
IT-AS-A-SERVICE FOR BUILDING VIRTUAL RESEARCH
ENVIRONMENTS

Bastian Roth, Matthias Jahn and Stefan Jablonski
University of Bayreuth, Universitaetsstrasse 30, Bayreuth, Germany

Keywords: IT-as-a-Service, Virtual Research Environment, Resource Classification, Cloud Computing, Applied Meta
Modeling.

Abstract: Virtual research environments are IT systems which support scientists in their daily workflow. Since there is
a great number of different research domains, the quantity of utilized applications and hardware resources is
immense. In the following, we present a solution how potentially each kind of IT resource like computing
power, storage space, desktop applications and web applications can be integrated in form of services (IT-
as-a-Service). The composition of certain services defines a scientist’s personal virtual research
environment.

1 INTRODUCTION

Virtual collaboration is an important aspect for the
success of scientific projects, especially if
participating researchers are distributed over the
whole globe (Hey and Trefethen, 2002). A common
and widely-accepted solution is exchanging
documents by means of a file server or email
communication. Setting up and managing a file
server manually, for instance, is an error-prone and
time-consuming task, notably for IT laymen. So, an
automatic solution is required. Since data sharing is
just one part of a scientist’s daily workflow, further
challenges also need to be considered. Thus, we
interviewed scientists out of many different research
areas and discovered the need to have one integrated
platform which assists researchers in their daily
workflow. We identified the following three
challenges and simultaneously three corresponding
classes of IT resources to support (for more details,
see section 2):
• Easy access to services of domestic university

(mainly web applications): Especially when
scientists start to work at an academic institution
they often do not know which kinds of services
are offered to them by this institution. According
to our experience, in most cases, there is even no
single entry point to access all proffered services.
Consequently, with our solution we want to
provide such a single entry point.

• Further use of existing, in several cases domain-
specific applications (mainly desktop
applications): Since most researchers utilize
dedicated software products, it is important to
provide access to such kinds of applications as
well.

• Support of collaboration, in particular
comfortable exchange of files (e.g. using
network storage)
Since our university is a global player in African

studies, we also have to consider requirements
which stem from another use case. Thereby, African
scientists come to the university for a certain period
of time and they directly want to work within the
same environment like domestic researchers. This
yields the following two challenges:
• Easy usage of the existing infrastructure by

visiting scientists, i.e. access to already available
resources like group calendars, file servers etc.
As one can see, this challenge is quite similar to
the first and third one explicated before.

• Possibility to use the same applications like
domestic researchers, i.e. well-equipped
computers are required (virtual machines
together with certain software): Oftentimes,
visiting scientists even arrive without any laptop
such that they need to utilize local available
computers. Understandably, these computers are
not optimally equipped according to the visiting

234 Roth B., Jahn M. and Jablonski S..
IT-AS-A-SERVICE FOR BUILDING VIRTUAL RESEARCH ENVIRONMENTS.
DOI: 10.5220/0003913602340239
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 234-239
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

scientist’s requirements and sometimes also
include outdated hardware. Using virtualization
techniques could skirt this out-of-date issue
because computing power and storage space is
provided by a virtual machine which then is
accessed remotely.
These challenges are addressed by offering

particular services in a Virtual Research
Environment (VRE) as already explained in (Roth et
al., 2011). In that, a service encapsulates each above
mentioned IT resource (virtual machine, network
storage, desktop applications, and web applications)
which should be integrated and utilized within a
VRE. That is why one needs to ensure generic
applicability. Existing VRE solutions do not provide
that because they are restricted to certain research
domains (Carusi and Reimer, 2010).

In (Roth et al., 2011) a high level solution
proposal for a framework to build personal VREs
with generic applicability is given, too. Below, we
go into greater detail by focusing on Resource and
Service layer, and thereby we present how generic
applicability can be achieved. At first, IT resources
are classified according to particular characteristics
and after that we present a short overview of existing
solutions and their unsolved issues. In chapter 5, we
describe our solution in two steps: At first, we
present the similarities of resources and how they
can be classified. Afterwards, we show how
resources can be integrated by using services as
wrappers for them. Finally, we conclude our work
and take a short outlook of our future tasks.

