aims to provide on-demand services following a pay-per-
use model. In the cloud, the service user has some guarantees, such as performance and availability. These
guarantees of quality of service are defined between the service provider and user and are expressed through
a service level agreement. There are many models for agreement and quality of services in cloud computing.
However, most of these models are multipurpose and do not deal with data management aspects in the cloud.
This paper presents QoSDBC, an approach to quality of service for database in the cloud. This approach
can be used by providers to improve the quality of their services and encompasses different aspects such as
response time, throughput, availability and consistency. In order to evaluate QoSDBC, some experiments that
measure the quality of service are presented.

1 INTRODUCTION

Cloud computing is an extremely successful
paradigm of service-oriented computing. Scalability,
elasticity, pay-per-use pricing, and economy of
scale are the major reasons for this success. Since
the majority of cloud applications are data-driven,
database management systems (DBMSs) powering
these applications are critical components in the
cloud software stack (Elmore et al., 2011). Many
companies expect cloud providers to guarantee qual-
ity of service (QoS) using service level agreements
(SLAs) based on performance aspects. Nevertheless,
in general, providers base their SLAs only on the
availability of services. Therefore, it is crucial that
providers offer SLAs based on performance for their
customers (Schad et al., 2010). For many systems,
most of the time consumed on service provision
is related to the DBMS, rather than on front-end
web/app server. Thus, data management service
must be monitored in order to assure the expected
performance and availability on cloud system service
(Schroeder et al., 2006).

There are many models for SLA and QoS in
cloud computing (Fito et al., 2010), (Malkowski et al.,
2010) (Schnjakin et al., 2010) (Mazzucco, 2010) (Fer-
retti et al., 2010) (Wu et al., 2011). Those models are
multipurpose and do not deal with data management
aspects. There are also specific models for SLAs and
quality of database service that provide solutions in
this context (LSCR, 2011) (Yang et al., 2009) (Xiong

et al., 2011) (Chi et al., 2011). Nevertheless, these
models fail to address some aspects of data manage-
ment, such as service-specific metrics of databases,
and provide only part of a solution for QoS (e.g. the
SLA definition or approaches to penalties). Further-
more, these works do not use specific techniques for
monitoring DBMSs. According to our research, there
are no solutions that address this problem, since pre-
vious works have focused only on some of its aspects.

In order to solve this problem, this paper proposes
QoSDBC 1, an approach to QoS for database in the
cloud. This approach can be used by providers to im-
prove the quality of their database services and en-
compasses different aspects such as response time,
throughput, availability, and consistency. The major
contributions of this paper are (i) an approach to sup-
port QoS for database in the cloud (ii) a SLA specifi-
cation for database in the cloud (iii) the definition of a
set of metrics for monitoring the database service (iv)
the implementation of the proposed approach and its
architecture, and finally (iv) an evaluation of the ap-
proach and results that show its efficiency. This paper
is organized as follows: in section 2, QoSDBC theo-
retical aspects are presented. The implementation of
the solution is described in section 3. The evaluation
of QoSDBC is presented in section 4. Section 5 de-
tails related work and, finally, section 6 presents the
conclusions.

1Quality of Service for DataBase in the Cloud.

595R. C. Sousa F., O. Moreira L., A. C. Santos G. and C. Machado J..
QUALITY OF SERVICE FOR DATABASE IN THE CLOUD.
DOI: 10.5220/0003910705950601
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 595-601
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2 QoSDBC

The QoSDBC is a solution to provide database qual-
ity of service on cloud platforms. It addresses vari-
ous issues such as SLA definition, monitoring tech-
niques, and penalties. There are many solutions to
improve QoS, such as cache, scheduling, adaptive
query processing, capacity provisioning, and replica-
tion. In this paper, we employ database replication
to ensure QoS, which is appropriate to improve avail-
ability, performance, and scalability in different en-
vironments (Özsu and Valduriez, 2011). QoSDBC
provides database services in the Platform as a Ser-
vice (PaaS) model that can easily take advantage of
cloud based infrastructure. It simplifies the use of
database in the cloud and can be integrated with ex-
isting cloud infrastructures. Solutions for QoS in the
cloud may be classified as cloud provider centric or
customer-centric. Cloud provider centric approaches
attempt to maximize revenue while meeting an appli-
cation’s SLA in the face of fluctuating workloads. In
this work, we focus on the cloud provider centric ap-
proach.

