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Abstract: Computational thinking (CT) draws on concepts that are fundamental to computing and computer science, 
however, as an approach, it includes practices, such as problem representation, abstraction, decomposition, 
simulation, verification, and prediction that are also central to modelling, reasoning, and problem solving in 
many scientific and mathematical disciplines. Recently, arguments have been made in favour of integrating 
programming and CT with K-12 curricula. In this paper, we present a theoretical investigation of key issues 
that need to be considered for integrating CT with K-12 science. We identify the synergies between pro-
gramming and CT on one hand, and scientific expertise on the other. We then present a critical review of 
literature on educational computing, and propose a set of guidelines for designing learning environments in 
science that can jointly foster the development of computational thinking with scientific expertise. Finally, 
we describe the design of a learning environment that supports CT through modelling and simulation to help 
middle school students learn physics and biology. 

1 INTRODUCTION 

Wing (2006, 2008) and others (NRC, 2010) have de-
scribed computational thinking as a general, analytic 
approach to problem solving, designing systems, and 
understanding human behaviours. Computational 
thinking (CT) draws on concepts that are fundamen-
tal to computing and computer science, however, as 
an approach, it includes practices (e.g., problem rep-
resentation, abstraction, decomposition, simulation, 
verification, and prediction) that are also central to 
modelling, reasoning, and problem solving in a large 
number of scientific and mathematical disciplines 
(NRC, 2010). Several scholars (Soloway, 1993); 
(diSessa, 1986, 2000); (Sherin, 2000); (Pea, 1986); 
(Guzdial, 1995) have used the synergies between 
scientific thinking, analysis and engineering design, 
and evaluation to establish close links between CT 
and modeming, reasoning, and problem solving in 
STEM disciplines. 

Developing scientific reasoning and expertise 
requires sustained, immersive educational 

experiences, as is reflected in the recent efforts to 
develop learning progressions for science in K-12 
classrooms (Lehrer, Schauble, and Lucas, 2008; 
Krajick et al., 2008). Similarly, fostering a 
curriculum that integrates CT with science and 
mathematics requires the design of coherent, long-
term curricula (ACM K-12 Taskforce, 2003). 
However, there exists no theoretical framework that 
can support such an endeavour, and empirical 
studies show that integrating computational 
modelling and programming with K-12 science and  
math curricula can be extremely challenging (Sherin 
et al., 1992). Our goal in this paper is to establish 
such a framework and present the design of a 
computer-based learning environment, which 
supports middle school science learning through 
Computational Thinking in Simulation and Model-
building (CTSiM). 
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2 REVIEW OF LITERATURE ON 
EDUCATIONAL COMPUTING 

Table 1: Computational thinking and STEM expertise. 

Computational 
Thinking and 
Programming 

STEM Expertise 

Abstractions 
Models, laws and other generalizable 

representations in science; Variables and 
functional forms in mathematics 

Encapsulation 

Creating coherent, formal representations 
of scientific processes and phenomena; 

Understanding functions as dynamic ob-
jects in mathematics 

Classes/Agents and 
Class Inheritance 

Agent-based thinking (micro-level rea-
soning, species vs. individuals, classifi-

cation and hierarchy – inheritance) 

Emergence and 
Aggregation 

Macro-level reasoning; 
Generating aggregate-level equations 
and functional forms from individual-

level variables 

Algorithms 
(Behaviours) and 
Causal Reasoning 
(Interactions and 

Rules) 

Mechanistic reasoning; Natural laws; 
Mathematical equations and functions 

Software Engineering 
/ Iterative Design 

Iterative theory refinement through mod-
elling; Model matching; Model Refine-

ment 

Unit Testing and 
Verification 

Experimentation; Hypothesis Testing; 
Verification 

Formal 
representations Mathematical models and inscriptions 

 
Perkins and Simmons (1988) argued that novice 
misconceptions in math, science, and programming 
exhibit similar patterns in that misunderstandings in 
these domains have domain-specific (e.g., challeng-
ing concepts) and domain general (e.g., difficulties 
pertaining to conducting inquiry, problem solving, 
and epistemological knowledge) causes. Harel and 
Papert (1991) argued that programming is reflexive 
with other domains, i.e., learning programming in 
concert with concepts in another domain can be eas-
ier than learning each separately. Along similar 
lines, several researchers have shown that program-
ming and computational modelling can serve as ef-
fective vehicles for learning challenging science and 
math concepts (Guzdial, 1995); (Sherin, 2001); 
(Hambrusch et al., 2009); (Blikstein and Wilensky, 