2 RESOURCE CLASSIFICATION

According to the requirements mentioned in the
introduction, the resources have to be classified to
reduce integration effort. Generally, resources can
be categorized into software and hardware. In both
categories the resources can be further subdivided
into two classes according to the feasibility of access
using web technologies. That results in the following
classification. On the one hand, there are software
resources that can be divided into:
• Web applications which directly provide a web

interface that is typically accessible via HTTP,
and

• Desktop applications which do not provide a
direct way to access them via the web. This can
be solved by dint of separate tools that stream
those applications to the user (e.g. ssh -x, remote
desktop protocol). Operating systems are also

assigned to this class because they can be
accessed in the same way.
On the other hand, there are hardware resources

which we again separate into two classes:
• Virtual machines that encapsulate computing

power as well as storage space which both
cannot be used directly. Therefore, an operating
system has to be installed and the applications
have to be streamed as mentioned for desktop
applications. This class of resources gives a
possibility to provide a personal desktop for
visiting scientists on the basis of virtualization
techniques.

• Network storage which, theoretically, is also
viable using a virtual machine. However, this
would be a waste of computing power because it
is not needed at this point. Instead, lightweight
solutions for providing network storage (e.g.
provided by NetApp) are utilized that provide
typical web protocols (NFS, FTP, WebDAV etc.)
to directly offer the network storage to the user.

3 RELATED WORK

As shown in the previous section we discovered four
types of resources that have to be integrated into our
platform. For desktop applications, this can be done
by porting them to web applications using
JavaScript, HTML and other web technologies. This
approach is also followed, for instance, by Google
with Google Docs (Google Inc.) or by Microsoft
with Microsoft Office Web Apps (Microsoft
Corparation, 2010). Both provide office
functionality in the web. But these ports of desktop
applications involve great efforts because the whole
GUI or in the worst case the whole applications
needs to be re-implemented. Thus, it is only
applicable for resources that are utilized by many
users. For highly specialized resources as we often
meet in research environments, this approach is not
sufficient.

Another practice is to use Web Services (W3C)
to access resources in a well-defined way. Thereby,
messages and data are transported over an interface
(Stal, 2002). An example for using Web Services to
define services can be found in (Foster et al., 2002)
where GridServices are specified by a set of
interfaces as WSDL port types. Web Services
provide a way to make resources available via the
internet, but it is not suitable for our requirements
because they do not provide a GUI to access the
service. So, they are just a way to facilitate

IT-AS-A-SERVICE�FOR�BUILDING�VIRTUAL�RESEARCH�ENVIRONMENTS

235

communication between computers. In (Turner et
al., 2003) they also pick up the Web Service idea to
make existing software available within the web, but
afresh only for computers and not for humans.

Once again, a similar approach is followed by
the popular cloud computing providers like Amazon
and Microsoft. Amazon Web Sevices (Amazon Web
Services LLC, 2010) provide a possibility for
implementing an application against a Web Service
interface and thus it supplies functionality that can
be used by software developers. Microsoft Windows
Azure (Chappell, 2009) also provides a Web Service
API for different concerns, similar to Amazon’s
offerings. Computation and storage can primarily be
rent by users. All in all, cloud providers support an
easy way to access web applications, virtual
machines and also storage, but they focused on
supporting developers, especially regarding the two
latter ones. However, our services are completely
directed to the end-user. That is why this approach is
not suitable for our above mentioned challenges.

Additionally, there are solutions to make desktop
applications and the desktop itself available via the
internet. They are able to stream GUIs of desktop
applications via a security socket. Popular examples
are ssh, Microsoft remote desktop protocol and
Oracle Secure Global Desktop. These approaches
do not support any possibility for integrating other
resources like web applications or virtual machines.

Table 1: Comparison of available approaches.

 Web
Apps

Desktop
Apps Storage Virtual

Machines

Cloud
provider + - + +

Web Services - - + +
Application
streaming - + - -

In summary, all presented approaches are limited
to a certain kind of resource type they support (Table
1). Cloud providers principally fulfill a couple of our
requirements, but they do not allow for integrating
existing desktop applications in a rentable way for
highly specialized software. Moreover, the different
offerings are mainly targeted to developers and not
to common users which are mostly IT laymen. The
Web Service technology provides a possibility to
share data over several computers in a well-defined
way. Hence, they are a popular appliance to make
virtual machines or storage available (for other
computers) via the internet. But as mentioned above,
they do not provide a user-friendly GUI. Thus, IT
laymen are not able to access them in a convenient

way. Furthermore, streaming applications just
address desktop applications and do not provide
solutions for further resource types.