In cloud systems, SLAs have different purposes,
but it is possible to identify a general structure for
them: information about the parties, SLA parameters,
metrics used to calculate the SLA parameters, algo-
rithms to calculate the SLA parameters, service level
objective (SLO) and actions to be performed in case
of agreement violation (Schnjakin et al., 2010). In
this paper, we propose the following definition:

Definition. A SLA for database service in the cloud is
composed of information from the parties, SLA met-
rics, SLOs, algorithms to calculate metrics, and SLA
penalties.

Information about the parties refers to the contract
between the provider and the customer. SLA metrics
are related to the items to be monitored, like response
time and throughput, while SLO contains pre-defined
limits for the parameter, as response time lower than
5 ms. There is a way to calculate it (e.g. average) as
well as penalties in case of non-compliant SLOs (e.g.
fine). According to (Chi et al., 2011), SLA metrics for
cloud databases should optimize the system, address
relevant issues for data management and consider the
specificities of cloud computing model. QoSDBC
makes use of metrics of response time, throughput,
availability, and consistency. A SLO is associated
with each metric, as follows.

� Response time: the maximum response time, in
seconds, for each query.

� Throughput: minimum output, in transactions per
second.

� Availability: maximum fraction of rejected
queries over a period of time t.

� Consistency: access to updated data according to
the consistency type can be strong or weak.

In QoSDBC, the SLA is profit-oriented. The
profit-oriented SLA presents a reliable operation of
the systems, since the provider is motivated to provide
a high-quality service. Revenue is the amount paid by
the customer to the provider to meet an SLA Si, and
operating cost can be defined as the expense of the
provider to perform a service with a specified SLA Si.
Thus, profit is the sum of all corresponding receipts
minus operating cost plus the sum of all penalties, as
showed in the following formula.

Pro f it = Revenue� (Cost +Penalties) (1)

Penalty is an amount that the provider must pay to
the customers if the SLA Si is not met. For example,
in Google AppEngine, Microsoft Azure, or Amazon
S3, if availability is lower than 99.9%, then, the cus-
tomers receive a service credit, according to SLA, and
proportional to the revenue. Similarly, the response
time is critical to ensure QoS and may incur in penal-
ties in some service models (Xiong et al., 2011). In
QoSDBC, we define the penalty cost as the ratio of the
sum of all queries that did not meet SLOs to the total
queries multiplied by the system revenues, according
to the formula below.

Penalties =
åViolated Query

åQuery
�Revenue (2)

Consequently, we can define a satisfaction func-
tion for the SLA, as showed below. The function is
satisfied if the SLA Si is satisfied, i.e., all SLOs from
the SLAs Si are satisfied; otherwise, it is not.

FSS(Si) =
�

1 if SLA Si satisfied
0 if SLA Si not satisfied (3)

2.1 Monitoring of SLA Metrics

Response time is usually used to check the QoS. How-
ever, in many contexts, it is important to establish
more general goals for QoS (Schroeder et al., 2006).
The percentile is requested by users as part of an SLA,
for example, to ensure that at least 90% of customer
transactions have a response time below a specified
limit (Entrialgo et al., 2011). For each metric of the
SLA, you can use an algorithm to compute the SLA
metrics. QoSDBC makes use of the following strat-
egy:

� Response time: x% percentile of response times
which are lower than a value y during a period of
time t.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

596



� Throughput: z% percentile throughput greater
than a value k during a period of time t.

� Availability: function satisfied/not satisfied ac-
cording to the formula MTTF/(MTTF + MTTR),
where MTTF - Mean Time Between Fail and
MTTR - Mean Time To Repair.

� Consistency: function satisfied/not satisfied.
QoSDBC makes use of the time interval of one

hour to check the SLA penalties, since this value is
used by most providers to charge resources. In order
to set monitoring boundaries, we propose the follow-
ing SLA states, as shown in Figure 1:

Figure 1: States of SLA.

� Low: The SLA is lower than that set by the cus-
tomer. In this state, resources can be removed
from the system.

� Defined: The defined level is divided into ideal
and tolerable. In the ideal range, the SLA is main-
tained within an acceptable range. In the tolerable
range, the system intensifies monitoring in order
to define the addition of resources.

