
PROGRAMMING EXERCISES EVALUATION SYSTEMS
An Interoperability Survey

Ricardo Queirós1 and José Paulo Leal2
1CRACS & INESC-Porto LA & DI-ESEIG/IPP, Porto, Portugal

2CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto, Portugal

Keywords: Learning Objects, Standards, Interoperability, Programming Exercises Evaluation.

Abstract: Learning computer programming requires solving programming exercises. In computer programming
courses teachers need to assess and give feedback to a large number of exercises. These tasks are time
consuming and error-prone since there are many aspects relating to good programming that should be
considered. In this context automatic assessment tools can play an important role helping teachers in
grading tasks as well to assist students with automatic feedback. In spite of its usefulness, these tools lack
integration mechanisms with other eLearning systems such as Learning Management Systems, Learning
Objects Repositories or Integrated Development Environments. In this paper we provide a survey on
programming evaluation systems. The survey gathers information on interoperability features of these
systems, categorizing and comparing them regarding content and communication standardization. This work
may prove useful to instructors and computer science educators when they have to choose an assessment
system to be integrated in their e-Learning environment.

1 INTRODUCTION

One of the main goals in computer programming
courses is to develop students’ understanding of the
programming principles. The understanding of
programming concepts is closely related with the
practice on solving programming exercises. Due to
increasing class sizes, the practice of programming
exercises assessment leads to extensive workload to
instructors. Apart from being time-consuming,
manual assessment hinders the consistency and
accuracy of assessment results as well as it allows
“unintended biases and a diverse standard of
marking schemes” (Romli et al., 2010). Therefore,
automatic assessment of programming exercises has
become an important method for grading students'
programming exercises as well as giving feedback
on the quality of their solutions. In this paper we
survey Programming Evaluation Systems (PES)
focusing on their interoperability features.

Nowadays there are a large number of PES
referenced in several surveys (Romli et al., 2010)
found in literature. The majority of the surveys
enumerates and compares the same set of features
such as how the analysis of the code is made, how
the tests are defined or how grades are calculated.

These surveys seldom address the PES
interoperability features, although they generally
agree on the importance of the subject, due to the
comparatively small number of systems that
implement them. This lack of interoperability is felt
at content and communication levels. Both levels
rely on the existence of specifications that uniformly
describe the content of programming exercises and
the way they should be shared among the systems
that are typically coupled with PES. Examples of
these systems are Learning Management Systems
(LMS), Contest Management Systems (CMS),
Evaluation Engines (EE), Learning Objects
Repositories (LOR) and Integrated Development
Environments (IDE).

The main goal of this paper is to gather
information on the interoperability features of the
existent PES and to compare them regarding a set of
predefined criteria such as content specification and
standard interaction with other tools.

The intended benefit of this survey is twofold: 1)
to fill the gap on PES interoperability features found
in most surveys; 2) to help instructors, educational
practitioners and developers when they have to
choose a PES to integrate in their e-Learning
environments.

83Queirós R. and Leal J..
PROGRAMMING EXERCISES EVALUATION SYSTEMS - An Interoperability Survey.
DOI: 10.5220/0003924900830090
In Proceedings of the 4th International Conference on Computer Supported Education (CSEDU-2012), pages 83-90
ISBN: 978-989-8565-06-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

The remainder of this paper is organized as
follows: Section 2 summarizes recent PES surveys.
The following section presents our survey focused
on interoperability, organized in three facets:
programming exercises, users and assignment
results. Then we discuss the survey results and
pointed some recommendations based on the result
data. Finally, we present our view on the future
trends on PES interoperability and open challenges
for research on this subject.

2 RELATED WORK

2.1 Evolution of Assessment Tools

In recent years, programming courses in secondary
schools and universities are characterized by
extensive curricula and large classes. In this context,
the assessment of programming assignments poses
significant demands on the instructor’s time and
other resources (Douce et al., 2005). This demand
stimulated the development of automated learning
and assessment systems in many universities (Ala-
Mutka, 2005). These systems assess programming
exercises and assignments submitted by students,
and provide evaluation data and feedback. They
present a wide variety of features, such as
programming language support, evaluation type,
feedback, interoperability, learning context, security
and plagiarism.

