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Abstract: The advent of the cloud era has yielded new ways of storing, accessing and managing data. Cloud storage 
services enable the storage of data in an inexpensive, secure, fast, reliable and highly scalable manner over 
the internet. Although giant providers such as Amazon and Google have made a great success of their 
services, many enterprises and scientists are still unable to make the transition into the cloud environment 
due to often insurmountable issues of privacy, data protection and vendor lock-in. These issues demand that 
it be possible for anyone to setup or to build their own storage solutions that are independent of 
commercially available services. However, the question persists as to how to provide an effective cloud 
storage service with regards to system architecture, resource management mechanisms, data reliability and 
durability, as well as to provide proper pricing models. The aim of this research is to present an in-depth 
understanding and analysis of the key features of generic cloud storage services, and of how such services 
should be constructed and provided. This is achieved through the demonstration of design rationales and the 
implementation details of a real cloud storage system (CACSS). The method by which different 
technologies can be combined to provide a single excellent performance, highly scalable and reliable cloud 
storage system is also detailed. This research serves as a knowledge source for inexperienced cloud 
providers, giving them the capability of swiftly setting up their own cloud storage services.  

1 INTRODUCTION 

For many IT professionals, researchers and 
computer owners, finding enough storage space to 
hold data is a real challenge. Some people invest in 
ever larger external hard drives, storing files locally 
in order to deal with their data growth. However, 
protecting against the many unexpected things that 
can happen to computers or hard drives is not a 
trivial task. Similar issues exist for a number of large 
and geographically diverse enterprises; they store 
and process their rapidly growing data in several 
data centres and may adopt multiple storage 
systems. Finding and managing files in this 
increasingly large sea of data is extremely difficult. 
Although modern distributed computing systems 
provide ways of accessing large amounts of 
computing power and storage, it is not always easy 
for non-experts to use. There is also a lack of 
support in user defined file metadata in these 
systems. This has led most users to store a lot of data 

that strongly relates to the file content in relational 
databases. This separation of the file data and 
semantic metadata can create issues of scalability, 
interoperability and furthermore may result in low 
performance. 

Unlike local storage, cloud storage relieves end 
users of the task of upgrading their storage devices 
constantly. Cloud storage services enable 
inexpensive, secure, fast, reliable and highly scalable 
data storage solutions over the internet. Leading 
cloud storage vendors, such as (Amazon) and 
(Google) , provide clients with highly available, low 
cost and pay as you go based cloud storage services 
with no upfront cost. Recently, Amazon announced 
that it currently holds more than 566 billion objects 
and that it processes more than 370,000 requests per 
second at peak times (Barr, 2011). Even so, many 
enterprises and scientists are still unable to shift into 
the cloud environment due to privacy, data 
protection and vendor lock-in issues. In addition, the 
high read/write bandwidths that are demanded by 
I/O intensive operations, which occur in many 
different scenarios, cannot be satisfied by current 
internet connections. 

These reasons provide an incentive for 
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organisations to set up or build their own storage 
solutions, which are independent of commercially 
available services and meet their individual 
requirements. However, knowledge of how to 
provide an effective cloud storage service with 
regards to system architecture, resource management 
mechanisms, data reliability and durability, as well 
as proper pricing models, remains untapped. 

In order to reveal this secret knowledge behind 
cloud storage services and thereby a generic solution, 
we present CACSS, a generic computational and 
adaptive cloud storage system that adapts existing 
storage technologies to provide efficient and 
scalable services. Through a demonstration of 
CACSS, full details can be given of how a proper 
cloud storage service can be constructed, in 
consideration of its design rationale, system 
architecture and implementation. We also show that 
our system not only supports the mainstream cloud 
storage features —such as well supported scalability, 
sufficient replications and versioning— but that it 
also supports large scale metadata operations such as 
metadata searching. These features provide a generic 
basis that enables potential storage service providers, 
both internet wide and intranet wide, to setup their 
“private S3”. Furthermore, CACSS is designed at 
petabyte scale and can be deployed across multiple 
data centres in different regions around the world. 
We describe in detail how we manage the separation 
of file content and file metadata, including user 
defined metadata. We also demonstrate the 
implementation of enabling multi-region support for 
this cloud storage system. This paper demonstrates 
how different technologies can be combined in order 
to provide a single and highly superior generic 
solution. 

