
A NOVEL MULTI-TENANT ARCHITECTURE DESIGN
 FOR SOFTWARE AS A SERVICE APPLICATIONS

Haitham Yaish, Madhu Goyal and George Feuerlicht1,2
1Faculty of Engineering and Information Technology, University of Technology, Sydney,

P.O. Box 123, NSW 2007, Broadway, Australia
2Faculty of Information Technology, University of Economics, Prague, Czech Republic

Keywords: Software as a Service, Multi-tenancy, Database, User Interface, Access Control, Configurability, Metadata,
SaaS Architecture.

Abstract: Software as a Service (SaaS) is a web based delivery model which permits a third party provider offering
software services to unlimited number of tenants based on multi-tenant architecture design. Multi-tenancy is
the primary characteristic of SaaS, it allows SaaS vendors to run a single instance application which
supports multiple tenants on the same hardware and software infrastructure. This application should be
highly configurable to meet tenants’ expectations and business requirements. Nevertheless, configuring
multi-tenant application is hard and complex task to accomplish. This paper is generally focusing on SaaS
multi-tenancy in the context of providing a configurable architecture design to support multi-tenant
applications in designing and developing a configurable multi-tenant database schema, User Interface, and
access control. This novel configurable multi-tenant architecture design provides critical and fundamental
solution to the development of multi-tenant SaaS applications, once it is achieved it will be a vital
contribution to SaaS industry.

1 INTRODUCTION

Multi-tenancy is the primary characteristic of SaaS, it
allows SaaS vendors to run a single instance
application which supports multiple tenants on the
same hardware and software infrastructure. It can be
applied in four software layers: application,
middleware, virtual machine, and operating system
(Kwok et al. 2008). The application layer of SaaS has
a maturity model consists of four levels: (1) Ad
Hoc/Custom, (2) Configurable, (3) Configurable and
Multi-Tenant-Efficient, and (4) Scalable,
Configurable, and Multi-Tenant-Efficient (Frederick
and Carraro 2006; Hudli et al. 2009; Kwok et al.
2008). This paper will focus on the Configurable and
Multi-Tenant-Efficient Level. This maturity level
requires a multi-tenant aware design with single code
base and metadata service, which allows sharing of
resources across tenants and configuring how the
application appears and behaves, with the ability of
isolating and differentiating data, information,
configurations, and settings which belong to different
tenants. Multi-tenant aware application allows each
tenant to design different parts of application, and

automatically adjust its behaviour during runtime
without redeploy the application (Chong 2006).
Consequently, configuring multi-tenant aware
application is tenant self-service that typically
performs while the application in operation, to
minimize the system downtime, and allows tenant to
feel as if he/she is the only one using the application
(Mietzner et al. 2009).

Nevertheless, it is not always the case with SaaS
vendors to have a proper configuration capability in
multi-tenant SaaS applications. Therefore, it might
be ad-hoc and manual configuration practices (Kuo
et al. 2007) Moreover, developing SaaS multi-tenant
application is a complex process which requires
extra development work to satisfy each tenant
requirements and personalized needs (Yaish et al.
2011; Ying et al. 2010). Configuration is the most
challenging issue in multi-tenant architecture,
because it introduces significant complexities in
SaaS development, and involves longer development
lifecycle including implementation, testing, and
deployment (Chang et al. 2007; Wei et al. 2010; Wei
et al. 2008). Moreover, the current studies of SaaS
configurations are not sufficient in allowing SaaS

82 Yaish H., Goyal M. and Feuerlicht G..
A NOVEL MULTI-TENANT ARCHITECTURE DESIGN FOR SOFTWARE AS A SERVICE APPLICATIONS.
DOI: 10.5220/0003915800820088
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 82-88
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

vendors to create a multi-tenant application which
facilitates configuring SaaS tenants’ applications
(Hongbo et al. 2009; Kuo et al. 2007).