4 RESOURCE INTEGRATION

One of the main challenges for our framework to
solve is to provide an easy way to integrate existing
IT resources. Since existing resources generally
cannot be adapted, we need to see them as black
boxes. So, they have to be integrated by means of
corresponding wrappers which have to be specified,
implemented and added to our system. We call these
wrappers services because they provide functionality
of the IT resources in the VRE as a service (IT-as-a-
Service (Lin et al., 2009)). To define the structure of
such a service, we have to cover all classes of
resources that we presented in section 3.

4.1 Similarities between Resource
Classes

Our first step is to extract similarities of the four
different resource classes that must be handled by a
service. If one wants to utilize and accordingly
instantiate a resource, a well-defined set of
information (data) has to be specified before. This
can be realized by defining associated meta data for
the resource. Those meta data can be seen as a
template for the resources and thus we call it
resource template. Examples for resource templates
are setup bundles or web service interfaces which
are used, for example, to create virtual machines,
storage spaces or web application accounts.

Each resource must be set up before first usage
and therefore, a corresponding template must be
provided. After setup, most resources can be
modified according to evolved user requirements. If
resources are not needed any more they can be
"disposed". After setup and before disposing, a
resource may be started and stopped. This feature is
not necessarily supported by every resource.
Summing up, resources have a common lifecycle
which has to be handled by the corresponding
service. In addition, the lifecycle constitutes one of
three functional aspects when describing the
existence of a resource. It is called the state-based
aspect.

In some cases, resources need to interact with
other resources. These relationships can be divided
into two different types: Firstly, resources can
depend on other resources (dependency
relationship), i.e. one resource needs another

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

236

resource for successful installation or execution.
This kind of relationship affects a resource’s
lifecycle. With it, resources can build hierarchies,
for example Microsoft Office depends on Microsoft
Windows which again depends on a computer with
x86-architecture (e.g. represented by an according
virtual machine). Dependency relationships can also
be found in many web applications (project
management systems, wikis, groupware etc.) that
depend on a Lightweight Directory Access Protocol
(LDAP) (Koutsonikola and Vakali, 2004) and/or a
database. A second relationship between resources is
the usage relationship which represents loosely
coupling of resources. Thereby, one resource does
not necessarily need the other resource for execution
and hence, the lifecycle of both resources do not
affect each other. A common example for that
relationship is the integration of the EndNote
(Thomson Reuters) plugin into Microsoft Word.
Both applications work independently, but by means
of the plugin mechanism they can benefit from each
other.

For the first setup or if reconfiguration is
possible a resource contains a set of properties
which can be set or manipulated. Examples for
properties are installation directory, user credentials
for an initially required super user and particular
relationships to other resources. Properties and
relationships form the second functional aspect, the
data based aspect.

Each resource possesses certain functionality
which is provided via a well-defined interface, so
called operations. In some cases, operations need or
accept further data that mainly is delivered in form
of parameters. In particular, a couple of desktop
applications can handle parameters, e.g. Microsoft
Word can be invoked in combination with a
document filename. Hence, it is necessary to know
which kind of parameters a resource can handle to
check whether the parameter’s type is valid. A
special parameter type which must be considered
separately is an authentication token because with it,
single sign-on can be facilitated. This scenario is
especially useful when using web applications in
combination with our system. Then, users merely
have to login one time when accessing their personal
virtual research environments which results in
generating an authentication token. Afterwards, this
token can be used for further authentications at the
different utilized services, but without entering the
user credentials again. Operations are the building
blocks of the behavioral aspect which represents the
third and last functional aspect.

4.2 Services as Resource Wrappers

According to these circumstances given by the
resource layer, we now specify how a concrete
resource can be integrated in our system as a service
in a generic way. This takes place in the service
layer which is the next abstraction stage after the
resource layer. For more information about the
resource layer’s constitution see (Roth et al., 2011).

First of all, we give a definition of our service
comprehension: A service wraps an IT resource to
provide a standardized interface (used by our
system) which captures the aforementioned resource
similarities (IT-as-a-Service).

Figure 1: Abstract service description using meta
modeling.