2 PROBLEM ANALYSIS 

2.1 Generic Cloud Storage Features 

A cloud storage system should be designed and 
implemented with consideration of several generic 
features:  
• High scalability and performance: storage 

demand has increased exponentially in recent 
years and as such, it is necessary for cloud 
storage systems to be able to seamlessly and 
rapidly scale their storage capability for both file 
content and file metadata. Traditionally, 
metadata and file data are managed and stored 
by the same file system and most of the time on 
the same device. In some modern distributed file 

systems, to improve scalability and performance, 
metadata is stored and managed separately by 
one or more metadata servers (Gibson and Van 
Meter, 2000). However, many of these still 
suffer from bottlenecks at high concurrent access 
rates (Carns et al., 2009). The metadata of a 
petabyte scale file system could contain in 
excess of billions of records, consuming 
terabytes of space or more. Therefore, the 
efficient metadata management of cloud storage 
systems is crucial for their overall storage 
system performance. 

• Data durability: a far more common event than 
hardware failure or a disaster scenario is end 
user error, by which data is unintentionally 
deleted or overwritten. This demands that cloud 
storage systems have sophisticated replication, 
versioning and recovery mechanisms to restore 
data.   

• Support of various pricing models: the 
traditional pricing model for software has been a 
one-time payment for unlimited use. Cloud 
pricing models, such as pay as you go and pay 
monthly are very similar to the usage charges of 
utility companies. In order to accommodate this, 
it is necessary for cloud storage systems to have 
an efficient monitoring framework to track all 
kinds of resource usage, including network data 
transfer, I/O requests, amounts of data stored 
(file content and file metadata) and resources 
consumed for various computations. 

• Security models: various security models need to 
be implemented to ensure that documents and 
files are accessible at the correct time, location 
and by the right person, providing adequate and 
accurate security control over the data without 
compromising performance.   

• Interoperability: no specific standards that 
enable interoperability between cloud storage 
vendors currently exist, and this has created 
problems in the moving of data from one cloud 
to another. Similar issues arise in converting 
existing applications that are built on traditional 
file systems to the cloud. The ideal cloud storage 
system must offer a level of abstraction, 
portability and ease of use that enables the 
consuming of storage services with minimal 
support and development overhead.  

2.2 Cloud Storage for Different 
Domains 

Enterprises and scientists use cloud storage services 
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for various purposes, and files are in different sizes 
and formats. Some use cloud storage for large video 
and audio files, and some use it for storing relatively 
small files that are large in quantity; the variety and 
range is vast. The different purposes of using cloud 
storage services give rise to a significant diversity of 
patterns of access to stored files. The nature of these 
stored files, in terms of features such as size and 
format, and the way in which these files are accessed 
are the main factors that influence the quality of 
cloud storage services that are eventually delivered 
to the end users. Some common domains for future 
cloud storage are as follows:   
• Computational storage: many applications in 

science and enterprise are becoming 
increasingly demanding in terms of their 
computational and data requirements. Some 
applications store terabytes of data and carry out 
intensive I/O operations. Examples include 
bioinformatics analysis and log processing 
applications. Improving the overall performance 
of such applications often demands a cloud 
storage system that can bring computational 
power closer to the data. Amazon Elastic 
MapReduce service (Amazon) adapts a hosted 
Hadoop framework running on the 
infrastructure of Amazon EC2, in order to 
provide an on-demand service to setup 
computational tasks and process data that are 
stored on Amazon S3.  

• Small file storage: some large online 
ecommerce companies and social networking 
websites store enormous numbers of small files; 
these are mostly image files, and their numbers 
are constantly growing. Every second, some of 
these files are requested at a high rate by public 
users. As the metadata of a small file may well 
occupy more space than the file content itself, 
large concurrent accessing of a small file may 
cause excessive and redundant I/O operations 
due to metadata lookups (Beaver et al., 2010). 
This scenario can sometimes create a bottleneck. 