Early systems (Reek, 1989); (Jackson and Usher,
1997); (Mansouri et al., 1998) and (Saikkonnen et
al., 2001) assess exercises and assignments in a
single programming language respectively, Pascal,
ADA, Prolog and Scheme. With the advent of the
Internet and the increase of platforms heterogeneity,
web interfaces began to play an important role in the
dissemination of several systems (Pisan et al, 2003);
(Juedes, 2003); (Leal, 2003) and (Blumenstein et al,
2004). The last two were among the first PES to
support multiple programming languages, such as
Java, C++ and the C.

The standard way of evaluating a program is to
compile it and then execute it with a set of test cases
comprising input and output files. The submitted
program is accepted if compiles without errors and
the output of each execution is what is expected.
This evaluation strategy has been shown to bring
undesirable pedagogical issues such as student
frustration and confusion (Tang et al., 2009a, 2010).
Jackson and Usher (1997), Saikkonen et al (2001),
Pisan et al (2003), Juedes (2003), Blumenstein et al
(2004) and Mandal et al. (2006) test not only the

behaviour of single programs but also analyse the
structure of source code. This approach guarantees
that the program was written in a particular way,
following a particular algorithm or used certain data
structures. To assess the correctness of student
submissions Edwards (2006) use also unit tests
defined by teachers. Another important issue is the
non-determinism of the program outputs where
different correct (or acceptable) solutions to the
same programming exercise may not always
produce exactly the same output (Tang et al.,
2009b). Leal (2003) deals with non-determinism
using dynamic correctors invoked after each test
case execution. For instance, if the solution is a set
of values that can be presented in any order then a
dynamic corrector can be used to reduce the output
to a normal form.

Depending of the learning context (competitive
or curricular) the systems may provide feedback to
help students to solve a particular exercise. The
feedback generation relies on static and dynamic
program analyses (Ala-Mutka, 2005). The
development of PES with high quality feedback (e.g.
compilation errors, execution errors, execution tests)
show good results (Malmi et al., 2005); (Higgins et
al., 2005) and along with visual, incremental and
personalized feedback should shape the future
regarding this topic. (Striewe, 2010).

The PES interoperability is also an important
issue to address. An evaluator should be able to
participate in learning scenarios where teachers can
create exercises, store them in a repository and
reference them in a LMS and where students can
solve exercises and submit to PES who delivers an
evaluation report back to students. Luck and Joy
(1999), Benford et al (1993) were early systems that
try to address this issue allowing the integration with
course management systems. Nowadays with the
advent of Service Oriented Architectures (SOA) the
trend is service orientation rather than component-
based systems. An evaluator system as a service will
automate the existent business logic in distributed e-
Learning scenarios allowing more flexibility in the
comprised workflows and keeping the systems
simple and easy maintainable. Leal et al. (2010)
specified a service for programming exercises
evaluation in a well-known e-Learning framework
called the E-Framework. This work was used in
Edujudge project (Verdu et al., 2011) with
promising results.

Luck and Joy (1999) analysed security issues on
PES covering robust environments, privacy, and
data integrity. Security can be handled from ad-hoc
solutions to solutions based on Virtual Machines

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

84

(VM) in order to execute the programs on a safe and
controlled environment. Other concerning is the
increase of plagiarism (Engels, 2007) and (Cheang,
2003). Luck and Joy (1999) and Blumenstein et al
(2004) analyse the integration of plagiarism services
in the assessment workflow.

Regarding the learning context, PES can be used
in two contexts: curricular and competitive learning.
In the former, teachers use practical classes,
assignments and examinations to evaluate students’
evolution. The latter relies on the competitiveness of
students to increase their programming skills mostly
in computer programming contests. In this last
context, automated judge systems (or online judges)
are used to run programming contests and to practice
for such contests. These systems include automatic
evaluators and many of these systems organize their
own contests, such as, Mooshak (Leal, 2003), UVA-
OJ (University of Valladolid Online Judge), SPOJ
(Sphere Online Judge), DOMJudge and others.

2.2 Recent Surveys

In the last decade several surveys appeared reporting
PES features and trends.

Douce et al. (2005) review the history of the field
from 1960s characterized by a number of projects
that automatically assess student programming
exercises using a test-based approach. Three
generations of PES were identified: the first-
generation was represented by several initiatives to
automate testing, however their usability was
confined to their particular computing laboratories.
The second generation was characterized by
command-line-based PES. The third generation
made use of web-based technologies to leverage the
use of PES worldwide and provide additional
support for educators in the form of assessment
management and reporting facilities. The paper also
mentions four development directions in this field:
evaluation of GUI programs, meta-testing
(evaluation of the students’ tests), service orientation
adoption and use of interoperability standards.