To concretely describe our understanding of
services, we resort to meta modeling (Clark et al.,
2008) as a basic principle (Figure) because a meta
model provides information about a designated set
of models which is also mentioned in the definition
of a meta model by Seidewitz: “A metamodel makes
statements about what can be expressed in the valid
models of a certain modeling language”. (Seidewitz,
2003) Due to the reason that each model can make
statements about other models, a model itself can be
seen as a meta model as well. We explicitly use this
fact to constitute the base of the service
specification: A Service is an abstract concept that
provides fundamental infrastructural functionality.
Specializations of a service may provide some
resource-specific structure and functionality that
concerns the similarities above. How these
similarities are captured is defined by the
ServiceType concept at M2 because concrete
services are instances of this concept. So, M2
represents the meta model for M1. This instanceOf
relationship between service and service type is
comparable to the relation between class and object
in object-oriented programming languages
(Armstrong, 2006). According to MOF (OMG,
2006), this is the only valid relationship for elements
at a certain meta level to elements at the next higher
level. An instance of a concrete service (like
ServiceA and ServiceB) supplies access to a concrete

ServiceType

Service ServiceBServiceA

:ServiceA :ServiceB
M0

M1

M2

instanceOf

extends

IT-AS-A-SERVICE�FOR�BUILDING�VIRTUAL�RESEARCH�ENVIRONMENTS

237

resource (installation, invocation of provided
operations, modification of properties,
reconfiguration etc.). Hence, M1 is the meta model
for M0 and therefore, attributes declared by concrete
services can be assigned by associated instances
within M0.

Based on this approach, in the following, we
detail the specification of the service interface more
precisely. Both, service and service instance contain
a unique name for identification purposes on
scientist’s site.

Furthermore, a service has to be configurable
and consequently needs to have properties. The
possibility to declare properties which can be
utilized by the framework is constituted by the
association between ServiceType and Property at
level M2. Thus, properties can be defined at M1 and
the corresponding assignment of values takes place
at M0. These values define the state of the Service.
Since they correspond to properties of the
underlying resource in some way, modifying these
values certainly influences the state of the
underlying resource, too.

Figure 2: State diagram of service lifecycle.

Analog to the properties, a service must provide
an interface that can be used by the system to
address some of the resource’s functionalities in the
form of operations. They are also defined at M1 as
instances of Operation. Delegation of operation
invocations to the encapsulated resource accesses its
functionality. This must be specifically implemented
in the corresponding method by the developer who
integrates a certain resource into the VRE system.
However, with this concept, it is possible to define
system independent methods as well. Then, such
methods must not be instances of Operation.

However, some methods like the ones that
control the lifecycle (onPrepare(), onDispose() etc.),
have to be implemented by every service. The
generic service lifecycle is shown in Figure in form
of a state diagram. According to that, each service
starts with INITIAL state where the user has to

assign proper values to the required properties. After
that, she starts the PREPARING step which is
potentially intended to be a long running process. In
case of a wrapped desktop application, this
represents the installation. After successful
completion, the state automatically passes into its
successor state. That is true for all states with a
dotted border. If a service resides in PREPARED
state, it can get into PREPARING state again after
reconfiguration. Once more, in case of an underlying
desktop application, this mates with adding or
removing features by means of the setup program.
RUNNING state mainly is relevant when wrapping
virtual machines or desktop applications because it
tells whether a resource currently is executed or not.
Since starting and stopping of web applications often
is not necessary or even not allowed, for the
corresponding service this state is superfluous. If a
service is not needed any more, it can be released
and then it gets into DISPOSED state. In case of
encapsulated desktop applications, that forces an
attendant uninstallation. All state transitions must be
implemented accordingly by every concrete service.

5 CONCLUSIONS AND
OUTLOOK

In this article, we present a solution that allows for
the integration of arbitrary IT resources (primarily
web applications, desktop applications, virtual
machines and storage spaces) into a framework to
build virtual research environments. As mentioned
above, a scientist’s personal VRE is constituted by a
set of projects in which she participates with a
certain role (e.g. project leader). Each project, in
turn, consists of a number of service instances that
represent wrappers for concrete occurrences of IT
resources (e.g. an instance of a virtual machine or a
concretely installed office application). Due to the
generic applicability of our solution, the framework
handles resources as black boxes but with a well-
defined interface implemented by the corresponding
services.