� Failure: At this level, a failure occurred in relation
to the SLA. In this case, the provider is penalized
according to the number of queries at the failure
level and new resources must be added quickly to
return to the defined level.
Due to their representativeness, response time and

throughput are high-level performance metrics that
need to be collected and analyzed. The values of these
metrics depends on the state of the database metrics.
When the database system is not overloaded, the val-
ues are almost constant. However, when it is over-
loaded, the values grow linearly and then exponen-
tially. Thus, it is necessary to have effective mecha-
nisms to detect the increase or decrease of these val-
ues (Schroeder et al., 2006).

QoSDBC uses an efficient strategy to calculate
data collected and combines different monitoring
techniques to treat the variability of metrics. The col-
lect process is performed six times with an interval of
10 seconds. For each collect process, QoSDBC calcu-
lates the median and standard deviation. Two medians

with lower deviation are selected as the final values to
be stored. To these values, it is applied an exponen-
tially weighted moving average X 0t = a Xt + (1 - a)
X 0t�1. This monitoring technique is based on the work
(Fito et al., 2010).

3 SYSTEM ARCHITECTURE
AND IMPLEMENTATION

QoSDBC architecture is divided into two parts: Agent
and QoSDBCCoordinator. The QoSDBCCoordinator
consists of a set of services that address the manage-
ment of resources. The Agent is a component added
to each VM which is responsible for interacting with
the VM and the DBMS. Specifically, this agent mon-
itors and interacts with the DBMS, while checking
the state of monitored resources. An overview of the
QoSDBC architecture is shown in Figure 2.

Figure 2: QoSDBC architecture.

The Monitoring Service is responsible for manag-
ing the information about the state of the VMs and
the DBMS collected by the agent. For each DBMS,
CPU resources, memory and databases sizes, as well
as SLA metrics, are monitored. The SLA Service
manages agreements between costumers and service
provider and the Balancing Service distributes the re-
quests to the resources. The Provisioning Service de-
fines the resources required to ensure QoS. A catalog
stores the data collected and information about the re-
sources. Finally, the Scheduling Service directs re-
quests to the VMs and keeps a log of the last transac-
tions submitted to the system. The data is persisted in
a distributed storage service. QoSDBC implements
a driver to encapsulate the services and a complete
abstraction for the developer over the architecture.
The SLA metrics are calculated directly at the service
provider, since it would be more complex to perform

QUALITY�OF�SERVICE�FOR�DATABASE�IN�THE�CLOUD

597



measurements on the customers due to variations in
the connection quality.

We have implemented a prototype of QoSDBC in
Java. We assume a virtualized cloud platform and,
each virtual machine (VM) image is pre-configured
with the agent; thus, when new VMs are dynamically
deployed, the QoSDBC automatically recognizes new
servers and begins to monitor them without the need
for any additional configuration. The agent collects
information about the database. Resource metrics can
be obtained directly by query through the APIs Ama-
zon Elastic Compute Cloud (EC2) CloudWatch. The
monitoring data is stored in an Amazon SimpleDB
database. We use the Java APIs exposed by Amazon
EC2 to deploy, terminate, or reconfigure servers allo-
cated to a database service. QoSDBC makes use of a
simplified version of the WSLA language (Keller and
Ludwig, 2003) to deal with the SLAs management.

QoSDBC implements elasticity by adding and re-
moving replicas according to the workload. To add a
new replica, a new VM is started and the new replica
is added in this machine. The new replicas are added
and updated through data migration. Data migration
involves applying snapshot and logs of missing up-
dates to the new replica to bring it up-to-date. For the
migration process, we are using XtraBackup backup
tool (?), which has high performance and allows hot
backup. With reduction in the workload, QoSDBC
removes replicas of the database. In order to accom-
plish this, QoSDBC selects the replica with the lowest
workload and stops sending requests to it.

4 EVALUATION

The evaluation of cloud database services presents
significant differences when compared to the evalu-
ation of non cloud systems. In the cloud environ-
ment, the goal is to minimize or to adjust the amount
of resources needed to ensure QoS. The wide range
of cloud database services and how these systems are
built (e.g. data model, levels of consistency, query
language) turns difficult the development of a stan-
dard benchmark (Elmore et al., 2011).