• Metadata operation intensive storage: metadata 
is the information that describes data files. 
Common metadata attributes include the time of 
an event, author’s name, GPS location and 
captions. Many scientists record information 
about their experimental configuration, such as 
temperature, humidity and other data attributes; 
for many it has become an integral part of 
storage. Accurate identification and adequate 
support for metadata queries of these metadata 
would bring additional values to the stored files 
and ensure that analyses and computations are 

carried out correctly and efficiently. 
Unfortunately most storage systems are not 
capable of efficiently searching file metadata, 
especially those which are user defined on a 
large scale. Leading cloud storage providers 
such as Amazon S3, Cloud Files (Rackspace)  
and Google Cloud Storage (Google)  offer cloud 
storage services for object data combined with a 
key-value style of user defined metadata. These 
metadata can be retrieved and used by user 
applications. However, none of these cloud 
storage providers yet support any object search 
or query based on the object metadata. Some 
research has already been done on the topic of 
metadata indexing and searching services 
(Singh et al., 2003, Leung et al., 2009) 

The present study addresses only some of the 
common domains to which a cloud storage system 
can be applied; indeed there are more domains that 
are yet to be studied. In general, it is not easy to 
make a system that can work for absolutely any 
domain. However, we can learn through generic 
features and the challenges that exist in those 
domains already studied, and eventually we can 
build towards a more adaptive and generic cloud 
storage system that can serve different purposes 
without too much effort.  

3 BACKGROUND 

Amazon Simple Storage Service (Amazon S3) is an 
online storage service that aims to provide reliable 
and excellent performance at a low cost. However, 
neither its architecture nor its implementation has 
yet been made public. As such, it is not available for 
extension in order to develop the capability of 
creating private clouds of any size.  

Amazon S3 is the leading de facto standard of 
bucket-object oriented storage services. Successive 
cloud storage vendors, such as (Rackspace) and 
(Google) all adopt s3’s style of bucket-object 
oriented interface. This style hides all the 
complexities of using distributed file systems, and it 
has proven to be a success (Barr, 2011). It simply 
allows users to use the storage service from a higher 
level: an object contains file content and file 
metadata, and it is associated with a client assigned 
key; a bucket, a basic container for holding objects, 
plus a key together uniquely identify an object.   
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4 CACSS DESIGN 

Following earlier discussion on key characteristics 
of the generic private cloud storage system, we now 
present in detail the design rationale of a CACSS 
system.  

From a conceptive level, the architecture of 
CACSS has five main components: the access 
interface, which provides a unique entry point to the 
whole storage system; the metadata management 
service, which manages the object metadata; the 
object operation management service, which handles 
a wide range of object operation requests; the 
metadata storage space, which stores all of the object 
metadata; and the object data storage space, which 
stores all of the object content data (Figure 1). 

 
Figure 1: CACSS Architecture. 

4.1 Access Interface 

CACSS offers a web-based interface for managing 
storage space and searching for objects. The current 
implementation supports Amazon’s S3 REST API, 
the prevailing standard commercial storage cloud 
interface.  

4.2 Identity and Access Management 
Service 

IAM is a separated service that provides 
authorization and access control of various resources. 
It offers sub user, group management and precise 
permission control of which operations a user can 
perform and under what conditions such operations 
can be carried out.  
 

4.3 Metadata Management  

To achieve high performance in metadata access and 
operation, CACSS’s object metadata and content are 
completely separated. Each object’s metadata—
including its system metadata such as size, last date 
modified and object format, together with user 
defined metadata—are all stored as a collection of 
blocks addressed by an index in CACSS’s Metadata 
Storage Space (MSS). MSS keeps all of the 
collections’ data sorted lexicographically by index. 
Each block is akin to a matrix which has exactly two 
columns and unlimited rows. The values of the 
elements in the first and second columns are block 
quantifiers and block targets, respectively. All of the 
block quantifiers have unique values in each block: BlockAൌൣai,j൧	1im,	1j2,	for	any	k,s	∈m,	where	k്s,	ak,1്as,1 
 
