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Abstract: In this paper, we describe our experiences running a “partially virtual” microcontroller lab. We show that 
though the virtual portion of the lab can contribute to the students’ understanding, there are also several 
pitfalls that must be avoided or dealt with. We have found that our “virtual microcontroller” simulates a true 
microcontroller to a reasonable extent, but there are cases in which the simulator does not properly simulate 
the microcontroller. It is critical that students be taught to think of “virtual equipment” as something distinct 
from the real equipment and as something with idiosyncrasies of its own. 

1 INTRODUCTION 

At Bar Ilan University, we have been running a 
microcontroller lab for the last eight years. The lab 
is a hardware lab – the students use the evaluation 
kit for the Analog Devices ADuC841 to learn how a 
microcontroller is used. Both in the labs and at 
home, the students are expected to use Keil uVision4 
integrated development environment (IDE) to write, 
simulate, and download programs to the 
microcontroller. The lab manual that the students 
use (Engelberg, 2012) covers the theoretical material 
needed throughout most of the course and describes 
the laboratory exercises that enable the student 
to learn, practice, and assimilate the theoretical 
and practical material concerning the 
microprocessor and its architecture. 

When the students prepare for the lab at home, 
they use the IDE to simulate the microcontroller – to 
work on a “virtual” microcontroller. In the labs, they 
continue simulating their system using the IDE, but 
every project must be downloaded to and work on 
the actual microcontroller. In this paper, we describe 
what we have learned about using this combination 
of real and virtual laboratories to help students 
understand how an 8052-based microcontroller 
operates. 

 
 
 

2 SIMULATIONS AND VIRTUAL 
WORLDS 

The development and use of simulation are 
evolving side by side with increases in 
computing power and advances in multimedia 
technology. Chaturvedi and Akan (2006) relate 
that the maturation of computer software 
technologies such as simulation and visualization 
has made it possible for engineering designers to 
analyze and evaluate “what if parametric 
scenarios” that are intrinsic to the nature of 
engineering analysis and design processes in the 
virtual domain. This is creating a new type of 
engineering – Virtual Engineering. This 
evolution is influencing both the engineering 
design process and engineering education. The 
evolution of simulation and visualization 
technologies enables implementation of 
sophisticated features in simulators, such as 3D 
imaging, "liveness" (dynamic immediate visual 
feedback) (Hundhausen and Brown, 2005), and 
history recording (Davidovitch et al.,2006).  

Simulators are sometimes referred to as 
visualizations to emphasize the aim of 
illustrating conceptual models and underlying 
processes that cannot be seen. Simulation is 
essential both for researchers and instructors in 
areas such as quantum computation where the 
desired system has not yet been implemented 

337Engelberg S. and Yehezkel C..
A “PARTIALLY VIRTUAL” MICROCONTROLLER LABORATORY.
DOI: 10.5220/0003918303370342
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 337-342
ISBN: 978-989-8565-07-5
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

(Barbosa, Lula and Lima, 2007). In these cases, 
simulation provides a visualization of a 
theoretical model, and virtual worlds may be 
created to enable the student to experience the 
theoretical model. Professional tools for 
simulation (MATLAB/SIMULINK, LabVIEW, 
etc.) designed for "virtual engineering" are 
frequently used by instructors to allow their 
students to perform laboratory exercises and to 
introduce them to professional simulation tools. 
Occasionally educators opt to develop their own 
simulators to fulfil their needs – needs dictated 
by the curriculum, the student population, and 
the constraints of distance learning.  

The multitude of simulation and visualization 
environments and the lack of an appropriate 
framework to define their characteristics 
motivated the construction of taxonomies for 
simulation and visualization. A taxonomy was 
developed in the domain of program 
visualizations that emphasized didactic and 
cognitive aspects based on a very broad 
taxonomy of software visualization (Price, 
Baecker and Small, 1998). The main categories 
of the taxonomy were presentation methods, 
activity styles, and content modeling. The 
taxonomy provided a framework for examining 
characteristics of tools. The designer may opt for 
a model with high fidelity, a simplified model 
reduced to the essential characteristics, or a 
hypothetical model like that used in virtual 
worlds. As related in (Yehezkel et al., 2007), 
content modeling has an impact on students' 
mental models.  

Selecting and illustrating an appropriate 
conceptual model for the simulator are essential 
for ensuring a fruitful learning process. The 
simulator must be part of a course covering the 
comprehensive theoretical material on the 
conceptual model, illustrating the material by 
using the simulator and other activities that 
enable the student to practice and assimilate the 
new concepts. 