4.1 Environment

For the experiments, small instance VM at Amazon’s
EC2 were used. Each machine runs the Ubuntu 11.10
operating system and MySQL 5.5 DMBS. We devel-
oped a benchmark in order to generate the workload
to be executed by QoSDBC. This benchmark was de-
veloped based on BenchmarkSQL (BSQL, 2011), a
Java implementation of TPC-C (TPC, 2011). Our

benchmark allows addition and removal of customers
at runtime, which allows us to evaluate the QoS with
different workloads. It allows generating transactions
in accordance with the parameters set, sending them
to QoSDBC and collecting the results at the end of
each execution. Transaction concurrency is simulated
using multiple customers.

4.2 Experiments

We evaluate QoSDBC’s quality of service by compar-
ing it with static provisioning strategy in two cases:
under-provisioning and over-provisioning. The static
provisioning configuration uses a constant set of repli-
cas for each service, that is 2 replicas in under-
provisioning and 6 replicas in over-provisioning. For
the QoSDBC approach, two replicas were initially
used and then their amount changes according to
workload. In this case, we used a VM with a full
replica of the database. Thus, it was possible to di-
vide the workload between the machines and to en-
sure quality. In this evaluation, the primary copy pro-
tocol was used. Other protocols such as Paxos com-
mit (Özsu and Valduriez, 2011), can also be used. The
following values of SLA parameters were defined: re-
sponse time less than 0.5 seconds, 99.9% of availabil-
ity, strong consistency, and the percentile response
time by 95%. As the response time was used as a per-
formance metric, we chose not to use the throughput
in this experiment. According to TPC-C, a database
of approximately 1 GB was generated.

To analyze the QoSDBC execution, an experiment
was conducted varying the number of customers over
a period of time. The experiment consists of run-
ning the system with different number of customers
every 20 minutes, as shown in the following ordered
pairs, which represent (time in minute, number of cos-
tumers): (20,30), (40,40), (60,60), (80,60), (100,80),
(120,80), (140,60), (160,40), (180,30), (200,30),
(220,20), and (240,20). The interval between the ad-
dition and removal of customers is similar to (Cec-
chet et al., 2011). On a public cloud such as Amazon
AWS, the cost can be defined by the price the user is
going to pay for the compute hours of the instance, the
I/Os on Elastic Block Storage (EBS) and the monthly
cost for data storage. Since the main cost is related to
the instances, in these experiments we consider only
this cost.

Figure 3 shows the variation of SLA response
time metric with under-provisioning and QoSDBC.
Initially, the SLA keeps the defined state with under-
provisioning. The SLA response time increases af-
ter the first hour, because new customers were added
at this time. With the addition of more customers,

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

598



the SLA switches to failure state, resulting in penal-
ties to the service provider until reducing the amount
of customers, which occurs after 160 minutes. With
the decrease in workload, the strategy with static pro-
visioning does not reduce the amount of resources,
leading to constant costs. With QoSDBC, the SLA
remains at the defined state. With the addition of cus-
tomers, SLA response time is increased and the SLA
goes to the failure state. However, QoSDBC detects
this change and adds two new replicas of the database,
which can handle part of the customers’ requests.
Thus, the system returns to the defined state, avoid-
ing new penalties. With the decrease in workload,
QoSDBC removes two replicas and reduces costs, al-
though still maintaining the QoS.

Figure 3: Avarege Response Time SLA with Under-
Provisioning and QoSDBC.

Figure 4: Replica allocation.

Figure 4 shows the replica allocation with chang-
ing load. The QoSDBC used a variable number of
replicas according to workload. For this reason, its
VM cost was slightly higher than under-provisioning,
since this strategy uses two replicas throughout the
whole experiment. Figure 5 presents the SLA vi-
olation, where 1 means satisfied and 0 means non-
satisfied according to the satisfaction function for the
SLA. The response time of the static provisioning
grows rapidly with the addition of more customers.
This happens because each replica has a limit on the
amount of queries it can process and manage. There-
fore, more than 50% of the queries was not answered
in accordance with the SLA. For QoSDBC, less than
28% of the queries was not answered in accordance
to the SLA. This occurred due to the time required to
add a new replica and to migrate the data.