E.g. an index of W maps to a collection: 
 

൮ቈܽଵ,ଵ ܽଵ,ଶܽଶ,ଵ⋮ ܽଶ,ଶ⋮  ൦ܾଵ,ଵ ܾଵ,ଶܾଶ,ଵ ܾଶ,ଶܾଷ,ଵ ܾଷ,ଶ⋮ ⋮ ൪ ⋯ ݀ଵ,ଵ ݀ଵ,ଶ݀ଶ,ଵ ݀ଶ,ଶ൨൲	
4.3.1 Metadata Management Service 

MMS manages the way in which an object’s 
metadata is stored. In such a system a client will 
consult the CACSS MMS, which is responsible for 
maintaining the storage system namespace, and they 
will then receive the information specifying the 
location of the file contents. This allows multiple 
versions of an object to exist.  

MMS handles requests as follows. First, it 
checks if a request contains an access key and a 
signed secret key. CACSS consults AIM and MSS to 
verify whether the user has the permission to 
perform the operation. If they do have permission, 
the request is authorized to continue. If they don’t, 
error information is returned. If a request does not 
contain an access key or a signed secret key, MMS 
is looked up to verify if the request to the bucket or 
object is set as publicly available to everyone. If it is 
set as public, then the request continues to the next 
step. All the requests are logged, both successful and 
failed. The logging data can be used by both the 
service provider and storage users for billing, 
analysis and diagnostic purposes.   

Differing from traditional storage systems that 
limit the file metadata which can be stored and 
accessed, MMS makes metadata more adaptive and 
comprehensive. Additional data regarding file and 
user-defined metadata can be added to the metadata 
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storage, and these data can be accessed and adopted 
on demand by users or computational works at any 
time. Searching via metadata is another key feature 
of CACSS. 

Buckets. To reduce interoperability issues, CACSS 
adopts the de facto industry standard of buckets as 
basic containers for holding objects.  

Unlike some traditional file systems, in which a 
limited number of files can be stored in a directory, 
there is no limit to the number of objects that can be 
stored in a CACSS bucket. CACSS has a global 
namespace—bucket names are unique and each 
individual bucket’s name is used as the index in 
MSS. We use various block quantifiers and block 
targets to store a variety of information, such as 
properties of a bucket or an object, permissions and 
access lists for a particular user, and other user 
defined metadata. 

For example, for a bucket named “bucket1”, an 
index “bucket1” should exist, which maps to a 
collection of data such as: 

ۈۉ
ۇۈۈ ێێۏ

ۍێ : ݕ݁݇ bucket1: :ݎ݁݊ݓ :ܾ݁ݓ:݊݅݃݁ݎ ݁ݕݐ
.݁݃ܽ1݇ݑ1݀݅ݎ݁ݏݑ ℎݐ݁݇ܿݑܾ݈݉ݐ ۑۑے

ېۑ
ሾ݉: 2݀݅ݎ݁ݏݑ ;ܦܣܧܴ :݉ݑ;ሿሾܦܣܧܴ	 ݂݊݅ ሿݐ݁݇ܿݑܾ	ܽ	ݏ݅	ݏℎ݅ݐ ۋی

 ۊۋۋ

 
Objects. The index of each object is comprised of a 
string, which has the format of the bucket name 
together with the assigned object key. As a result of 
this nomenclature, objects of the same bucket are 
naturally very close together in MSS; this improves 
the performance of concurrent metadata access to 
objects of the same bucket. 

