
SECURELY LAUNCHING VIRTUAL MACHINES
ON TRUSTWORTHY PLATFORMS IN A PUBLIC CLOUD

An Enterprise’s Perspective

Mudassar Aslam1, Christian Gehrmann1, Lars Rasmusson1 and Mats Björkman2

1Swedish Institute of Computer Science, Isafjordsgatan 22, Box 1263, SE-164 29 Kista, Sweden
2Mälardalens Högskola, Box 883, SE-721 23 Västerås, Sweden

Keywords: Security, Trusted Computing, Virtualization, Cloud Computing, IaaS.

Abstract: In this paper we consider the Infrastructure-as-a-Service (IaaS) cloud model which allows cloud users to run
their own virtual machines (VMs) on available cloud computing resources. IaaS gives enterprises the possi-
bility to outsource their process workloads with minimal effort and expense. However, one major problem
with existing approaches of cloud leasing, is that the users can only get contractual guarantees regarding the
integrity of the offered platforms. The fact that the IaaS user himself or herself cannot verify the provider-
promised cloud platform integrity, is a security risk which threatens to prevent the IaaS business in general.
In this paper we address this issue and propose a novel secure VM launch protocol using Trusted Computing
techniques. This protocol allows the cloud IaaS users to securely bind the VM to a trusted computer configura-
tion such that the clear text VM only will run on a platform that has been booted into a trustworthy state. This
capability builds user confidence and can serve as an important enabler for creating trust in public clouds. We
evaluate the feasibility of our proposed protocol via a full scale system implementation and perform a system
security analysis.

1 INTRODUCTION

In recent years, there has been a tendency to migrate
IT services like email, storage, and other applications
into the clouds due to cost and maintenance benefits.
Several different cloud sourcing models exist. In this
paper we focus on the cloud model where the cloud
consumer is able to deploy full software systems (in-
cluding the operating system) on a shared common
infrastructure, or what is often referred to as the
Infrastructure-as-a-Service (IaaS) cloud model (Krutz
and Vines, 2010). This paper presents a novel tech-
nique for the secure launch of virtual machines in a
public cloud.

A small company without security skills or an or-
dinary IT service consumer might trust a public cloud
service provider and in some cases prefer cloud ser-
vices over self-hosted services with a belief that his or
her cloud provider can offer better security by recruit-
ing specialized staff and equipment. In contrast, most
large or medium size enterprises have higher security
requirements for their own or their business users sen-
sitive data; and if their data is compromised due to a
security breach in the cloud provider network, it will

results in serious legal and business setbacks. There-
fore, these enterprises are reluctant to host their ser-
vices in a public cloud unless they get trusted ways to
validate the contractual security guarantees provided
by the cloud provider.

The focus of our work is to introduce technical
ways to verify the security guarantees provided by the
cloud service provider. We achieve this by allowing
the cloud user to cryptographically bind the user vir-
tual machine (VM) to a trustworthy state of the provi-
sioned cloud platform. Furthermore, we ensure that
the whole launch process meets all expected major
security requirements of a high quality public service
with respect to authentication and secure transfer. Ac-
cording to our suggested VM launch protocol, a par-
ticular VM is not even sent to the provider network
if no platform with the expected security guarantees
can be offered by the IaaS cloud. Our proposed pro-
tocol uses a unique combination of state-of-the art
techniques for authentication, and remote attestation
together with TPM’s1 sealing and a compact single
transfer protected VM launch command. The main

1Trusted platform module.

511Aslam M., Gehrmann C., Rasmusson L. and Björkman M..
SECURELY LAUNCHING VIRTUAL MACHINES ON TRUSTWORTHY PLATFORMS IN A PUBLIC CLOUD - An Enterprise’s Perspective.
DOI: 10.5220/0003928105110521
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 511-521
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

contributions of this paper are the following:

� We design and propose a secure VM launch pro-
tocol for the clouds which enables verifiable trust
between the cloud user and provider.