Kirsti AlaMutka (2005) organizes PES features
according to whether they need execution of the
program (dynamic analysis) and/or can be evaluated
from the program code (static analysis). In one hand,
dynamic analysis is often used to assess
functionality, efficiency, and testing skills. In other
hand, static analysis is used to provide feedback
from style, programming errors and software
metrics. The authors conclude that automated
systems approach should always be pedagogically
justified and state that systems are in-house built and

no common standards or interfaces exist.
Liang et al. (2009) details dynamic and static

analysis methods of existing PES. The paper also
enumerates several unsolved issues in this area such
as security, algorithms for automatic generation of
test data in dynamic analysis and low accuracy and
precision of correctness in static analysis. Finally the
authors claim as new directions in the PES
development the content standardization.

Ihantola et al. (2010) gather information on PES
from 2006 to 2010 and discuss their major features
such as tests definition, resubmission policies and
security features. The author expects new research to
emerge from the following fields: integration of
automatic assessment on LMS and automatic
assessment of web applications.

Romli et al. (2010) enumerate approaches for
automatic programming assessment, test data
generation and integration of both. The authors
conclude that there is a lack of use of existing test
data generation techniques (commonly used to test
software) in the scope of automatic programming
assessment. The same survey made an exhaustive
study on 41 assessment tools that appeared in the
last 50 years focusing on the evaluation methods and
test data generation techniques used. Dynamic
analysis is the most used method to assess programs
with 74% of the tools studied using it. This is
explained since program correctness is the most
important quality factor while evaluating a program.
In dynamic analysis the test data assumes a relevant
role. The process of creating tests can be labour
demanding. Manual generation is time-consuming
and error-prone and seldom covers the potential
range of a program. In spite of these issues, the
study shows that the most used method for feed the
assessment systems with test data is through manual
data entry. This is due to the complexity inherent to
the automatic generation of test data.

Beyond these facets, all above surveys stated the
need for interoperability and security on PES. The
former can be achieved by the creation and adoption
of content and communication standards. The latter
is a well-know issue that should not be overlooked
and can be addressed by the use of secure
environments (sandbox) to execute untested code
and algorithms to filter out malicious code.

3 INTEROPERABILITY
ANALYSIS

Based on the previous section, we conclude that
interoperability is the main trend on PES. Moreover,

PROGRAMMING�EXERCISES�EVALUATION�SYSTEMS�-�An�Interoperability�Survey

85

this topic was never analysed in the above surveys.
Thus, we decided to survey existing PES regarding
their interoperability features. Given the multiplicity
of systems found we apply a multi-criteria approach
for the selection of tools based on its effective use.
The tools should be flexible enough to allow the
configuration of exercises and the management of
users. The former covers not only the selection of
existing exercises on the evaluation tool but also the
support for adding new exercises. The latter refers to
the support of the tool for select users that will solve
the exercises.

With this multi-criteria approach we selected 15
tools. After the selection of the tools, we applied an
iterative process to identify which facets (current
subsections) will be used to verify the
interoperability maturity level of the selected tools.
We began with an initial set of facets based on the
issues and trends raised on the previous surveys in
conjunction with our background in working with
interoperability on automated assessment. Then, we
read the published papers of the tools and consult
their official websites and revised the facets. Figure
1 shows the selected facets.

These facets are also synchronized with the main
objective of a typical automatic evaluation system -
to evaluate a user’s attempt to solve a
programming exercise and produce an assessment
result. Each facet includes three interoperability
maturity levels:

Level 0 - manual configuration of data;
Level 1 - data import/export;
Level 2 - services invocation.

Figure 1: Interoperability facets of PES.

In order to belong to Level 0, the evaluation tool
must support the configuration of data by allowing
either the selection of existing data or the addition of
new data. In the Level 1, the evaluation tool must
also support the import/export of data from/to other
sources. In the last level, the evaluation tool should
also support the communication with other tools

through the invocation of web services.
In the next subsections we detail the three facets

and for each facet we present the respective
interoperability maturity levels of the selected PES.