2009); (diSessa, 2000); (Kaput, 1994); (Kynigos, 
2007). Table 1 illustrates components of CT that are 
central to our framework and establishes their rela-
tionship to scientific practices. 

2.1 Pedagogical Benefits of Integrating 
CT with Science Curricula 

We discuss a number of pedagogical benefits that 
may be derived from integrating CT and K-12 sci-
ence curriculum units. 

A. Lowering the learning threshold by reorganizing 
scientific and mathematical concepts around intui-
tive computational mechanisms: Several studies 
have shown that through programming, students can 
construct representations of physics concepts such as 
speed and acceleration, which in turn provides moti-
vation for learning programming and leads to a 
deeper understanding of concepts in both domains 
(Sherin, 2001); (Soloway, 1996); (Guzdial, 1995); 
(diSessa, 2000); (Papert, 1980). Sherin (2001) and 
diSessa (2000) argued that programming enables 
novice learners to access their intuitions about the 
physical world. Redish and Wilson (1993) argued 
that computational representations enable us to in-
troduce discrete forms of the fundamental laws, 
which can be much simpler to explain and under-
stand than the continuous forms traditionally pre-
sented in equation-based instruction. Furthermore, 
these studies also suggest that in the domains of 
physics and biology, rather than organizing scientific 
phenomena and domains in terms of abstract 
mathematical principles, these phenomena can be 
organized in a more intuitive fashion around compu-
tational mechanisms and principles (Redish and 
Wilson, 1993); (Sengupta and Wilensky, 2011); 
(Wilensky and Reisman, 2006). 

B. Programming and computational modelling as 
embodiments of core scientific practices: Soloway 
(1993) argued that learning to program amounts to 
learning how to construct mechanisms and explana-
tions. Therefore, the ability to build computational 
models by programming corresponds to core scien-
tific practices, such as model building and verifica-
tion. Lehrer, Schauble and Lucas (2008) indicate 
that modelling is a fundamental component of in-
quiry in science. Regardless of the domain, scien-
tists’ work involves building and refining models of 
the world (Stewart and Golubitsky, 1992).  

C. Developing pre-algebra concepts through graph-
ing functions and linked representations: Much like 
computational environments for science, environ-
ments like SimCalc (Kaput, 1994; Hegedus and Ka-
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put, 2004) ESCOT (Roschelle et al., 1999), and E-
slate (Kynigos, 2001, 2007) enable students to learn 
algebra by creating their own dynamic representa-
tions of concepts, such as rate and proportion, 
through animations of actors. Based on this research, 
our goal is to provide students with the following 
opportunities within an integrated modelling plat-
form by (a) linking the underlying computational 
model (i.e., agent-based program) with the resultant 
visualization of the programmed behaviours as well 
as mathematical inscriptions (e.g., graphs) to meas-
ure salient aspects of the simulated behaviours; (b) 
importing physical data into the mathematical realm 
in active ways, and (c) manipulating functional 
forms to develop mathematical narratives and expla-
nations of scientific phenomena. 

D. Contextualized representations make it easier to 
learn programming: When computational mecha-
nisms are anchored in real (world) problem contexts, 
programming and computational modelling become 
easier to learn. Hambrusch et al. (2009) found that 
introducing computer programming to undergradu-
ate non-CS major students in the context of model-
ling phenomena in their major domains (physics and 
chemistry) resulted in higher learning gains (in pro-
gramming), as well as a higher level of engagement. 