� We implement the proposed protocol to evalu-
ate the feasibility of using TCG2 mechanisms in
terms of implementation effort and complexity.

� We perform a security analysis of the proposed
protocol and show how expected security require-
ments are fulfilled.

The paper is organized as follows. In Section 2
we present the scenario we are addressing and rele-
vant security threats. In Section 3 we cover the ex-
isting body of literature in the area. In Section 4, we
describe the underlying architecture of the resource
platform which provides necessary foundation to de-
sign a trusted platform. We present out launch pro-
tocol in Section 5 followed by its implementation in
Section 6. Finally, we present a security analysis of
the proposed launch protocol in Section 7 and con-
clude in Section 8.

2 SCENARIO AND THREATS

2.1 Scenario

We are considering the IaaS cloud model from an en-
terprise’s perspective which is depicted in Figure 1.
There are two main stakeholders - the cloud Provider
and the cloud User. The provider can be the re-
source/platform manufacturer or a third party cloud
provider who provisions bare virtual machines to the
users through a Procurement Server. The users can
install any software stack, including OS on the pro-
cured VM. We consider an enterprise cloud user that
wants to outsource its business processes to the cloud
without compromising the security of its data and ap-
plications. In this paper, we consider secure VM man-
agement for this scenario and in particular the initial
process when the user wants to launch a VM on the
offered provider infrastructure. We analyze this VM
launch phase from a security perspective and suggest
protocols and principles for protecting it. This cov-
ers one phase of the VM life-cycle. Other important
phases are VM management once the VM has been
launched on the target platform and VM migration
from one cloud platform to another in order to allow
efficient resource management. These later phases are
out of scope of the current paper and subject to future

2Trusted computing group, http://www.trustedcomputin
ggroup.org/.

Cloud Provider

Provider Client

(PC)

User A

User Client (UC)

User B

User Client (UC)

Cloud

Cloud Platform

Hypervisor/VMM

Hardware

User A

VM

TPM

Management

VM
User B

VM

Cloud Platform

Hypervisor/VMM

Hardware

User B

VM

User A

VM

TPM

Management

VM

Procurement Server

Gateway

Provider Ref. Manifest Auth (PRA)

Figure 1: System overview.

work.

2.2 Threats

As we have previously discussed, migration from tra-
ditional business models to a cloud-based model has
business benefits such as cost savings etc. However,
this comes together with new security threats that
prevent capitalizing the cloud advantages for many
enterprises (CircleID, 2009). These threats have been
identified by the research community (Aslam and
Gehrmann, 2011), (Vaquero et al., 2011) and the
alliance for cloud security (Threats, 2010). Below,
we shortlist the major threats relevant to virtual
machine launch in a public cloud.

1. Insecure Interfaces: Insecure interfaces and APIs
to cloud services could result in various security
issues related to confidentiality, integrity, availability
and accountability. This means that the risk of
security breach exists right from the beginning, that
is, when the cloud user launches a VM. This risk
remains even after the launch due to the insecure
management interfaces (Threats, 2010).

2. User-client Authenticity: The attacker tries to
impersonate a legitimate user-client.

3. Provider Network Attacks: Internal (inside the
provider network) and external network attacks in the
cloud, e.g. DoS attack.

4. Disowning Malicious VM: The cloud user
repudiates the launch of a VM instance, for example
to deny the ownership of a misbehaving or malicious
VM.

5. Cloud Platform Authenticity: The attacker tries
to impersonate a cloud platform.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

512

6. Insider Attacks: A rogue employee with admin-
istrative access within a cloud provider network can
install malicious code/software on the cloud platform
that can then easily leak user’s (i.e. enterprise)
confidential data.