3.1 Programming Exercises

Nowadays we can find a large number of
programming exercises. Despite their number, these
exercises exist only in PES silos and seldom include
mechanisms to share the exercises among
researchers and instructors in an effective manner.
Moreover, each of these systems dictates the
persistent format of an exercise that may not be
interoperable with other automatic evaluation
systems. This is a significant barrier in the creation
and sharing of programming exercises and can only
be addressed through the standardization of exercise
content and its storage on public repositories.

Based on these facts, we specialised the abstract
maturity levels with the following:

Level 0 - manual configuration of exercises;
Level 1 - import/export of exercises;
Level 2 - integration with repository services.

In the Level 0, the evaluation tool should support the
selection of exercises and the addition of new
exercises. In this level, the tool relies on ad-hoc or
internal formats to describe exercises data.

In the Level 1, the evaluation tool should also
provide mechanisms to import/export exercises
from/to other sources. In this level, the tool must
explicitly support an exercise format. There are few
exercise formats. Typically an exercise format can
be obtained by modelling a programming exercise
into a Learning Object (LO) definition. This
definition describes an exercise as a learning
package composed by a set of resources (e.g.
exercise descriptions, test cases, solution files) and a
manifest that describes the package and its resources
in terms of its contents, classifications, lifecycle and
several other relevant properties.

In the Level 2, the evaluation tool should also
support the communication with other tools,
typically LOR, through web services. A LOR is a
system used to store and share learning objects. The
repository should support simple and advanced
queries to retrieve LO and export them to other
systems through a set of web service flavours (e.g.
SOAP, REST). In this communication, a service
broker (e.g. exercise format conversion service) can
be used when the evaluator does not support the
format of the exercises stored in the repository.

Based on these levels we have prepared the

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

86

following table that enumerates for each tool the
maturity level regarding the management of
programming exercises.

Table 1: Programming exercise facet (P-partial and F-full).

Systems Level 0 Level 1 Level 2
AutoGrader F - -

BOSS2 F - -
CourseMaker F - -
CTPracticals F - -
DOMJudge F - -

EduComponents F - -
GAME F - -

HUSTOJ F P -
Moe F P -

Mooshak F F F
Peach3 F P -
Submit! F - -
USACO F - -

Verkkoke F F -
Web-CAT F F P

According to the Table 1, all systems support the

configuration of exercises. However, only six tools
provide a way to export exercises and only three
support bidirectional transfers with other sources.
These systems often use exercises formats. HUST
Online Judge uses FPS (FreeProblemSet) as an
XML format for transporting exercises information
between Online Judges. Peach3 system uses PEF
(Peach Exchange Format) as a programming task
package containing all task-related information and
serving as a unit for storage and communication.
Verkkoke system relies on SCORM packages to
wrap all the exercise data.

The second level of interoperability is only
achieved by Mooshak and partially by Web-CAT.
Mooshak is a system for managing programming
contests on the Web. The last version (1.6a2)
supports the communication with repositories
complying with the IMS DRI specification using a
broker service responsible for the conversion
between formats. Web-CAT is an automatic grading
system using student-written tests. This system can
communicate with other repositories, such as
CollabX, through specific plug-ins. Unlike
Mooshak, the interaction with repositories is not
standard-based.

Based on these facts we can conclude that most
systems use internal and proprietary formats. Those
who adhere to explicitly formats do not reach a
consensus to use a single format. This
noncompliance to a single format leads to the
standard fragmentation for describing exercise
content. One solution to address this issue is instead
of creating new formats we should start looking for

broker services responsible for the conversion
between formats.

Other issue is the relation with repositories of
learning objects. The majority of PES store the
exercises inside their systems hindering the
proliferation and sharing of exercises. In order to
communicate with repositories the evaluation
systems must follow communication standards (e.g.
IMS DRI) rather than ad-hoc implementations.

3.2 Users

In order to select and solve exercises users must be
authenticated in the evaluation system and have
authorization to submit their solutions. The users’
facet also specialises the abstract maturity levels
with the following:

Level 0 - manual configuration of users;
Level 1 - import/export of users;
Level 2 - integration with user directories
services to provide authentication and academic
management systems (AMS) to provide
authorization.

In the Level 0, the evaluation tool should support the
configuration of user’s data.