As the amount of revenue is greater than the costs
with infrastructure resources (e.g. VMs), and the
penalties are applied considering the revenue, the

Figure 5: SLA violation.

under-provisioning approach reaches a high value in
the penalties. So, the value of the provider’s profit
with the under-provisioning is lower than using the
QoSDBC approach. Over-provisioning (i.e. 6 repli-
cas) always provides an adequate capacity but at a
significantly larger cost. In contrast, QoSDBC uses
much less resources while still providing the required
SLA. Furthermore, QoSDBC ensures the QoS, main-
taining customer satisfaction. In these experiments,
the availability and consistency metrics were met.

5 RELATED WORK

In (Yang et al., 2009), it is presented a platform that
uses the definition of SLA for database considering
throughput and availability. However, this work does
not show how to calculate the SLA metrics neither the
penalties for failure. (Balazinska et al., 2011) discuss
different pricing models for cloud data services, but
does not present SLA definitions. In (Zhu and Zhou,
2011), it is presented an approach to scheduling in
order to provide QoS. In addition, it also presents a
quality model and SLA for database systems using
the model key/value, including penalties. That work
focuses on scheduling policies. It does not address
profit issues and can only be used in approaches that
use key/value.

(Chi et al., 2011) propose a framework to sup-
port decision-making oriented to profit. This frame-
work uses a new data structure called SLA-tree in or-
der to support decisions in database services in the
cloud, such as scheduling and capacity planning. The
SLA is defined for each system query. Using SLA for
queries makes its use complex, because the user needs
to know in advance all queries to define the SLA.
Moreover, this approach uses only response time as
metric and does not consider penalties. In (Xiong
et al., 2011) SmartSLA is presented, a system of in-
telligent resource management that takes into account
aspects of cost, workload and cost of infrastructure.
That paper describes an SLA for queries and penal-
ties for failure. Similarly to (Chi et al., 2011), con-
sidering SLA for queries turns its usage complex and
the only considered metric is response time. Amazon
Auto Scaling (Amazon, 2011a) allows consumers to

QUALITY�OF�SERVICE�FOR�DATABASE�IN�THE�CLOUD

599



scale up or down according to criteria such as average
CPU utilization across a group of compute instances
(e.g. Amazon Relational Database Service (Amazon,
2011b)). Nevertheless, it does not take into account
the database service state such as query response time
or throughput. In addition, it uses only resource ori-
ented metrics and does not implement SLAs to define
the QoS.

6 CONCLUSIONS AND FUTURE
WORK

This work presented QoSDBC, an approach to
quality of service for database in the cloud. We
evaluated the QoSDBC approach considering quality
of service characteristics. According to the analysis
of the obtained results, we found that the QoSDBC
includes the characteristics of a database service in
the cloud and can be used by providers to improve the
quality of their services. As future work, we intend
to conduct further experiments considering new
scenarios and costs to better evaluate the QoSDBC.
Other important issues to be addressed are related to
new strategies for monitoring, penalties, and other
aspects to be added to the SLA. Finally, we intend to
conduct a study with techniques of machine learning
to improve resource management and to add support
to multi-tenant models.

ACKNOWLEDGEMENTS

This work is partly supported by Amazon AWS Re-
search Grant.

REFERENCES

Amazon (2011a). Amazon Auto Scaling. http://
aws.amazon.com/autoscaling/ .

Amazon (2011b). Amazon Relational Database Service
(RDS). http://aws.amazon.com/rds/.

Balazinska, M., Howe, B., , and Suciu, D. (2011). Data
markets in the cloud: An opportunity for the database
community. PVLDB, 4(12):1482–1485.

BSQL (2011). BenchmarkSQL. http://
www.sourceforge.net/projects/benchmarksql.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Gener. Comput.
Syst., 25:599–616.

Cecchet, E., Singh, R., Sharma, U., and Shenoy, P. (2011).
Dolly: virtualization-driven database provisioning for
the cloud. In Proceedings of the 7th ACM SIG-
PLAN/SIGOPS international conference on Virtual
execution environments, VEE ’11, pages 51–62, New
York, NY, USA. ACM.

Chi, Y., Moon, H. J., Hacigümüş, H., and Tatemura, J.
(2011). Sla-tree: a framework for efficiently support-
ing sla-based decisions in cloud computing. In EDBT
’11, pages 129–140, New York, NY, USA. ACM.