2.2 Agent-based Computation 

In this work, we focus on multi-agent-based compu-
tational modelling (MABM). An example of a multi-
agent programming platform widely used by both 
researchers and educators is NetLogo (Wilensky, 
1999); (Sengupta and Wilensky, 2009). The term 
“agent” in the context of MABMs denotes individual 
computational objects or actors (e.g., cars), which 
are controlled by simple rules assigned by the user. 
It is the interactions between agents (based on these 
rules) that give rise to emergent, aggregate-level be-
haviour (e.g., formation of a traffic jam – while in-
dividual cars move forward, the traffic jam moves 
backward – see Resnick, 1994). 

When students learn using MABMs, they use 
their intuitive knowledge at the agent level as they 
are asked to manipulate and reason about the behav-
iours of individual agents. Then, by visualizing and 
analyzing the aggregate-level behaviours that are 
dynamically displayed in MABM simulations, stu-
dents can develop multi-level explanations by con-
necting their relevant agent-level intuitions with the 
emergent phenomena (Resnick, 1994); (Wilensky 
and Resnick, 1999); (Klopfer et al., 2005); (Sen-
gupta and Wilensky, 2011); (Blikstein and Wilen-
sky, 2009). These scholars have argued that in most 

science classrooms, aggregate-level formalisms are 
typically used to teach scientific concepts and phe-
nomena, such as using the Lotka-Volterra differen-
tial equation to explain how populations of different 
species in a predator-prey ecosystem evolve over 
time (Wilensky and Reisman, 2006). In contrast, 
when complex phenomena (e.g., microscopic proc-
esses of electrical conduction) that are traditionally 
taught in college are represented in the form of 
multi-agent based models, much younger students 
(e.g., 4th and 5th graders) can access and understand 
those phenomena (Sengupta and Wilensky, 2011); 
(Dickes and Sengupta, 2011).  

Among the earliest and best-known agent-based 
programming languages is Logo (Papert, 1980), 
which has been widely used to support children’ 
learning through constructionist activities (i.e., 
through the creation of personally meaningful com-
putational artifacts). The core building blocks for 
constructionist (or design-based learning) activities 
in Logo are computational procedures, which facili-
tate simultaneous learning of concepts about the 
phenomena being modelled and computational con-
cepts, such as procedure abstraction, iteration, and 
recursion.  

2.3 Visual Programming 

In visual programming environments, students can 
construct programs using graphical and physical ob-
jects, typically using a drag-and-drop interface (Kel-
leher and Pausch, 2005); (Hundhausen and Brown, 
2007). This significantly reduces students’ chal-
lenges in learning the language syntax (compared to 
text-based programming), and thus makes program-
ming more accessible to novices, This is an impor-
tant affordance of visual programming, because 
prior research showed that students in a LOGO pro-
gramming-based high school physics curriculum 
faced significant challenges in writing programs for 
modelling kinematics even after multiple weeks of 
programming instruction (Sherin et al., 1992) 

Some examples of visual agent-based program-
ming are AgentSheets (Reppening, 1993), StarLogo 
TNG (Klopfer et al., 2005), Scratch (Maloney et al., 
2004), ToonTalk (Kahn, 1996), Stagecast Creator 
(Smith et al., 2000), Kedama (Oshima, 2005) and 
Alice (Conway, 1997). Common characteristics of 
all these environments are: (a) users can construct or 
design their programs by arranging icons or blocks 
that represent programming commands and (b) these 
platforms employ animations to represent the en-
actment (i.e., the execution) of the user-generated 
algorithm (i.e., program), albeit with varying de-
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grees of algorithm visualization (Hundhausen and 
Brown, 2007). 

3 SYSTEM DESIGN 
FRAMEWORK 

Figure 1 illustrates the conceptual framework for our 
integrated approach to science learning through 
computational thinking. The framework captures a 
typical learning-by-design progression, which in-
cludes learning the basics of a science unit, model-
ling the entities and processes in the unit using a 
visual agent-based computational framework, simu-
lating and studying the behaviour of the model, us-
ing explanation and argumentation skills to fully un-
derstand and verify the model, and finally applying 
the developed model and the learned science con-
cepts to problem-solving situations. 

In what follows, we outline our key design prin-
ciples, some of which has been adapted from Sen-
gupta (2011). 