In the Level 1, the evaluation tool should also
provide mechanisms to import/export users from/to
other sources. In this level, the tool can export a list
of users based on standard formats. As far as we
know, there are few standards that formalize users’
data and how data is sent. Two know-standards are
the IMS Learner Information Services (IMS LIS)
and the IMS Learner Information (IMS LIP). The
former is the definition of how systems manage the
exchange of information that describes people,
groups, memberships, courses and outcomes within
the context of learning. The IMS LIS is focused on
the connection between an LMS and an AMS. The
latter addresses the interoperability of internet-based
learner information systems with LMSs. It describes
mainly the characteristics of a learner.

In the Level 2, the evaluation tool should also
support the communication with other tools to
provide authentication and authorization facilities.
User authentication is based on directory services
such as LDAP or Active Directory. User
authorization relies on AMS that manages academic
processes such as the enrolment of students in
courses, the management of grades or the payment
of fees. They are the best candidates to offer
authorization services since they store information
about courses and students enrolled in them. The
communication with AMS is not standardized. This

PROGRAMMING�EXERCISES�EVALUATION�SYSTEMS�-�An�Interoperability�Survey

87

fact burdens the integration of AMS with evaluation
systems that must resort to ad- hoc solutions.

Table 2 shows the maturity level of automatic
evaluation tools regarding the users’ facet.

Table 2: Users facet (P-partial and F-full).

Systems Level 0 Level 1 Level 2
AutoGrader F F P

BOSS2 F - -
CourseMaker F
CTPracticals F F P
DOMJudge F F P

EduComponents F F P
GAME F - -

HUSTOJ F - -
Moe F - -

Mooshak F F P
Peach3 F - -
Submit! F - -
USACO F F -

Verkkoke F F -
Web-CAT F F -

According to the Table 2, all systems support the

manual configuration of users for a specific
assignment or course. More than a half of the
systems studied allow the import/export of users in
non-standard formats. However only five partially
support the communication with authentication
services (mostly with LDAP). We can conclude that
AMS are still immature in terms of standard
communication with other systems since we do not
found any system interacting with it. AutoGrader,
CTPraticals, EduComponents and Verkokke
beneficiate from the fact that they are integrated
with LMS thus taking advantage of its authorization
facilities.

3.3 Assessment Results

After the student’s submission the evaluation system
assesses the program and returns an evaluation
result. The assessment results facet also specialises
the abstract maturity levels with the following:

Level 0 - visualization of evaluation results;
Level 1 - export of assessment results;
Level 2 - integration with LMS.

In the Level 0, the evaluation tool should support the
visualization of the assessment results. The result
data is essential for the success of an assignment and
can include feedback and grades. This information
should be present to the user on the evaluation tool
graphical interface.

In the Level 1, the evaluation tool should also
export evaluation reports to other sources. As far as

we know, there are few standards that formalize
evaluation results. A formalization of an evaluation
report can be found in the Evaluation service (Leal
et al., 2010) - a contribution for the E-Framework.
An implementation of this service evaluates an
attempt to solve a programming exercise and
produces a detailed report. This evaluation report
includes information to support exercise assessment,
grading and/or ranking by client systems. The report
itself is not an assessment, does not include a grade
and does not compare students.

In the Level 2, the evaluation tool should also
communicate with other tools. A typical scenario is
the evaluation tool sends the grades to the LMS
grade book. A common interoperability standard that
is increasingly supported by major LMS vendors is
the IMS Learning Tools Interoperability (IMS LTI)
specification. It provides a uniform standards-based
extension point in LMS allowing remote tools and
content to be integrated into LMSs. Currently, only a
subset (IMS Basic LTI) of this specification is
implemented by the major LMS. This subset
exposes a unidirectional link between the LMS and
the application. For instance, there is no provision
for accessing run-time services in the LMS and only
one security policy is supported.

Table 3 shows the maturity level of PES
regarding the assessment results facet.

Table 3: Assessment results facet (P-partial and F-full).

Systems Level 0 Level 1 Level 2
AutoGrader F F P
BOSS2 F - -
CourseMaker F - -
CTPracticals F F P
DOMJudge F F -
EduComponents F F P
GAME F - -
HUSTOJ F - -
Moe F - -
Mooshak F F -
Peach3 F F -
Submit! F - -
USACO F - -
Verkkoke F F P
Web-CAT F F -

Table 3 shows that all systems present the

evaluation results to users and the majority allows its
exportation in non-standard formats. Regarding the
communication with other systems, four systems
support the communication with LMS by providing
the evaluation results on the LMS grade book.
AutoGrader, CTPraticals and EduComponents are
integrated with specific LMS, respectively,
CascadeLMS, Moodle and Plone. Verkkoke is the

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

88

only that do not depends on a specific LMS and can
be integrated on any LMS that supports the SCORM
specification.