Das, S., Nishimura, S., Agrawal, D., and El Abbadi, A.
(2011). Albatross: lightweight elasticity in shared
storage databases for the cloud using live data migra-
tion. Proc. VLDB Endow., 4:494–505.

Elmore, A. J., Das, S., Agrawal, D., and El Abbadi, A.
(2011). Zephyr: live migration in shared nothing
databases for elastic cloud platforms. In SIGMOD ’11,
pages 301–312.

Entrialgo, J., Garcı́a, D. F., Garcı́a, J., Garcı́a, M., Valledor,
P., and Obaidat, M. S. (2011). Dynamic adaptation
of response-time models for qos management in auto-
nomic systems. J. Syst. Softw., 84:810–820.

Fito, J. O., Presa, I. G., and Guitart, J. (2010). Sla-driven
elastic cloud hosting provider. PDP, Euromicro’10,
0:111–118.

Keller, A. and Ludwig, H. (2003). The wsla framework:
Specifying and monitoring service level agreements
for web services. J. Netw. Syst. Manage., 11:57–81.

Kossmann, D., Kraska, T., and Loesing, S. (2010). An eval-
uation of alternative architectures for transaction pro-
cessing in the cloud. In SIGMOD ’10, pages 579–590.
ACM.

LSCR (2011). SLA for database projects. http://
lscr.berkeley.edu/rates/sla/database.php.

Malkowski, S., Hedwig, M., Jayasinghe, D., Pu, C., and
Neumann, D. (2010). Cloudxplor: a tool for configu-
ration planning in clouds based on empirical data. In
SAC ’10, pages 391–398, New York, NY, USA. ACM.

Mazzucco, M. (2010). Towards autonomic service pro-
visioning systems. In Proceedings of the 2010
10th IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing, CCGRID ’10, pages
273–282, Washington, DC, USA. IEEE Computer So-
ciety.

Özsu, M. T. and Valduriez, P. (2011). Principles of Dis-
tributed Database Systems, 3rd Edition. Springer.

Schad, J., Dittrich, J., and Quiané-Ruiz, J.-A. (2010). Run-
time measurements in the cloud: Observing, analyz-
ing, and reducing variance. PVLDB, 3(1):460–471.

Schnjakin, M., Alnemr, R., and Meinel, C. (2010).
Contract-based cloud architecture. In CloudDB ’10,
pages 33–40, New York, NY, USA. ACM.

Schroeder, B., Harchol-Balter, M., Iyengar, A., and Nahum,
E. (2006). Achieving class-based qos for transactional
workloads. In ICDE ’06, pages 153–, Washington,
DC, USA. IEEE Computer Society.

Sharma, U., Shenoy, P., Sahu, S., and Shaikh, A. (2011).
A cost-aware elasticity provisioning system for the
cloud. In Proceedings of the 2011 31st Interna-
tional Conference on Distributed Computing Systems,

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

600



ICDCS ’11, pages 559–570, Washington, DC, USA.
IEEE Computer Society.

TPC (2011). Transaction Processing Performance Council.
http://www.tpc.org/.

Welsh, M. and Culler, D. (2003). Adaptive overload control
for busy internet servers. In USENIX USITS, pages
4–4.

Wu, L., Garg, S., and Buyya, R. (2011). Sla-based resource
allocation for software as a service provider (saas) in
cloud computing environments. In Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM In-
ternational Symposium on, pages 195 –204.

Xiong, P., Chi, Y., Zhu, S., Moon, H. J., Pu, C., and Hacigu-
mus, H. (2011). Intelligent management of virtual-
ized resources for database systems in cloud environ-
ment. In International Conference on Data Engineer-
ing, volume 0, pages 87–98, Los Alamitos, CA, USA.
IEEE Computer Society.

Yang, F., Shanmugasundaram, J., and Yerneni, R. (2009).
A scalable data platform for a large number of small
applications. In CIDR, pages 1–10.

Zhu, Y., S.-M. and Zhou, X. (2011). Scheduling with fresh-
ness and performance guarantees for web applications
in the cloud. In Australasian Database Conference
(ADC 2011), volume 115, pages 133–142, Perth, Aus-
tralia. ACS.

QUALITY�OF�SERVICE�FOR�DATABASE�IN�THE�CLOUD

601