A. Achieving Low Threshold and High Ceiling – The 
Trade-offs: For a computing medium to be widely 
usable in K-12 science classrooms it must have the 
following affordances: (1) it should be easy to use 
for novice students; (2) learning activities should be 
well-integrated with the existing science curricula; 
(3) teachers, who are likely to have little or no com-
puting background, should be able to master the sys-
tem with minimal or no professional development; 
and (4) while low-threshold is a definite requirement 
for our system, it should not impose arbitrary ceil-
ings on the levels of complexity for modelling and 
analysis by students over time. Therefore, our goal 
here is to find a sweet spot that encapsulates low-
threshold (i.e., easy to program, similar to NetLogo 
and Logo), wide walls (i.e., students should be able 
to design a wide range of artifacts, such as anima-
tions, games, and science experiments, much like 
Scratch), and high ceiling (e.g., NetLogo supports 
advanced programming and modelling of complex 
phenomena using a library of intuitive programming 
primitives). While many of these design principles 
are shared by other modelling platforms (e.g., Logo, 
NetLogo, and Scratch), CTSiM is being designed 
specifically for pedagogical use in science class-
rooms, keeping both teachers and students in mind 
as users. This is reflected in the design of domain-
specific programming primitives, scaffolds to make 
algorithms “live” and to support experimentation, 
and an explicit focus on curricular integration. We 
discuss these in detail in the rest of this section.,  

 
Figure 1: CTSiM conceptual framework. 

B. Incorporate Multiple “Liveness” Factors as Sup-
port for Programming and Learning by Design: Our 
challenge is to design a system that lets students 
seamlessly progress through cycles of construction, 
execution, analysis, reflection, and refinement using 
timely feedback from the simulation environment 
and scaffolding provided by the system. To support 
learning activities that involve rapid prototyping, our 
CTSiM system will offer learners a range of “live-
ness” factors for algorithm construction, visualiza-
tion, analysis, and reflection (Tanimoto, 1990). This 
primary design objective is to enable the learners to 
identify the relationship between their programs 
(i.e., algorithms) in the Construction World (see 
Section 4.1), and the resultant enactment of their 
simulations in the Enactment World (see Section 
4.2). This involves developing scaffolds for support-
ing algorithm visualization (e.g., highlighting step-
by-step execution of commands; controlling the de-
lay between execution of successive commands). 
The goal is to provide timely feedback to students in 
order to avoid situations where lack of feedback and 
scaffolding may cause errors to accumulate late into 
the construction process, which makes the source of 
errors harder to detect. Accumulation of errors often 
leads to students being overwhelmed in terms of 
their cognitive abilities, resulting in their applying 
trial and error rather than systematic methods to 
conduct scientific inquiry (Segedy, Kinnebrew, and 
Biswas, in review). 

C. Verification and Validation to Support Learning 
of Expert Models: True scientific expertise involves 
understanding how knowledge is generated, justi-
fied, and evaluated by scientists and how to use such 
knowledge to engage in inquiry (Driver, Newton, 
and Osborne, 2000; Duschl and Osborne, 2002). 
Novice science learners engaging in these aspects of 
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inquiry often struggle without extensive scaffolding 
(e.g., Klahr et al., 1990); (Schauble et al., 1991); 
(Sandoval and Millwood, 2005). This is a challenge 
in computational modelling environments, where 
learning is often assumed to arise as students build 
their models and then verify them by comparing the 
behaviours generated against real data or behaviours 
of reference models representing the actual phenom-
ena (Bravo et al., 2006). Therefore, building appro-
priate scaffolding and feedback is vital to the suc-
cess of such environments. In CTSiM, learners will 
iteratively refine their programs by effectively com-
paring results of their simulation to an “expert” (i.e., 
canonically correct) simulation, understand the dif-
ferences, and then map elements and constructs in 
their model to behaviours exhibited by their simula-
tion and vice-versa. We will extensively scaffold 
this process to support experimentation and meas-
urement activities, as discussed in Section 4.3. 