7. Mis-configured Cloud Platform: There is a risk
that the provider unintentionally installs a hostile
software package on the cloud platform or the cloud
node is not compliant to the promised security
profile, that is, the cloud platform is not updated
with the latest security patches. These risks expose
the platform and hence the cloud users to known
vulnerabilities which could expose the platform for
possible attacks.

8. User-data Leak: The cloud provider tries to run
a user VM instance using received VM image on an
in-secure platform. The user starts using such a po-
tentially in-secure VM and risks of losing confidential
data.

The first four threats mentioned above are general
and well known for any distributed system while the
last four are more cloud-specific for which we pro-
pose mechanisms and solutions. The goal with the
overall security architecture (Section 4) and our se-
cure launch protocol (Section 5) is to address all these
listed threats. We revisit the threats list in the security
analysis in Section 7 and discuss if/how the threats
have been mitigated in our design.

3 RELATED WORK

The importance of security for clouds has been iden-
tified very early by the concerned stakeholders, and
the research community has responded by identi-
fying security threats and proposing many differ-
ent kinds of solutions. Consortia like Cloud Se-
curity Alliance3, Trusted Computing Group4 and
other industrial-academic research alliances such as
TClouds5 and EuroCloud6 have already taken ini-
tiatives to address and solve security issues in the
clouds. As we have discussed in Section 2.2, several
reports and papers have been published that analyze
cloud security threats (CSA Guide, 2009), (Threats,
2010), (Aslam and Gehrmann, 2011) and (Vaquero
et al., 2011).

The TCG initiative for practical deployment of
trusted clouds (TMI, 2010) aims at proposing spec-
ifications and reference models. The TMI working

3http://www.cloudsecurityalliance.org
4http://www.trustedcomputinggroup.org/
5http://www.tclouds-project.eu/
6http://www.eurocloud.org/

group, at its infancy, has only released a short white
paper so far (Cloud Computing and Security, 2010)
which identifies the areas where TCG mechanisms
can provide security and trust in the clouds. While
details about how are still unavailable publically, we
have used the basic TCG mechanisms of secure boot,
remote attestation and sealing capabilities to propose
a mechanism that enables security and trust in the
clouds. There also exist some industrial proprietary
solutions like the Intel R TXT (Intel Trusted Execu-
tion Technology) which uses TCG and proprietary
hardware extensions to set up trustworthy cloud plat-
forms. The acTvSM Platform (acTvSM, 2010) is one
such prototype implementation. Our solution can be
built upon any such platform and additionally gives
the ability to the cloud user to verify the trustworthi-
ness of the platform before using the cloud.

There are other proposed solutions to implement
remote attestation as defined by the TCG. (Huang and
Peng, 2009) and (Sailer et al., 2004) use TPM based
cryptographic attestations by sending Integrity Mea-
surement Log (IML) in combination with TPM Quote
which is securely computed by the Trusted Platform
Module (TPM Commands, 2007). The verifier com-
pares the quoted response with a self-computed hash
value from the IML to check and decide about the
integrity of the target platform. (Landfermann et al.,
2006) propose an alternate scheme for remote attes-
tation by introducing property-based attestations in-
stead of cryptographic attestations to make it a scal-
able solution. (Haldar et al., 2004) also propose a sim-
ilar remote attestation technique to fulfill platform in-
tegrity requirements. All these papers mainly discuss
remote attestation techniques which could be used in
performing the integrity verification step of our pro-
posed protocol.