4 SYNTHESIS & CONCLUSIONS

In this section we start by synthesizing the
interoperability facets of the PES included on the
above survey. Figure 2 depicts the percentage of
interoperability maturity of each PES.

Figure 2: Interoperability maturity percentage level of
PES.

We can conclude that a half of the systems
studied did not reach 50% of the maturity rate. This
illustrates that there are a lot to do in this field
regarding the integration of PES with other systems.

Figure 3: Coverage of interoperability features.

Figure 3 depicts the coverage of interoperability
features of the PES studied organized by facet. The
major conclusion to take is that there is no specific
trend on interoperability facets since the distribution
of interoperability coverage is equitably distributed
among the three facets.

In this paper we present an interoperability
survey on PES. Based on a multi-criteria approach
we select 15 tools and organized the survey based on
three interoperability facets: programming exercises,
users and assessment results. For each facet we
characterised each PES based on its interoperability
level. Based on this study we detect two issues that
can hinder the proliferation of PES: the lack of
content standards for describing programming
exercises and to communicate with other e-Learning
systems.

This work fills the gap existent in most surveys
since all of them point to interoperability as an issue
for PES use and a trend for PES development but
never explained in detail what are the paths to follow
in order to achieve interoperability on this domain.
The results achieved on this survey may also prove
useful to instructors and computer science educators
when they have to choose an assessment system to
be integrated in their e-Learning environment.

REFERENCES

Ala-Mutka, K., 2005. A survey of automated assessment
approaches for programming assignments. Computer
Science Education, 15(2):83-102.

Blumenstein M., Green S., Nguyen A. and
Muthukkumarasamy V., 2004. An experimental
analysis of GAME: a generic automated marking
environment. In Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in
computer science education, Leeds, United Kingdom,
pp 67-71

Cheang B., Kurnia A., Lim A. and Oon W. C., 2003. On
automated grading of programming assignments in an
academic institution. In Computer Education, vol. 41,
pp. 121–131.

Douce C., Livingstone D., Orwell J., 2005. Automatic
test-based assessment of programming: a review. In
JERIC - Journal of Educational Resources in
Computing, 5(3):4.

Edwards S. H. and Pugh W., 2006. Toward a common
automated grading platform. In SIGCSE ’06:
Proceedings of the 37th SIGCSE technical symposium
on Computer science education, (New York, NY,
USA), ACM.

Engels S., Lakshmanan V. and Craig M., 2007. Plagiarism
detection using featurebased neural networks. In
SIGCSE, pp. 34–38, 2007

Higgins, C. A., Gray, G., Symeonidis, P., Tsintsifas, A.,
2005. Automated assessment and experiences of
teaching programming. In Journal on Educational
Resources in Computing (JERIC), 5(3).

Ihantola, P., Ahoniemi, T., Karavirta, V. And Seppälä, O.,
2010. Review of recent systems for automatic
assessment of programming assignments. In Koli

PROGRAMMING�EXERCISES�EVALUATION�SYSTEMS�-�An�Interoperability�Survey

89

Calling '10 Proceedings of the 10th Koli Calling
International Conference on Computing Education
Research. ACM.

Jackson, D. and Usher, M., 1997. Grading student
programming using ASSYST. In Proceedings of 28th
ACM SIGCSE Tech. Symposium on Computer Science
Education, San Jose, California, USA, pp 335-339.

Jena, S., 2008. Authoring and Sharing of Programming
Exercises. In Master's Projects. Paper 19.
http://scholarworks.sjsu.edu/etd_projects/19

Juedes, D. W., 2003. Experiences in Web-Based Grading.
In 33rd ASEE/IEEE Frontiers in Education
Conference November 5–8, 2003, Boulder, CO

Leal, J. P. and Silva F., 2003. Mooshak: a Web-based
multi-site programming contest system. In Software
Practice & Experience, Volume 33 , Issue 6. Pages:
567 - 581, 2003, ISSN:0038-0644

Leal, J. P., Queirós, R. and Ferreira D., 2010. Specifying a
programming exercises evaluation service on the e-
Framework. In Xiangfeng Luo, Marc Spaniol, Lizhe
Wang, Qing Li, Wolfgang Nejdl and Wu Zhang (Eds),
Advances in Web-Based Learning - ICWL 2010 - 9th
Internation Conference, Shanghai, China, December,
2010, LNCS 6483, pp. 141-150, ISBN 978-3-642-
17406-3

Liang, Y., Liu, Q., Xu, J. and Wang, D., 2009. The recent
development of automated programming assessment.
In CISE - Computational Intelligence and Software
Engineering, 1-5.