3 INSTRUCTIONAL DESIGN 

The design of new educational simulators should 
be learner-centred and accompanied by 
formative evaluation, and such designs require 
developing methodologies to evaluate their 
effectiveness (Donzellini and Ponta, 2007); (Ma 
and Nickerson, 2006); effectively evaluating 
simulator utilization in education is essential for 

further improvements. Chaturvedi and Akan 
(2006) claim that simulation and visualization 
have great potential to enhance student learning 
and the quality of engineering education. They 
believe that the desired objective is for students 
to achieve a deeper understanding of basic 
principles. They define the characteristics 
essential for effectiveness as interactivity 
(between the student and the environment), 
interconnectivity (between subject materials), 
and hierarchy (gradual learning with succeeding 
modules). In (Engelberg, 2012), we have been 
careful to make sure that our labs are interactive, 
connected, and proceed from simple labs to 
acquaint the student with individual features of 
our microcontroller to more complicated labs in 
which the student must make use of several 
features to accomplish the task which was set. 

The learning process cannot be generated by 
the simulator, the visualization, or the virtual 
world. Simulation-based activities are required 
to create a fruitful interaction between the 
learner and the simulator. In (Veermans and de 
Jong, 2000), the authors emphasize the 
importance of both model progression and 
gradually increasing the complexity of 
assignments to guarantee the effectiveness of 
simulation-based learning. A well-designed 
educational environment based on a simulator 
should support each component of this approach. 
Simulation-based learning must be supported to 
help the learner acquire skills and meta-skills 
and to deepen his or her understanding of the 
underlying processes illustrated by the simulator. 
According to Feisel and Rosa (2005), the early 
criticisms of simulations focused on the 
rigidness of simulations, the lack of realism in 
models, or on simulated results that did not 
adequately represent real-world systems and 
behavior, therefore causing the designer to tend 
to emphasize the realistic aspects of simulation-
based learning activities. Recently, Ma and 
Nickerson (2006) have made a comparative 
review of the literature related to hands-on, 
simulated, and remote laboratories in education. 
They have observed that the boundaries among 
the three types of environments are blurred in the 
sense that most laboratories are mediated by 
computers and that the psychology of presence 
may be as important as the technology. They 
conclude that with the proper mix of 
technologies one can find solutions that meet the 
economic constraints of laboratories by using 
simulations and remote labs to reinforce 
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conceptual understanding while at the same time 
providing enough open-ended interaction to 
teach design. By making judicious use of the 
IDE while requiring that every program run on 
the evaluation kit, we believe that we have 
achieved this goal. 

In section 4 we present the features of the 
IDE, and in section 5 we explain the motivation 
for the use of virtual microcontrollers. In section 
6, we describe the problems caused by the lack 
of the fidelity of the model implemented by the 
IDE, and in section 7, we summarize our 
conclusions. 

4 THE IDE AND THE ADUC 

The IDE we use is the Keil uVision4 IDE. It is one of 
the standard IDEs for microcontrollers from the 8051 
family. The IDE provides many tools including a 
simulator/debugger and a downloader that allows one 
to download a program from the IDE to the 
microcontroller. 

The ADuC841 is a microcontroller whose 
instruction set is based on that of the 8052. The 
development kits sold by Analog Devices include 
everything one needs to run a program. As a rule the 
development kit is a pleasure to work with. 

The simulator/debugger allows one to run a 
program and examine the program as it executes. As 
shown in Figure 1, one can simulate using most of the 
ADuC841’s peripherals – though using some of the less 
standard non-8052 peripherals can be something of a 
challenge. (It can be difficult to simulate complex input 
to the analog to digital converter, for example.) 

 

 
Figure 1: The IDE simulator / debugger. 

5 WHY WE USE VIRTUAL 
MICROCONTROLLERS 

At present, approximately 100 students are required to 
participate in the microcontroller laboratory every year. 
It would probably be best to have students work alone 
and to give each student a microcontroller to work 
with. In practice, our students work in pairs, and while 
they are in the lab they have access to one of the 
approximately 25 development kits. (The lab is run in 
several sections.) For a variety of reasons, the labs are 
not freely accessible to the students outside of class 
time, so students have access to actual development 
kits for a period of about three hours each week. 