For example, considering an object with the user-
assigned key “object/key.pdf” in bucket “bucket1”, 
an index of “bucket1- object/key.pdf” should exist, 
which maps to the following collection of data:  

ۈۉ
൦ۇۈۈ

: ݕ݁݇ .ݕ݁݇/ݐ݆ܾܿ݁ :݂݀ :ݎ݁݊ݓ :݈ܿ ݁ݕݐ .݀݅ݑݑ/1ݐ݁݇ܿݑܾ/1ݎ݁ݐݏݑ݈ܿ//:ݏ1ℎ݂݀݀݅ݎ݁ݏݑ . ݐ݆ܾܿ݁. ൪
ሾ݉: 1݀݅ݎ݁ݏݑ :݉ݑሿ;ܮܱܴܱܶܰܥ_ܮܮܷܨ ݎℎݐݑܽ :݉ݑݎℎݐݑܽ	݁݉ݏ ݎܽ݁ݕ 2011 ൨ ۋی

 ۊۋۋ

4.3.2 Object Versioning 

When versioning setting is enabled for a bucket, 
each object key is mapped to a core object record. 
Each core object record holds a list of version IDs  

that map to individual versions of that object.  
For example, for an object with a predefined key 

“object/paper.pdf” in bucket “versionbucket”, an 
index of "versionbucket − object/paper. pdf"	  
should exist, which maps to the collection data:  

ۈۉ
ۈۈۈ
ۈۈۈ
ۈۈۈ
ۈۈۈ
ۇ

ێێۏ
ێێێ
ۍ ݁ݕݐ:ݎ݁݊ݓ:ݕ݁݇: object/paper.pdfݐ݆ܾܿ݁1݀݅ݎ݁ݏݑ ۑۑے

ۑۑۑ
ې

ێێۏ
ێێێ
ۍێێ ݐݏ݁ݐݏ݈ܽ:ݎ݁ݒ 2݀݅ݑݑቍݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒቌ:ݎ݁ݒ1݀݅ݑݑቍݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒቌ:ݎ݁ݒ1݀݅ݑݑ ۑۑے

ۑۑۑ
ېۑۑ

ۋی
ۋۋۋ
ۋۋۋ
ۋۋۋ
ۋۋۋ
ۊ

 

Similarly, the object’s version record with row 
key “versionbucket-object/paper.pdf-uuid1” maps to 
the collection data:  

ۈۉ
ۈۈۈ
ۇ
ێێۏ
ۍێێ pp:locpp:typepp:replicas nfs://cluster1/ݐ݁݇ܿݑܾ݊݅ݏݎ݁ݒ/uuid…version2 ۑۑے

ېۑۑ
pm:userid2 READ;൨ ۋی

ۋۋۋ
ۊ

 

4.4 Object Data Management  

CACCS stores all the unstructured data, such as file 
content, in the Object Data Storage Space (ODSS). 
ODSS is intentionally designed to provide an 
adaptive storage infrastructure that can store 
unlimited amounts of data and that does not depend 
on underlying storage devices or file systems. 
Storage service vendors are able to compose one or 
multiple types of storage devices or systems together 
to create their own featured cloud storage system 
based on their expertise and requirements in terms of 
level of availability, performance, complexity, 
durability and reliability. Such implementation could 
be as simple as NFS (Sandberg et al., 1985), or as 
sophisticated as HDFS (Borthakur, 2007), PVFS 
(Carns et al., 2000) and Lustre (Schwan, 2003). 

CACSS’s File Operation Management Service 
(FOMS) implements all ODSS’s underlying file 
systems’ API, so that it can handle a wide range of 
file operation requests to the ODSS. FOMS works 
like an adapter that handles the architectural 
differences between different storage devices and 
file systems. It works closely with MMS to maintain 
the whole namespace of CACSS. FOMS also 
possesses the capability of utilising all the available 
resources by performing various object allocation 
strategies, which are based on factors such as 
objects’ types, sizes and even their previous usage 
patterns. 

5 IMPLEMENTATION 

After considerable research and experimentation, we 
chose HBase as the foundational MSS storage for all 
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object metadata. HBase is highly scalable and 
delivers fast random data retrieval. Its column-
orientation design confers exceptional flexibility in 
the storing of data.  