This paper proposes a novel multi-tenant SaaS
architecture design that in turn will provide a
programming model to simplify and speed up the
development of multi-tenant SaaS applications. This
architecture aims to provide: (1) a configurable
multi-tenant database schema design to enable SaaS
tenants create their own elastic database schema to
satisfy their business needs, (2) a method to solve
integrating shared tenant tables and virtual tenant
tables problem by making them work together to act
as one database, (3) a query optimizer method to
optimize the execution of virtual multi-tenant
database queries, (4) a configurable multi-tenant
user interface method for SaaS tenants to configure
their user interfaces according to their business
needs, (5) a user interface rendering method to
facilitates designing and developing run-time
execution solution that generates dynamic user
interface screens for particular tenant business
domain, and (6) an authentication and access control
method to authenticat the users of multi-tenant
application, as well as isolate and diffrentiate
accessing their user interfaces and databases.

The paper is structured as follows: Section 2
explores SaaS Multi-tenancy. Section 3 describes
our overview architecture. Section 4 describes our
conceptual architecture design. Section 5 is a
conclusion and discussion of future work.

2 MULTI-TENANCY

Multi-tenancy is the fundamental design approach
that improves the manageability of SaaS application
(Jansen et al. 2010), and allows its tenant to have his
user-experience as he/she is working on his own
system (Bezemer et al. 2010). It is an important
feature of SaaS application that can be used by
multiple tenants at the same time on a single
instance of software code (Menken & Blokdijk
2009; Samuel & Lopes 2009; Shao 2011).

2.1 SaaS Maturity Model

Multi-tenancy can be applied in four software layers:
application, middleware, virtual machine, and
operating system (Kwok et al. 2008). The
application layer has four levels of SaaS maturity
model. Level 1 - Ad Hoc/Custom: each tenant in this
level has a separate custom instance of SaaS
application which is hosted on the vendor servers,

the source code of this instance can be customized
according to a tenant needs. Level 2 - Configurable:
in this level the vendor hosts separate instances for
each tenant, each of these instances using the same
source of code. However, each instance may be
configured differently to meet tenant’s needs. Level
3 – Configurable and Multi-Tenant-Efficient: this
level allows the vendor to runs a single instance to
support multiple tenants, this single instance can be
configured differently by each single tenant and each
configuration will be designated for a tenant who
created it .Level 4 – Scalable, Configurable, and
Multi-Tenant-Efficient: in this level, the vendor
hosts multiple tenants with a high level of scalability
(Frederick and Carraro 2006; Hudli et al. 2009;
Kwok et al. 2008).

2.2 Multi-tenancy Architecture

Shao (2011) SaaS tenants usually share the same
software and in some cases the same database.
Accordingly, once multi-tenant vendors need to
increase multi-tenant architecture they should look
after Quality of Service (QoS) for one tenant from
being affected from the rest of the tenants. Shao’s
study describes multi-tenant architecture in four
aspects including: Resource isolation, Configuration,
Security, and Scalability. First aspect, resource
isolation is significant for multi-tenant application,
because tenants sharing the same infrastructure and
software code. Second aspect, ensuring multi-tenant
application is highly configurable. Third aspect,
security is an issue due to sharing software code and
data between tenants. Last aspect, as discussed in the
SaaS Maturity Model in section 2.1, in order to
make level 1 and level 2 a scalable levels, a
significant software design and implementation need
to be done. This is not the case for Level 3, since it
allows all SaaS tenants to use the same single
instance. Nevertheless, if this level doesn’t have an
infrastructure to dynamically create multiple copies
to provide multi-tenant service, then its scalability
will be limited. In our proposed multitenant
architecture design we are focusing on Level 3 and
covering the following aspects: resource isolation,
configuration, and security.

2.3 Multi-tenant Configuration

Configuration in multi-tenant applications allows
SaaS vendors to run a single instance to support
multiple tenants with configurable metadata, which
provides means of configuration for multi-tenant
application, to satisfy their business needs, and to

A�NOVEL�MULTI-TENANT�ARCHITECTURE�DESIGN�FOR�SOFTWARE�AS�A�SERVICE�APPLICATIONS

83

resolve the problem of different requirements for
several tenants who may use a particular business
domain application. This maturity level requires a
multi-tenant aware design with single code base and
metadata service, which allows sharing resources
across tenants, and configuring how multi-tenant
application appears and behaves with the ability of
isolating and differentiating data, information,
configurations, and settings which belong to
different tenants. Multi-tenant aware application
allows each tenant to design different parts of
application, and automatically adjust its behaviour
during run-time execution without redeploy the
application (Chong 2006).