Students work in pairs for a variety of reasons. 
Working in this way teaches them how to work in a 
team. It also keeps the cost of the course within 
reasonable limits by requiring fewer instructors. (In 
order to see to it that the students are learning proper 
programming practices, all programs are checked and 
corrected. By having the students work in pairs, fewer 
instructors can take care of the grading.)  

The demo version of the Keil uVision4 IDE is 
freeware. It is given out with the ADuC841 evaluation 
kits, and it is available on Keil's website 
(https://www.keil.com/demo/eval/c51.htm). By using 
virtual microcontrollers – by using the IDE’s simulator 
and debugger – we are able to provide each student 
with his or her own microcontroller. Students can work 
on their virtual microcontroller when and where it suits 
them. Because the program is free, every student can 
have a “virtual microcontroller.” 

A signal advantage of the IDE is that it gives the 
user easy access to many things to which there would 
otherwise be no (easy) access. If a student wants to 
learn how an arithmetic command works, it is simple to 
program the IDE to use the command. Because the IDE 
allows the user to look at all of the microprocessor’s 
registers, the user can quickly find out just how a 
command affects the microprocessor. This is something 
that is much more easily done with and IDE than with a 
true microprocessor. Given all of its advantages, why 
not make a course that only uses “virtual 
microcontrollers?” 

6 THE PROBLEMS WE HAVE 
EXPERIENCED WITH THE 
VIRTUAL 
MICROCONTROLLERS 

There are several problems with using a virtual 
microcontroller. As with all virtual equipment, there is 
a danger that the user will not understand which parts 
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of the equipment being used are real and which parts 
are virtual. Additionally, there are often actual 
problems with the virtual systems; there are places that 
the virtual system does not faithfully mimic the 
physical system. 

6.1 Problems with any IDE 

Years ago, when designing the lab, we had to decide 
what environment to use when programming. Initially, 
we had the students write program using a very simple 
editor (either Notepad or Edit). We had the students 
compile the program using a separate compiler, and we 
had them download the programs using a separate 
downloader provided by Analog Devices. We did this 
to help the students understand what the role of each 
component was.  

Because professionals generally use IDEs, after a 
year or two we changed the structure of the lab 
somewhat. We started off using separate programs, but 
after a few weeks we had the students use the IDE. In 
this way the students got used to thinking about the 
roles of each of the separate programs and were 
exposed to a reasonably standard IDE.  

Several years ago, we found that Windows would 
not allow us to use the older style programs, and we 
started using the IDE exclusively. The disadvantage of 
the increased use of the IDE, of the virtual system, is 
that some of the students have a hard time determining 
which of their commands are going to control the 
virtual system and which are commands that are, 
fundamentally, commands to the microcontroller. 
Additionally, using an IDE, with all its many menus, 
can cause a student to assume that using a 
microcontroller is much more complicated than is 
actually the case. We spend quite a bit of time trying to 
dispel this illusion. At the beginning of the course, we 
make almost no use of the advanced features provided 
by the IDE. After the students understand the 
microcontroller, we give a fairly detailed description of 
the IDE and its features. In this way, the students learn 
to distinguish between the microcontroller and the 
debugger provided by the IDE. 

6.2 Problems with our Virtual 
Microcontroller 

There is a second problem with using the IDE, the 
virtual microcontroller – it does not always simulate 
the microcontroller 100% faithfully. This problem is 
(predictably) most severe when one is using features 
that are not used that often or when there is a somewhat 
complicated interaction between the program one is 
writing and the hardware that one is trying to control. 
All of the examples here are from our experience using 
uVision3 V3.33. 

Users of the 8052 will be familiar with the “read-

modify-write” commands (MC51 user’ s guide). When 
such commands are used to read and modify values of 
pins of an I/O port, they read and write to the input 
latch to the I/O port and they do not “look at” the 
voltage currently “seen” by the port (shown in Fig. 1). 
Most other commands look at the current voltage seen 
by the port. 

The command JBC PM.N, label, which causes 
the microcontroller to examine the Nth pin of the Mth 
I/O port, jump if the bit is a one and clear the bit, and 
continue if the bit is a logical zero, is a read-modify-
write command. This command ought to look at the 
value of the latch connected to this pin’s input. (That is, 
it ought to react to the last value written to PM.N.) On 
the actual microcontroller, this is exactly what happens.  