D. Choice of Curricular Topics: The phenomena we 
have chosen as contexts for disciplinary learning are 
kinematics (physics) and ecology (biology), which 
are common and important curricular topics. Re-
searchers have shown that K-12 students find these 
phenomena quite challenging to understand (Chi et 
al., 1994). Furthermore, it has been argued that stu-
dents’ difficulties in both the domains have similar 
epistemological origins, in that both kinematic phe-
nomena (e.g., change of speed over time in an accel-
eration field) and system-level behaviours in an eco-
system (e.g., population dynamics) involve under-
standing aggregation of interactions over time 
(Reiner et al., 2000); (Chi, 2005). As discussed in 
Section 2.2, agent-based modelling is ideally suited 
for representing such phenomena, as it enables the 
learner to recruit their intuitions about agent-level 
behaviours and organize them through design-based 
learning activities (Kolodner et al., 2003), in order to 
explain aggregate-level outcomes. 

4 IMPLEMENTING CTSIM: 
ARCHITECTURE AND 
MODULES 

The CTSiM environment will be made up of three 
primary modules: 
1. The Construction World: This module provides 
the visual programming interface for the student to 
build a computational model by composing pro-
grams. Students select primitives from a library of 
commands and arrange them spatially, using a drag-
and-drop interface to generate their programs. These 

programs control behaviours of individual-level 
agents in a NetLogo simulation.  
2. The Enactment World: This module is a mi-
croworld (Papert, 1980; White and Frederiksen, 
1990) in the form of a NetLogo simulation, which 
simulates the agent-level behaviours modelled by 
the student in the Construction World.  
3. The Envisionment World: This module works 
closely with the enactment world, helping the stu-
dent to set up experiments to analyze the behaviour 
of their models and to compare their model against 
an expert model. Much of the scaffolding and feed-
back to help students refine, understand, and verify 
their models is also provided in this module. 
The overall system architecture is illustrated in Fig-
ure 2Error! Reference source not found.. The rest 
of this section provides a brief description of the 
three modules, and illustrates their functionality us-
ing a biology learning unit – a simple fish tank eco-
system that includes fish, algae, and bacteria that 
break down organic waste.  

4.1 Construction World 

The construction world allows students to build the 
relevant science model using an agent-based frame-
work with relevant computational constructs. Figure 
3 presents a mock-up of the drag-and-drop model-
ling interface (illustrated on the left side of the fig-
ure) in which students define their computational 
models for a simplified fish tank microworld. The 
students define the model for each type of agent by 
arranging and parameterizing a set of visual primi-
tives, as illustrated for a partial fish agent model in 
Figure 3. 

The visual primitives are named and iconically 
depicted in terms of their scientific function.  These 
primitives are of three types: agent actions in the mi-
croworld (e.g., movement, eating, reproducing), 
sensing (e.g., vision, colour, touch, toxicity), and 
controlling the flow of execution in the computa-
tional model (e.g., conditionals, loops). Each visual 
primitive, in turn, is defined in terms of an underly-
ing computational primitive (with appropriate con-
straints and parameters), as illustrated in Figure 4. 
The computational primitives provide a domain-
independent set of computational constructs in a va-
riety of categories: 1) changing (e.g., increasing or 
decreasing) a property of the agent, 2) sensing con-
ditions of the agent or its environment (e.g., reading 
local or global variable values), 3) creating or de-
stroying agents (e.g., to model birth and death), and 
4) conditionals and logical operators for controlling 
execution flow. 
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4.2 Enactment World 

The enactment world interface allows the student to 
define a scenario (as a set of initial parameters) and 
visualize the multi-agent-based simulation driven by 
their model. The CTSiM environment, implemented 
in Java, includes an embedded instance of NetLogo 
to implement the visualization and mechanics of the 
simulation. As the student builds a model, it is repre-
sented in the system as a code graph of parameter-
ized computational primitives, illustrated in Figure 
4. This code graph remains hidden from the end-user 
(the learner), who accesses the environment using 
the UI as shown in Figures 3 and 5. The code graph 
enables the system to simulate the user-generated 
model for a given scenario by stepping through the 
graph and executing the computational primitives. 
The execution of the computational primitives indi-
cated by the current (user) model drives the NetLogo 
simulation, as illustrated in Figure 2. NetLogo visu-
alization and plotting/measurement functionality (il-
lustrated in Figure 4) provide the students with a dy-
namic, real-time display of how their agents operate 
in the microworld, thus making explicit the emer-
gence of aggregate system behaviours (e.g., from 
graphs of the population of a species over time). 