A service’s interface can be classified into three
functional aspects of which the first one is
mandatory. It is the state based aspect that
encapsulates the lifecycle of the underlying resource.
The second one is called data based aspect and
contains all relevant data for performing certain state
transitions concerning the lifecycle (e.g. parameters
needed for installation like the target path). The
behavioral aspect is the last one; it comprises all

INITIAL
DISPOSED

RUNNING

prepare()

dispose()

start()

stop()

<create>
<destroy>

reconfigure()

PREPARING DISPOSING

STARTING
STOPPING

PREPARED

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

238

operations which a service provides. For specifying
the generic service interface, we use concepts
stemming from the meta modeling approach.
Thereby, we define the so called service type which
represents the meta class for each service. Again, a
service itself constitutes the meta class for
corresponding service instances.

Programmatically, we have implemented this
meta hierarchy by using annotations or alternatively
external configuration files. As an example, the
usage of XML files to describe interfaces is
explained in (Bramley et al., 2000). For a proof of
concept, we implemented a prototype of the
proposed VRE framework in context of the African
Studies use case. Therefore, we supply services for
several resources, i.e. concretely for virtual
machines using VMware vSphere, network storage
with NetApp, Microsoft Windows Server 7 and
Microsoft Office 2010.

Future steps concern the generic applicability
challenge again, i.e. integration of further resources
is the major task. This addresses widely-used
desktop applications (e.g. existent office tools) as
well as groupware solutions already provided by the
university.

ACKNOWLEDGEMENTS

The proposed framework is called ViATOR which is
also the name of a research project funded by the
Deutsche Forschungsgemeinschaft (INST 106535/2-
1). So, we thank this institution which has kindly
facilitated our work.

REFERENCES

AMAZON WEB SERVICES LLC. 2010. Overview of
Amazon Web Services. [Accessed 06.12.2011].

Armstrong, D. J. 2006. The quarks of object-oriented
development. Communications of the ACM, 49, 123-
128.

Bramley, R., Chiu, K., Diwan, S., Gannon, D.,
Govindaraju, M., Mukhi, N., Temko, B. & Yechuri,
M. A component based services architecture for
building distributed applications. In: 9th International
Symposium on High-Performance Distributed
Computing, 2000 Pittsburgh, USA. Published by the
IEEE Computer Society, 51.

Carusi, A. & Reimer, T. 2010. Virtual research
environment collaborative landscape study.

Chappell, D. 2009. Introducing the azure service platform.
Clark, T., Sammut, P. & Willans, J. 2008. Applied

metamodelling: a foundation for language driven
development. CETEVA.

Foster, I., Kesselman, C., Nick, J. M. & Tuecke, S. 2002.
The Physiology of the Grid An Open Grid Services
Architecture for Distributed Systems Integration.
Journal Computer, 35.

GOOGLE INC. Google Docs [Online]. Available: http://
docs.google.com/ [Accessed 06.12.2011].

Hey, T. & Trefethen, A. E. 2002. The UK e-science core
programme and the grid. Future Generation Computer
Systems, 18, 1017-1031.

Koutsonikola, V. & Vakali, A. 2004. LDAP: Framework,
practices, and trends. Internet Computing, IEEE, 8, 66-
72.

Lin, G., Fu, D., Zhu, J. & Dasmalchi, G. 2009. Cloud
computing: IT as a service. IT Professional, 11, 10-13.

MICROSOFT CORPARATION 2010. Microsoft Office
Web Apps Product Guide.

OMG 2006. Meta Object Facility (MOF) Core
Specification. Version 2.0.

Roth, B., Hecht, R., Volz, B. & Jablonski, S. 2011.
Towards a Generic Cloud-based Virtual Research
Environment. In: 2nd IEEE International Workshop
on Applied Cloud Computing, Munich.

Seidewitz, E. 2003. What models mean. Software, IEEE,
20, 26-32.

Stal, M. 2002. Web services: beyond component-based
computing. Communications of the ACM, 45, 71-76.

THOMSON REUTERS. EndNote - Bibliographies Made
Easy [Online]. Available: http://www.endnote.com/
[Accessed 06.12.2011].

Turner, M., Budgen, D. & Brereton, P. 2003. Turning
software into a service. Computer, 38-44.

W3C. Web Services @ W3C [Online]. Available: http://
www.w3.org/2002/ws/ [Accessed 06.12.2011].

IT-AS-A-SERVICE�FOR�BUILDING�VIRTUAL�RESEARCH�ENVIRONMENTS

239