Luck M. and Joy M., 1999. A secure on-line submission
system. In Software - Practice and Experience, 29(8),
pp721--740

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J.,
2005. Experiences on automatically assessed
algorithm simulation exercises with different
resubmission policies. In Journal on Educational
Resources in Computing (JERIC), 5(3).

Mandal C., Sinha, V. L. and Reade C. M. P., 2004. A
Web-Based Course Management Tool and Web
Services. In Electronic Journal of E-Learning, Vol
2(1) paper no. 19

Mandal A. K., Mandal C. and Reade C. M. P., 2006.
Architecture Of An Automatic Program Evaluation
System. In CSIE Proceedings

Mansouri, F., Cleveland, A. Gibbon, Colin, A.
Higgins. PRAM: prolog automatic marker. In
Proceedings of ITiCSE'1998. pp.166~170

Pisan Y., Richards D., Sloane A., Koncek H. and Mitchell
S., 2003. Submit! A Web-Based System for Automatic
Program Critiquing. In Proceedings of the Fifth
Australasian Computing Education Conference (ACE
2003), Adelaide, Australia, Australian Computer
Society, pp. 59-68.

Queirós R. and Leal J. P., 2011. A Survey on eLearning
Content Standardization. In 4th World Summit on the
Knowledge Society, Mykonos, Greece.

Reek, K. A., 1989.The TRY system or how to avoid
testing student programs. In Proceedings of SIGCSE,
pp 112-116.

Rehak, D. R., Mason, R., 2003. Keeping the learning in

learning objects. In Littlejohn, A. (Ed.) Reusing online
resources: a sustainable approach to e-Learning.
Kogan Page, London, 2003. (pp.22-30).

Romli, R., Sulaiman, S. and Zamli, K. Z., 2010.
Automatic programming assessment and test data
generation a review on its approaches. In Information
Technology (ITSim), 2010 International Symposium
in. DOI: 10.1109/ITSIM.2010.5561488

Saikkonen R., Malmi L., Korhonen A., 2001. Fully
automatic assessment of programming exercises. In
Proceedings of the 6th annual conference on
Innovation and Technology in Computer Science
Education (ITiCSE), pp. 133–136, 2001

Striewe M. and Goedicke M., 2010. Visualizing Data
Structures in an E-Learning System. In Proceedings of
the 2nd International Conference on Computer
Supported Education (CSEDU) 2010, Valencia, Spain,
volume 1, pages 172-179, 2010

Tang, C. M., Yu, Y. T., and Poon, C. K., 2009a.
Automated systems for testing student programs:
Practical issues and requirements. In Proceedings of
the International Workshop on Strategies for Practical
Integration of Emerging and Contemporary
Technologies in Assessment and Learning, pp.
132±136

Tang, C. M., Yu, Y. T., and Poon, C. K., 2009b. An
approach towards automatic testing of student
programs using token patterns. In Proceedings of the
17th International Conference on Computers in
Education (ICCE 2009), pp. 188±190

Tang C. M., Yu Y. T., Poon C. K., 2010. A Review of the
Strategies for Output Correctness Determination in
Automated Assessment of Student Programs. In
Proceedings of Global Chinese Conference on
Computers in Education.

Trætteberg H., Aalberg T., 2006. JExercise: A
specification-based and test-driven exercise support
plugin for Eclipse. In Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology eXchange,
ETX 2006 (2006), 70-74.

Verdú E., Regueras L. M., Verdú M. J., Leal J. P., Castro
J. P. and Queirós R., 2011. A Distributed System for
Learning Programming On-line. In Computers &
Education Jornal, 2011, ISSN 0360-1315

CSEDU�2012�-�4th�International�Conference�on�Computer�Supported�Education

90