Furthermore, since there is a one-to-one corre-
spondence between the visual primitives in the con-
struction world model and the computational primi-
tives in the execution model (code graph), the sys-
tem can highlight each primitive in the construction 
world as it is executed in the enactment world.  This 
model-tracing functionality will be leveraged to pro-
vide important scaffolding that supports model re-
finement and debugging activities. 

5 ENVISIONMENT WORLD 

The envisionment world provides students with a 
space where they can systematically design experi-
ments to test their constructed models and compare 
their model behaviours against behaviours generated 
by an “expert” model. A typical experimental setup 
would involve assigning values to agent parameters 
and variables defined in the student model, and si-
multaneously simulating the expert model with the 
same parameter values. Although the expert model 
is hidden, students may observe its behaviour in 
comparison to their own model with side-by-side 
plots and microworld visualizations. With additional 
scaffolding and support, this allows students to make 
decisions on what components of their models they 
need to investigate, develop further, or check for er-

rors to correct. Figure 5 illustrates a mock-up of the 
envisionment world window that we are designing 
from CTSiM. 

 
Figure 2: CTSiM architecture. 

 
Figure 3: Construction- and enactment-worlds interface 
mock-up. 

Work by Basu, Sengupta, and Biswas (in review) 
details our approach to simulation investigation and 
discusses the scaffolds that we have developed to 
help students study and understand underlying 
model concepts and relations in a desert ecosystem 
microworld. With proper support and scaffolding, 
we believe that the overall process of model con-
struction, analysis, comparison, and refinement will 
help students gain a better understanding of science 
(e.g., science phenomena and the scientific reason-
ing process), mathematics (e.g., measurement, 
graphs, and equations), and computational constructs 
and methods. 
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Figure 4: Construction-world and execution models. 

To further support learning science by model 
building, analysis, and verification, we plan to de-
velop a module for critique, explanation, and argu-
mentation that will engage students in authentic 
analysis and inquiry practices. For example, each 
cycle of modelling will begin with students critiqu-
ing the fit between the current version of their 
model, and the target agent- and aggregate-level be-
haviours generated from the expert model. If differ-
ences in system behaviour (between the expert 
model and the student’s model) are identified 
through the critique phase, the student will then be 
scaffolded in creating an explanation/claim about the 
mechanisms in their constructed model that could 
lead to the observed differences. The methods dis-
cussed in the construction and enactment worlds will 
support this interaction and help students identify the 
segments of their model that are contributing to dif-
ferences in system behaviour. The goal is to scaffold 
explanation about the underlying causal mechanism 
that simultaneously identifies an issue and proposes 
corrective action. 

After creating an explanation about the source of 
differences between the agent-level program and ag-
gregate-level outputs, the student will be scaffolded 
to identify and collect further evidence for, or 
against, the proposed causal mechanism. This can 
include evidence collected during the critiquing 
phase or during subsequent experimentation.  Re-
search has shown that students initially tend to focus 
only on evidence that supports their claims and ig-

nore the evidence that contradicts their claims, in a 
manner very similar to the ways in which scientists 
have historically dealt with anomalous data (Chinn 
and Brewer, 1993). Therefore, the scaffolding 
should help students search for evidence that might 
contradict their claims, as well as evidence that sup-
ports their claims. 

 
Figure 5: Envisionment world interface mock-up. 