3 OVERVIEW ARCHITECTURE

The overview architecture of the system proposed in
Figure 1 depicts the main five artifacts including:
web user interface, user interface services, database
services, access control services, and database. The
database comprises of three types of tables:
Common Tenant Tables (CTT), Elastic Extension
Tables (EET), and Virtual Extension Tables (VET).

Figure 1: Overview Architecture.

This architecture designed based on the three-tier
architecture design. The web user interface is the
presentation tier, the services are the application tier,
and the database is the data tier.

4 CONCEPTUAL
ARCHITECTURE DESIGN

In this section we are proposing a conceptual
architecture design which permits SaaS vendors to
implement a single instance application which
supports multiple tenants on the same hardware and
software infrastructure. This single instance
application has flexibility to configure three multi-
tenant application aspects: database model, user
interface, and access control. This architecture
design can be used to implement any business
domain in multi-tenant application like: Customer
Relationship Management (CRM), Supply Chain
Management (SCM), Human Resources (HR), or
any other business domain. Figure 2 depicts the
essential elements of the conceptual architecture
design at a very high level.

4.1 Configuring Multi-tenant Database

In our conceptual architecture design we propose
EET technique, and three database services that we
will discuss in the following subsections.

4.1.1 Database Schema Design

Based on reviewing and understanding existing
multi-tenant database schema designs, and based on
our proposed novel multi-tenant database schema
mapping technique that we published in a previous
conference paper, we are proposing our multi-tenant
architecture design to enable SaaS tenants create
their own elastic database schema during multi-
tenant application run-time execution to satisfy their
business needs. Our schema mapping technique
comprises of three types of tables Elastic Extension
Tables (EET), Common Tenant Tables (CTT), and
Virtual Extension Tables (VET) (Yaish et al. 2011).

 Elastic Extension Tables (EET):
These tables propose a new way of designing
and creating an elastic tenant database which
consists of two types of tables, first type is
Common Tenant Tables (CTT), and second type
is Virtual Extension Tables (VET) which can be
used to satisfy each specific tenant need. For
example, let us assume that “tenant” table is one
of CTT which can be used and shared by all
tenants to store their information, and VET can
be an extension to the “tenant” table that may
include more columns which are not already
included in the “tenant” common table (Yaish et
al. 2011).

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

84

Figure 2: Conceptual Architecture Design.

 Common Tenant Tables (CTT):
These tables are shared between tenants who are
using a same single instance multi-tenant
application. These are physical tables which can
construct a base schema of a particular business
domain application. For example, a multi-tenant
application for sales business domain may have
a sales schema tables like: sales person,
customer, product, sales fact, and any other
sales tables. These tables have columns which
are used by most of tenants, therefore these
tables considered as CTT (Yaish et al. 2011).
Also, CTT contain two sets of tables: (1) user
interface tables to store different tenant’s user
interface settings, preferences, field’s
validations, and business rules. (2) Access
control tables to store different tenant’s access
control settings, preferences, for the data tier,
and the presentation tier.

 Virtual Extension Tables (VET):
These are virtual tables that can be created,
updated, or deleted by storing records in, or
removing records from, the EET to extend
tenants business domain CTT, or create non-
business domain related tables which satisfy
tenants business requirements.

The aim of these virtual tables is to be used like any
other physical tables by having virtual primary keys,
virtual relationships with VET or CTT, and virtual
indexes (Yaish et al. 2011).

4.1.2 Database Services

This step describes the database service designs that
will be used to allow tenants configuring and
managing their database. These services include:

Proxy Service, Query Optimizer Service, and Virtual
Schema Handler Service.

 Proxy Service:

After designing the novel EET multi-tenant
database mapping technique that enables tenants
to create their own elastic database schemas or
VET, we are proposing this service to generate
and execute tenants’ queries by using codebase,
CTT, and VET. This service has two objectives:
(1) enables multi-tenant application to retrieve
records from VET, or retrieves combined
records from two or more tables of CTT and/or
VET, by using fields’ values which are common
between these tables. (2) Enables the rest of
proposed services to invoke this service and
access database tables (CTT, EET, and VET)
through it. This service consumes different
services and database tables including: Query
Optimizer Service, Database Access Control
Service, CTT, EET, and VET.