We chose Hadoop DFS (HDFS) as the 
foundational storage technology for storing object 
data in ODSS. Hadoop also supports MapReduce 
framework (Apache) that can be used for executing 
computation tasks within the storage infrastructure. 
Although there is a single point of failure at the 
NameNode in HDFS’s original design, many 
research studies have been carried out in order to 
build a highly available version of HDFS 
NameNode, such as AvatarNode (Borthakur, 2010). 
Every file and block in HDFS is represented as an 
object in the NameNode’s memory, each of which 
occupies about 150 bytes. Therefore the total 
memory available on NameNode dictates the 
limitation of the number of files that can be stored in 
the HDFS cluster. By separating object metadata and 
object data, CACSS is able to construct an adaptive 
storage infrastructure that can store unlimited 
amounts of data using multiple HDFS clusters, whilst 
still exposing a single logical data store to the users 
(Figure 3).   

5.1 Multi-region Support 

The design and architecture of CACSS are based on 
the principles of scalability, performance, data 
durability and reliability. Scalability is considered in 
various aspects including the overall capacity of 
multi-region file metadata and file storage, as well as 
throughput of the system. Taking another 
perspective, the implementation of CACSS consists 
of a region controller and multiple regions (Figure 2).  

 
Figure 2: Implementation of CACSS. 

A Tomcat cluster is used as the application server 
layer in each region. It is easy to achieve high 

scalability, load balancing and high availability by 
using a Tomcat cluster and configuring with other 
technologies such as HAProxy and Nginx (Doclo, 
2011, Mulesoft).  

The region controller has a MySQL cluster for 
storing various data such as user account information 
and billing and invoice details. 

A bucket can be created in one of the regions. At 
the same time, a DNS A record is also inserted into 
the DNS server. This mapping ensures that clients 
will send a hosted-style access request of the bucket 
and the object to the correct region. Each region is 
consistent with a Tomcat cluster, an HBase cluster 
and a set of HDFS clusters. The object data is stored 
in one of the HDFS clusters in the region. The object 
key and metadata are stored in the region’s HBase 
cluster. It is always important to consider that any 
access to a bucket or object requires access rights to 
be checked. In CACSS, each request goes through its 
region first; if the requested bucket or object is set to 
be public, there is no need to communicate with the 
region controller. If it is not set as public, it consults 
the region controller to perform the permission check 
before making a response. The region controller, 
which includes a MySQL cluster, keeps records of all 
the requests and maintains user accounts and billing 
information. A DNS system (such as Amazon Route 
53 (Amazon)) serves to map the bucket name to its 
corresponding region’s Tomcat cluster IP. The region 
controller can also connect to the existing IAM 
service to provide more sophisticated user and group 
management.  

 
Figure 3: Implementation multi-region HDFS clusters for 
storing buckets and contents of objects. 

CACSS also adopts other useful features of 
HDFS such as no explicit limitation on a single file 
size and no limitation on the number of files in a 
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directory. In CACSS, most of the objects are stored 
in a flat structure in HDFS. Each object’s file name 
under HDFS is a generated UUID to ensure 
uniqueness.  

The implementation of CACSS does not need to 
rely solely on HDFS. The separation of file metadata 
entirely from file content enables CACSS to adapt to 
one or even multiple file systems, such as GPFS or 
Lustre. It is now deployed as a service under IC-
Cloud platform (Guo and Guo, 2011), and is 
expected to work with a variety of distributed file 
systems through POSIX or their APIs without much 
effort.  

6 EXPERIMENTS 

We performed our experiments on top of Amazon 
EC2 instances, to enable the comparison of CACSS 
and Amazon S3 under similar hardware and network 
environments. We used (JetS3t), an open source 
Java S3 library, configuring it with our experiment 
code to evaluate the performance of CACSS.  

We used one m2.xlarge instance, with 17.1GB of 
memory and 6.5 EC2 Compute Units, to run 
MySQL, HDFS NameNode, HBase Hmaster and 
Tomcat with the CACSS application. Three 
m1.large instances, each with 7.5GB memory and 4 
EC2 Compute Units ran HDFS DataNodes and 
HBase Regionservers. Each of these instances was 
attached with 100GB volumes of storage space. 
Another two m1.large instances were configured 
with the same experiment code but different S3 end 
points. We refer to these two instances as “S3 test 
node” and “CACSS test node”.  