6 SEQUENCE OF CURRICULAR 
MODULES AND ACTIVITIES 

We are currently developing two curricular models 
in the CTSiM environment: (1) a kinematics unit 
that focuses on modelling Newtonian mechanical 
phenomena such as the trajectory, velocity, and ac-
celeration of balls placed on different inclined 
planes, as well as using mathematically meaningful 
aesthetic representations (e.g., geometric shapes) to 
represent various classes of kinematic phenomena 
(e.g., constant speed, constant acceleration) (Sen-
gupta, 2011); (Sengupta, Voss Farris, and Wright, 
under review); and (2) an ecological unit (Tan and 
Biswas, 2007) that emulates a simplified fish tank 
environment, which includes fish, algae, and bacte-
ria for breaking down organic waste; it primarily 
models a simplified food chain and the waste cycle 
focusing on how organic waste is broken down in 
steps by bacteria to produce nitrates, which provide 
nutrition for algae. The focus of this unit is on the 
study of interdependence and balance in ecosystems.  

In terms of learning programming, these model-
ling activities will introduce students to fundamental 
programming constructs (e.g., agents, conditionals, 
loops, variables, etc.). For example, the first two 
modelling tasks in both kinematics and ecology in-
volve students using three main types of constructs: 
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agents (various species of organisms in ecology; 
physical objects in kinematics), conditionals (indi-
cating need-based interactions between agents in 
ecology, and effect of different conditions, e.g., ter-
rains, in kinematics), and loops (for repetitions of an 
action(s) based on the current value of an agent’s or 
environmental property/variable). In subsequent 
modelling activities, students will learn to define 
variables (e.g., defining attributes of agents and 
breeds of agents), as well as code-reuse and encap-
sulation (e.g., using portions of existing code to 
model behaviour of new agents). In later, more 
complex, modules, students will explore class hier-
archy/inheritance connected to science through rela-
tion to taxonomy and class/type properties and be-
haviours, as well as the nature of physical “laws” 
that apply to all objects (e.g., in kinematics).  

From the mathematical perspective, students in 
both curricular units will focus on: (1) generating 
graphs of aggregations (e.g., averages) over time, (2) 
identifying and developing basic mathematical rela-
tionships between variables and statistical properties 
of populations evident from graphs (e.g., linear vs. 
quadratic relationships, averages, range, vari-
ance/standard-deviation), and (3) understanding 
rates through designing multiple, linked representa-
tions of rates and other time-based/time-variant rela-
tionships. For example, students would start out 
visualizing a variable’s value changing over time, ei-
ther step-by-step or plotted on a graph, and then 
learn to represent it as a simple equation. 

7 DISCUSSION AND 
CONCLUSIONS  

In general, computational thinking involves being 
able to reason at multiple levels of abstraction 
(Kramer, 2007), mathematical and design-based 
thinking (Wing, 2008), as well as using these kinds 
of reasoning for contextual problem solving (Guz-
dial, 2008); (Wing, 2008). Our paper proposes a 
theoretical framework through which these aspects 
of CT can be integrated with curricular modules in 
K-12 science classrooms via agent-based modelling. 
We also presented the computational architecture of 
a learning environment based on this theoretical 
framework that includes a visual programming lan-
guage and a modelling environment. In designing 
this system, our goal is to integrate computational 
thinking with existing K-12 science curricula (as has 
been recommended by the ACM K-12 Taskforce 
(2003)), without necessitating the development of 

new curricular standards or introducing a program-
ming course separately from the curricular science. 
This also lays the groundwork for the development 
of a long-term curricular progression in which stu-
dents can engage in learning science using computa-
tional modelling and thinking over a span of multi-
ple years. This is consistent with the findings from 
research in developmental psychology and science 
education, which show that the development of sci-
entific thinking, even when it builds on students’ in-
tuitive knowledge and competencies, happens over a 
period of multiple years through meaningful immer-
sion in authentic learning experiences (Lehrer et al., 
2008). 

By engaging students in agent-based modelling 
across multiple domains, but using the same pro-
gramming constructs and modelling environment, 
our primary goal is to enable students to realize the 
commonalities across domains in terms of the under-
lying computational/mathematical constructs and 
practices (e.g., control flow, variables, debugging), 
as well as the domain-general representational prac-
tices involved in modelling (e.g., problematizing, 
experimentation, generating inscriptions, verifica-
tion, and validation). We will run classroom studies 
with the first prototype of our system in Spring 
2012, to study some of these claims and to collect 
data for refining and continuing the development of 
CTSiM. 
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