Also, it is exposed to be used by services including:
Query Optimizer Service, Virtual Schema Handler
Service, User Interfaces Configuration Service, User
Interface Render Service, Authentication Service,
User Interfaces Access Control Service, and
Database Access Control Service.

 Query Optimizer Service:
A query optimizer service proposed in the
architecture design to optimize performance,
speed up query retrievals, and use the most
efficient way to execute a query by using virtual
primary keys, virtual relationships between CTT
and/or VET, virtual indexes, efficient executing
plans, efficient logic, and join algorithms. This
service consumes Proxy Service to access the

A�NOVEL�MULTI-TENANT�ARCHITECTURE�DESIGN�FOR�SOFTWARE�AS�A�SERVICE�APPLICATIONS

85

functionalities that it provides, and access
through these functionalities CTT, EET and
VET.

 Virtual Schema Handler Service:
This service configures tenant database tables,
by updating CTT, and on the other hand by
creating, updating, or deleting VET. It is a
service that exposed to be used by Database
Configuration User Interface screens, these
screens are used for configuring tenant database
CTT and VET. This service consumes other
services including: (1) User Interface Access
Control Service, to use user interfaces access
control settings and preferences to manage
accessing Database Configuration User
Interface screens, (2) Database Access Control
Service, to use database access control settings
and preferences to manage accessing Database
Configuration User Interface screens, and (3)
Proxy Service, to retrieve and modify tables
structures and fields details from one or more
tables of CTT and/or VET.

4.2 Configuring Multi-tenant User
Interface

Since there are complexities in developing an easy
to use multi-tenant user interface, a configurable
user interface proposed in our architecture design to
create an elastic user interface that can be associated
with CTT, EET, and VET. This user interface can be
configured by tenants’ administrator and rendered
for tenants’ users dynamically and instantly without
writing any code during runtime execution. This
user interface design comprises of two user interface
services: User Interface Configuration Service, and
User Interface Render Service.

 User Interface Configuration Service:
Several configuration user interface screens are
consuming this service to configure multi-tenant
application user interface by configuring its
business domain pages, menus, and fields. This
service is exposed to be used by Configuration
User Interface screens, and User Interface
Render Service. It is also consumes two other
services including: (1) User Interface Access
Control Service, to use user interface access
control settings and preferences for
Configuration User Interface screens, and (2)
Proxy Service, to retrieve tables structures and
fields details from one or more tables of CTT
and/or VET to use them in configuring user
interface screens and fields.

 User Interface Render Service:
This run-time execution service generates
Enterprise Portal User Interface screens by
using codebase and configuration data, these
screens will be rendered for a specific business
domain application which can be dynamically
created by tenants in order to be used for their
businesses. This service consumes other
services including: (1) User Interface
Configuration Service, to use settings and
preferences of configured user interface screens,
and (2) Proxy Service, to render combined
records from two or more tables of CTT and/or
VET into Enterprise Portal User Interface
screens.

4.3 Configuring Multi-tenant Access
Control

This section describes the Access Control design
that can be implemented by vendors and used by
tenants to set up accounts for their users who interact
with multi-tenant application. These accounts can be
authenticated by using authentication functionality.
Typically, multi-tenant applications accessing
resources and business functions by using roles that
map to specific functions or system features. Each
role can have one or more permission which may be
assigned to one or more tenant’s users to enable
them perform actions according to tenant’s business
rules. The access control design comprises of three
services: Authentication Service, User Interface
Access Control Service, and Database Access
Control Service.

 Authentication Service:
This service is exposed to be used by user
interface screens to authenticate tenants’
administrators and tenants’ users when they
login to multi-tenant application. These user
interfaces screens include: Enterprise Portal
User Interface, Configuration User Interface,
Access Control User Interface, and Database
Configuration User Interface. This service only
consumes Proxy Service to access through it the
authentication CTT.