To evaluate the performance of CACSS, we ran 
a series of experiments on both Amazon S3 and 
CACSS. The evaluation of the performance of 
Amazon EC2 and S3 has been carried out previously 
by (Garfinkel, 2007).  A similar method was adopted 
here to evaluate the overall throughput of CACSS.  

Figure 4 and Figure 5 illustrate respectively the 
write and read throughputs of Amazon EC2 to 
Amazon S3, and of EC2 to CACSS, based on our 
experiments. Each graph contains traces of observed 
bandwidths for transactions of 1Kbyte, 1Mbyte, 
100Mbyte and 1Gbyte. Both Amazon S3 and 
CACSS perform better with larger transaction sizes, 
because smaller size files would experience more 
transaction overhead. For files larger than 1Mbyte, 
the average speed of transaction of CACSS is higher 
than Amazon S3; this is probably due to underlying 
hardware differences between Amazon EC2 and 

Amazon S3, such as hard drive RPM and RAID 
levels.  

Amazon S3’s List Objects operation only 
supports a maximum of 1000 objects to be returned 
at a time, so we could not properly evaluate its 
object metadata service performance. However, we 
were able to run some tests to see how CACSS’s 
metadata management performs. We ran a List All 
Objects operation after every 1000 Put Object 
operations. All of the operations were targeted to the 
same bucket. Each Put Object was done using an 
empty file, because we were only interested in the 
performance of the metadata access in this 
experiment. Figure 6 shows a scatter graph of the 
response time of each Put Object, with respect to the 
total number of objects in the bucket. The result 
shows an average response time of 0.007875s and a 
variance of 0.000157s for each Put Object operation.  
This indicates that the response time is pretty much 
constant no matter how many objects are stored in 
the bucket. Figure 7 illustrates the response time of 
each List All Objects operation with respect to the 
total number of objects contained in the bucket. 
There are several peaks in the graph which have 
been marked with a red circle. These peaks are 
caused by sudden network latency between Amazon 
EC2 instances during that time. Otherwise, the 
overall result shows a linear relation between the 
response time and the total number of objects.  

 
 

 
Figure 4: Cumulative Distribution Function (CDF) plots 
for writing transactions from EC2 to Amazon S3 and 
CACSS of various sizes. 
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Figure 5: CDF plots for reading transactions from EC2 to 
Amazon S3 and CACSS of various sizes. 

 
Figure 6: Put Object requests. 

 
Figure 7: List all objects requests. 

7 RELATED WORK AND 
DISCUSSION 

Besides Amazon S3, there have been quite a few 
efforts in cloud storage services, including the 
following.  

Walrus (Nurmi et al., 2009) is a storage service 
included with Eucalyptus that is interface-
compatible with Amazon S3. The open source 
version of Walrus does not support data replication 
services. It also does not fully address how file 
metadata is managed and stored.  

The Openstack (Openstack) project has an object 
storage component called Swift, which is an open 
source storage system for redundant and scalable 
object storage. However, it does not support object 
versioning at present. The metadata of each file is 
stored in the file’s extended attributes in the 
underlying file system. This could potentially create 
performance issues with a large number of metadata 
accesses. 

pWalrus (Abe and Gibson, 2010) is a storage 
service layer that integrates parallel file systems into 
cloud storage and enables data to be accessed 
through an S3 interface. pWalrus stores most object 
metadata information as the file’s attributes. Access 
control lists, object content hashes (MD5) and other 
object metadata are kept in .walrus files. If a huge 
number of objects are stored under the same bucket, 
pWalrus may be inefficient in searching files based 
on certain metadata criteria; this factor can cause 
bottlenecks in metadata access.  

Cumulus (Bresnahan et al., 2010) is an open 
source cloud storage system that implements the S3 
interface. It adapts existing storage implementations 
to provide efficient data access interfaces that are 
compatible with S3. However, details of metadata 
organisation and versioning support are not fully 
addressed. 

Hadoop Distributed File System (HDFS) 
(Borthakur, 2007) is a distributed, reliable, scalable 
and open source file system, written in Java. HDFS 
achieves reliability by replicating data blocks and 
distributing them across multiple machines.  