The architecture introduced by (Jansen et al.,
2006) presents ways to protect the confidentiality of
the user VM by leveraging on the sealing mechanism
supported by TPM. We enforce sealing of the user
VM to a platform state in a slightly different way.
Our approach allows a remote user to seal the user
VM to the target platform by encrypting his/her VM
using a special purpose TPM-based bind key, which
can only be used for decryption if the target platform
is in a known good state. The user can also validate
the required sealing properties (i.e. attested platform
state, non-migratable TPM key) through our proposed
approach of certifying the bind key. Finally, (Gasmi
et al., 2007) propose a trusted channel which focuses
on the integrity of the target platform in establish-
ing a secure session. The trusted channels also fea-
tures trusted computing mechanisms for establishing
trust between end entities. Different from such an on-

SECURELY�LAUNCHING�VIRTUAL�MACHINES�ON�TRUSTWORTHY�PLATFORMS�IN�A�PUBLIC�CLOUD�-�An
Enterprise's�Perspective

513

line solution, we propose a VM launch procedure that
does not require that the VM is scheduled when actu-
ally transferred to the IaaS provider from the user, but
it can be stored protected until it is actually scheduled
on the target platform.

4 CLOUD PLATFORM SECURITY
ARCHITECTURE

Naturally, the most important component in creating
trust in an IaaS model, is the design of the shared re-
sources, i.e. the cloud platform. The cloud platform
must be both flexible enough to allow multiple users
to run their services, and at the same time it should
be easy to manage and have the needed security com-
ponents to prove to the user that it is trustworthy and
can protect the user data in a good way. Below, we
discuss the platform security architecture we assume
and that we partly7 have designed. Key parts of this
architecture have been verified in an implementation
which is discussed in Section 6.

4.1 Cloud Platform Architecture

In order to allow multiple users to run their services
on a shared cloud platform, we consider the XEN
hypervisor (Chisnall, 2007) for platform virtualiza-
tion. However, the platform architecture is flexible to
use other hypervisors like KVM8 or VMware9 with
some adaptations. The platform runs a Management
Virtual Machine in the privileged domain i.e. dom0
along with other less privileged user domains (domU)
running User Virtual Machines belonging to different
cloud users (see Figure 2). The architecture divides
the platform into four layers of abstraction where
the Services Layer presents our implemented modules
(see Section 6) which are fundamental in the trusted
VM launch.

The management VM runs our implemented Man-
agement Agent at Application Layer which interacts
with other entities of the network (internal and ex-
ternal) and performs services for them. The Services
Layer has four major components which interact with
each other and perform all security and trust manage-
ment operations. The Compartment Manager (CM)
performs the leading role by using services of other
components. Other than the management of overall
VM life-cycle, the main tasks performed by the CM

7We use a combination of state-of-the-art technologies
and new designs.

8http://www.linux-kvm.org/
9http://www.vmware.com/virtualization/

are unsealing and running/launching user VMs. The
CM uses the services of the Integrity Manager (IM)
which performs various tasks pertaining to platform
trust establishment. It uses TPM features and per-
forms tasks like making runtime integrity measure-
ments and reporting platform state for remote attes-
tation. In principle, the CM calls IM functions for
validating trust before launching a user VM. The Cre-
dential Manager (CredM) keeps the credentials of the
licensed users to make access checks of VMs prior to
launch, logs launch events and transfers licensing in-
formation to the licensing engine. The Policy Man-
ager (PM) handles platform security policies for the
cloud platforms, for example, a platform access pol-
icy which allows/disallows particular operations on
the platform according to the client (user or provider)
access rights. Furthermore, PM can be used to en-
force licensing policies for different softwares and/or
resource usage.

The underlying Virtualization Layer makes virtual
instances of hardware resources so that every user
VM can have its own virtual hardware. However,
the architecture design choice for the hardware TPM
to virtualize it or not depends upon its intended use.
Virtualizing TPM instances as proposed by (Berger
et al., 2006) allows every user VM to use the fea-
tures offered by TPM (e.g. platform attestation, in-
tegrity reporting etc.). Though virtual TPMs allow
the cloud users to benefit from the security features
offered by TPM, it results in increased size of Trusted
Computing Base (TCB) which can expose security
vulnerabilities due to hierarchical trust dependen-
cies (Van Doorn, 2007). Therefore, we consider not
to virtualize the TPM and limit its use to the hypervi-
sor and Management VM which suffice the user re-
quirement of validating target cloud platform prior
to his/her VM launch. Similar models are proposed
by (Haldar et al., 2004) and (Jansen et al., 2006)
where the TCB is only up until the level of the hy-
pervisor.