 User Interface Access Control Service:
This service is exposed to be used by Access
Control User Interface screens to allows
tenant’s administrator to create roles and
permissions and map them to tenant’s users.
Also, it is exposed to be used by two other
services including: User Interface
Customization Service, and Virtual Schema

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

86

Handler Service. This service only consumes
Proxy Service to access through it the user
interface access control CTT.

 Database Access Control Service:
This service is exposed to be used by Access
Control User Interface screens, these screens are
used to create roles and permissions and map
them to tenant’s users. Also, there are two
services consume this service including: Proxy
Service, and Virtual Schema Handler Service.
This service only consumes Proxy Service to
access through it the database access control
CTT.

4.4 User Interfaces

This section is divided into four sub sections:
Configuration User Interface, Enterprise Portal User
Interface, Database Configuration User Interface,
and Access Control User Interface.

 Configuration User Interface:
This is an administration user interface which
allows a tenant administrator to configure a
multi-tenant application user interface, by
configuring a business domain pages, menus,
and fields. Then, this user interface will be
rendered as an enterprise portal user interface.
This user interface consumes two services, the
first one is Authentication Service, to
authenticate tenant administrator when he/she
tries to login to this user interface. The second
one is User Interface Configuration Service that
discussed in section 4.2.

 Enterprise Portal User Interface:
This User Interface is a run-time execution
interface which is flexible and dynamic, and can
be rendered as per tenant configuration
discussed in section 4.2. This user interface
consumes two services, the first one is
Authentication Service, to authenticate tenant
administrator when he/she tries to login to this
user interface. The second one is User Interface
Render Service that discussed in section 4.2.

 Database Configuration User Interface:
This administration user interface allows a
tenant administrator to configure tenant
database tables, by updating CTT, and on the
other hand by creating, updating, or deleting
VET. This user interface consumes two
services, the first one is Authentication Service,
to authenticate tenant administrator when he/she
tries to login to this user interface. The second
one is Virtual Schema Handler Service that

discussed in section 4.1.2.
 Access Control User Interface:

This administration user interface allows a
tenant administrator to configure tenant’s users
and other administrators roles and permissions
which enable them accessing their database and
user interfaces. This user interface consumes
three services, the first one is Authentication
Service, to authenticate tenant administrator
when he/she tries to login to this user interface.
The second one is User Interface Access
Control Service that discussed in section 4.3.
The last one is Database Access Control Service
that discussed in section 4.3.

5 CONCLUSIONS AND FUTURE
WORK

Designing and developing a configurable multi-
tenant application is hard, complex, and it needs
extra work and time to be developed. The current
studies of SaaS configurations are not sufficient in
allowing SaaS vendors to create a multi-tenant
application, which facilitates for their tenants
configuring their application. Based on Level 3 of
SaaS Maturity Model, and based on EET and it’s
customizable database design technique, we
introduced in this paper a novel multi-tenant SaaS
architecture design that in turn will provide a
programming model to simplify and speed up the
development of multi-tenant SaaS application,
which can deal with challenges from both technical
and business perspectives by solving the issues of
configuring SaaS multi-tenant application. Our
proposed multi-tenant architecture design permits
SaaS vendors to implement a single instance
application which supports multiple tenants on the
same hardware and software infrastructure. This
single instance application, have flexibility to
configure three multi-tenant application aspects:
database model, user interface, and access control.
This architecture design will be beneficial for SaaS
vendors to implement any business domain in multi-
tenant application, in a short time and cost-effective
manner.

Our future work will focus on elaborating,
developing, and evaluating services and user
interfaces that proposed in our multi-tenant
architecture design in greater details.

A�NOVEL�MULTI-TENANT�ARCHITECTURE�DESIGN�FOR�SOFTWARE�AS�A�SERVICE�APPLICATIONS

87

REFERENCES

Bezemer, C. P., Zaidman, A., Platzbeecker, B., Hurkmans,
T. & t’ Hart, A. 2010, ‘Enabling multi-tenancy: An
industrial experience report’, Software Maintenance
(ICSM), 2010 IEEE International Conference on,
Timisoara, Romania, pp. 1-8.