The IDE’s simulator is rather easy to use, and it is 
possible to tell the simulator that a bit’s latch is set – 
that the last input to the pin was a logical one – but the 
voltage on the pin is actually 0V. If one does this, then 
even when using the JBC command, which ought to 
look at the value of the latch, the command looks at the 
actual (simulated) voltage on the pin and behaves in a 
fashion that is neither consistent with the commands 
definition nor with what the microcontroller actually 
does. A student using the IDE is likely to be very 
confused by this. (It is worth noting that in later 
versions of the IDE this problem was corrected.) 

Another interesting problem of this sort is 
encountered when one uses Timer3, a timer that was 
added to the ADuC841 and that can be used as the 
clock for the 8052-standard UART. One of the registers 
that controls this timer is the T3FD register. From our 
experience, it seems that the permitted values of this 
register are not all the values that one can write to the 
register. When one writes an illegal value, the IDE 
shows the microcontroller working as “it ought to” 
when the microprocessor actually works in a somewhat 
different fashion. 

A student who uses the IDE might confuse him or 
herself by trying to watch how the ADuC841 
physically transmits data by either using the parallel 
port dialog box (shown in Fig. 1) to watch the pin on 
which the data leaves the ADuC841 – which is 
physically the same pin that is used by pin 1 of port 3, 
P3.1 – or by using the simulated logic analyzer 
provided by the IDE to watch P3.1. Unfortunately, 
neither of these methods will actually allow the student 
to see how the UART works. Though a ‘scope probe 
held to P3.1 will show the student the relevant voltages, 
the IDE does not consider the UART’s transmit pin and 
P3.1 to be the same. 

Years ago we used the ADuC812 in our lab. This 
microprocessor is very similar to the ADuC841, but we 
experienced an interesting anomaly with the ADuC812 
that does not exist with the ADuC841. When a program 
was run after being directly downloaded from the IDE 
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to the ADuC812, sometimes the program would run 
when it should not have. This would happen because 
the ADuC812 does not finish a download with all of its 
registers reset to their default values (Analog Device 
Technical notes). In particular, it leaves a timer running 
that is turned off after a reset. Students would forget to 
turn on the timer in their program, would find that their 
program worked on the microconverter but not in 
simulation, and would hand in the programs not 
understanding what had happened. A somewhat 
different problem with our IDE is how it simulates non-
ADuC devices. The IDE has the ability to simulate the 
“other side” of a UART. One can ask the IDE to open a 
window that behaves very much like the Windows 
“HyperTerminal” program that allows one to 
communicate using the (virtual) P.C.’s (virtual) serial 
(COM) port. The problem with the window opened by 
the IDE is that it automatically adjusts itself to 
whatever baudrate the user has, in fact, selected. If the 
user meant to select a baudrate of 19,200 symbols/sec 
but in fact selected 1,200 symbols/sec, the 
“HyperTerminal” window will show perfect 
communications. When the user downloads the 
program to the microcontroller, it may take a fair 
amount of time for him/her to realize where the mistake 
was. Here one cannot say the simulator did not work 
correctly. It worked correctly but allowed the user to 
fool him or herself. 

7 LESSONS WE HAVE LEARNED 

After working with various simulation tools, one 
realizes that they have advantages and disadvantages. 
The simulation tools may be more accessible than the 
physical system being simulated is. The simulation 
tools may allow one to observe things that would 
otherwise be difficult or impossible to observe. The 
tools may also be less expensive than the physical 
system. For these reasons one uses the tools. 

When one uses simulation tools intensively, one 
realizes that they must be considered a separate type of 
“equipment.” Just as standard physical systems have 
their personalities, their quirks, so do simulators and 
virtual equipment. During an engineer’s working 
lifetime, the engineer will have to learn to work with 
many types of equipment, and it will be necessary to 
understand the idiosyncrasies of each piece of 
equipment. 

An experienced engineer should not have a problem 
distinguishing between the properties of a simulator 
and the properties of an actual piece of equipment. 
When working with students, however, it is not as 
certain that the students will manage to make the 
distinction. For this reason great care must be exercised 
when running a lab on equipment other than the actual 

industry-standard equipment. 
In our microcontroller lab, much effort is expended 

in order to help the students understand what a “virtual 
microcontroller” is and what a real microcontroller is. 
As long as we succeed in making that distinction clear, 
we are helping our budding engineers understand the 
tools of the trade – both “virtual equipment” and “real” 
equipment. That is, of course, our goal.  
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