(HBase) is an open source, non-relational, 
versioned, column-oriented distributed database that 
runs on top of HDFS. It is designed to provide fast 
real time read/write data access. Some research has 
already been done to evaluate the performance of 
HBase (Carstoiu et al., 2010) (Khetrapal and 
Ganesh, 2006).  

Table 1 shows a comparison of the support 
features of Amazon S3, Google Cloud Storage and 
CACSS. Many features are shared, with CACSS 
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Table 1. 

 Amazon S3 Google Cloud 
Storage 

CACSS 

Bucket region 
support 

Yes Yes Yes 

Security 
control 

ACL; 
access key 

with signature; 
policy 

ACL; 
OAuth access 

ACL; 
access key 

with signature 

Large file 
upload 

Multi part 
upload 

Resumable 
upload 

Multi part 
upload 

Object 
immutable 

Yes Yes Yes 

Host static 
website 

Yes No Yes 

Versioning Yes No Yes 
Access logs Yes Yes Yes 

Random read 
support 

Yes Yes Yes 

Random 
write support 

No No No 

Search 
support 

Object key 
only 

Object key 
only 

Object key, 
system 

metadata and 
user-defined 

data 
Pricing Storage space, 

network usage 
and number of 

requests 

Storage space, 
network usage 
and number of 

requests 

N/A 

SLA 99.9% uptime 
and 

99.999999999
% durability 

99.9% uptime N/A 

having the additional capability of metadata and user 
defined data searching.  

8 CONCLUSIONS AND FUTURE 
WORK 

We have presented the design and implementation of 
CACSS, a cloud storage system based on the generic 
principles of scalability, performance, data durability 
and reliability. CACSS not only enables users to 
access their data through the S3 interface, the de 
facto industry standard, but also provides support for 
additional features that make the storage service 
more comprehensive. These features include user 
defined metadata and object metadata searching. The 
storage model we propose offers service providers 
considerable advantage in combining existing 
technologies to compose a single customized cloud 
storage system. Furthermore, CACSS performance 
was found to be comparable to Amazon S3 in formal 
tests, with similar read/write capabilities. Although 
other features were difficult to compare directly, 
CACSS performance was highly adequate in terms 
of Put Object and List All Object requests. 

There are several directions of potential future 
studies. In any science and enterprise environment, 

data experiences rapid growth. Some of these data 
are very active in that they need to be retrieved very 
frequently, and conversely much other data are 
hardly accessed. In light of this, a potentially useful 
research direction is the extension of current work to 
enable a more application-aware cloud storage 
service. This would include a data movement 
framework that enables users or applications to 
automatically and manually archive inactive data in 
lower cost storage space, whilst upgrading highly 
active data to higher performance storage space. 
This should enhance capacity on demand cloud 
storage services to a higher level, towards 
performance on demand cloud storage services.  

Further study could also address the issue that 
current cloud storage systems do not offer much 
support for “in-house” data-centric services, such as 
processing and converting existing stored data on 
top of the storage infrastructure. This drives users 
into an inefficient workflow pattern of downloading 
data from cloud storage, dealing with the data 
externally, and then uploading the processed data 
back to cloud storage. Although parallel computing 
(Kumar, 2002) and MapReduce (Dean and 
Ghemawat, 2008) provide ways of effectively 
executing computational tasks distributed on a large 
scale, these implementations are not always easy for 
non-experts to setup or use.  

As a possible solution to this lack of in-house 
services, a cloud storage system could be developed 
with a framework that enables different storage 
oriented services and operations to be “plugged in”. 
This framework should implement sophisticated data 
and computing resource sharing mechanisms in 
order to allow stored data to be used by those 
plugged in services in a controlled and safe manner. 
In such a way, it is possible to create a cloud storage 
environment for a user community. For example, a 
user can publish an application, describing the 
specific computational task in an application 
repository; another user is then able to process the 
same task in a way that requires little or no 
knowledge about the computation, simply by 
specifying which published application to execute.  
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