Chang, J. G., Wei, S., Ying, H., Zhi, H. W., Bo, G. 2007, ‘A
Framework for Native Multi-Tenancy Application
Development and Management’, E-Commerce
Technology and the 4th IEEE International Conference
on Enterprise Computing, E-Commerce, and E-
Services, 2007. CEC/EEE 2007. The 9th IEEE
International Conference on, Beijing, China, pp. 551-8.

Chong, F. 2006, Multi-tenancy and Virtualization, Msdn,
viewed 10 February 2012, http://blogs.msdn.com/b/
fred_chong/archive/2006/10/23/multi-tenancy-and-
virtualization.aspx.

Frederick, C., Carraro, G. 2006, ‘Architecture Strategies
for Catching the Long Tail’, Msdn, viewed 10
February 2012,http://msdn.microsoft.com/en-
us/library/aa479069.aspx.

Hongbo, L., Yuliang, S., Qingzhong, L. 2009,’ A Multi-
granularity Customization Relationship Model for
SaaS’, Web Information Systems and Mining, 2009.
WISM 2009. International Conference on, Jinan,
China, pp. 611-5.

Hudli, A. V., Shivaradhya, B., Hudli, R. V. 2009, 'Level-4
SaaS Applications for Healthcare Industry',
Proceedings of the 2nd Bangalore Annual Compute,
Bangalore, India, p. 4.

Kuo, Z., Xin, Z., Wei, S., Haiqi, L., Ying, H., Liangzhao,
Z., Xuanzhe, L. 2007, ‘A Policy-Driven Approach for
Software-as-Services Customization’, E-Commerce
Technology and the 4th IEEE International
Conference on Enterprise Computing, E-Commerce,
and E-Services, 2007. CEC/EEE 2007. The 9th IEEE
International Conference on, Tokyo, Japan, pp. 123-8.

Kwok, T., Thao, N., Linh, L. 2008, ’A Software as a
Service with Multi-tenancy Support for an Electronic
Contract Management Application. Services
Computing’, 2008. SCC '08. IEEE International
Conference on, Hawaii, USA, pp. 179-8.

Menken, I., Blokdijk, G. 2009, Saas and Web Applications
Specialist Level Complete Certification Kit- Software
as a Service Study Guide Book and Online Course, 1st
edn, Emereo Pty Ltd, Australia.

Samuel, J., Lopes, N. 2009, ‘SaaS (software as a service) –
models and infra-structures’, thesis, Universidade
Tecnológica de Lisboa, Lisboa, Portugal.

Mietzner, R., Metzger, A., Leymann, F., Pohl, K. 2009,
‘Variability modeling to support customization and
deployment of multi-tenant-aware Software as a
Service applications’, Principles of Engineering
Service Oriented Systems, 2009. PESOS 2009,
Vancouver, Canada, pp. 18-8.

Shao, Q. 2011, Towards Effective and Intelligent Multi-
tenancy SaaS, thesis, Arizona state university,
Arizona, USA.

Wei, C., Beijun, S., Zhengwei, Q. 2010, ‘Template-based
business logic customization for SaaS applications’,
Progress in Informatics and Computing (PIC), 2010
IEEE International Conference on, Shanghai, China,
pp. 584-5.

Wei, S., Xin, Z., Chang, J. G., Pei, S., Hui, S. 2008,’
Software as a Service: Configuration and
Customization Perspectives’, Congress on Services
Part II, 2008. SERVICES-2. IEEE, Shanghai, China,
pp. 18-7.

Yaish, H., Goyal, M., Feuerlicht, G. 2011, 'An Elastic
Multi-tenant Database Schema for Software as a
Service', Cloud and Green Computing CGC 2011,
Sydney, Australia, pp. 737-7.

Ying, L., Bin, Z., Guoqi, L., Deshuai, W., Yan, G. 2010,
‘Personalized Modeling for SaaS Based on Extended
WSCL’, 2010 the 2nd International Conference on
Advanced Computer Control (ICACC 2010), Liaoning,
China, pp. 298 -5.

Jansen, S., Houben, G., Brinkkemper, S. 2010,
‘Customization Realization in Multi-tenant Web
Applications: Case Studies from the Library Sector’,
10th International Conference on Web Engineering,
Vienna, Austria, pp. 445-5.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

88