4.2 Platform Credentials

In the process of platform integrity verification (see
Section 5.2), the cloud platform is required to report
runtime measurements to the verifying user-client.
The reported values can only be trusted if they are
signed by the TPM. The cloud platform should there-
fore have an asymmetric key pair for attestation, a so
called Attestation Identity key pair, KAIK . The secret
part of this key (SKAIK) can ONLY be used inside the
TPM chip and never leaves the TPM unencrypted.
The corresponding public part, PKAIK is registered
with a trusted third party usually called Privacy CA

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

514

Component forming the TCB

Management VM

Integrity

Manager

Compartment

Manager

Policy

Manager

Operator Credential

Manager

Management Agent

Native Device Driver
Back-end

Driver

CRTMMMUMemory CPU TPMDevices

vMemory Event ChannelvDevices vCPUvMMU

Operator A

VM

App S/W

Front-end

Driver

Operator OS

Operator C

VM

App S/W

Front-end

Driver

Operator OS

Operator B

VM

App S/W

Front-end

Driver

Operator OS

A
p

p
lic

a
ti
o

n
 L

a
y
e

r
S

e
rv

ic
e

s
 L

a
y
e

r
H

/W
 L

a
y
e

r
V

ir
tu

a
liz

a
ti
o

n
 L

a
y
e

r

Figure 2: Cloud platform architecture.

who issues an identity certificate for the platform, a so
called AIK-Certificate according to the TCG attesta-
tion key and certificate principles (TCG Architecture
Overview, 2007).

Our proposed VM launch protocol (see section
5) also supports the confidentiality of user data and
programs/applications - a security requirement iden-
tified in (Aslam and Gehrmann, 2011). This can be
achieved by cryptographically binding the user VM
to a cloud platform which is booted into a trustwor-
thy state. We create a non-migratable (TPM 1.1) or
certified-migratable (TPM 1.2) asymmetric key pair
in the TPM which is used for such cryptographic
binding. We refer to this key as bind key and denote
it by Kbind . The public part of this key is denoted by
PKbind , and the corresponding private part by SKbind .
We create this key pair using the TPM CreateKey()
command (TPM Commands, 2007), and also state
the required value of Platform Configuration Regis-
ters (PCRs) to use this key. A TPM key created in
this way can only be used for decryption if the cloud
platform is booted into a trustworthy state. In order
to prove to a remote user that Kbind is a TPM key and
is bounded to a trustworthy platform state, it is signed
together with the defined PCRs using SKAIK though
the TPM CertifyKey() command (TPM Commands,
2007) (see Section 6).

4.3 Platform Secure Boot

We assume trusted boot (IMM, 2006), (Sailer et al.,
2004) for our cloud platform bootstrapping in which
the hash of every loaded code component is recorded
in the TPM PCRs by the TPM extend operation. In
order to make the hash values in the PCRs meaning-
ful, a corresponding Event Structure which contains
the component’s meta-data as well, is also recorded
in a so called Integrity Measurement Log (IML) file.
The values in the TPM PCRs along with IML are se-

curely reported to the user as runtime measurements
in the platform integrity verification (see Section 5.2).

5 SECURE VM LAUNCH
PROTOCOL

The cloud platform security architecture presented in
the previous sections and the performed pre requisites
provide a basis for implementing the TCG mecha-
nisms like remote attestation, sealing and key bind-
ing. We use these features of the TCG to design and
implement a secure VM launch protocol. The VM
launch process is divided into three main and distinct
phases which are shown in Fig. 3 and described in the
following sections.

5.1 Connect and Discovery

In order to protect the internal virtual resources, the
provider needs to authenticate all resource requests
towards the network through the provider gateway,
which authenticates the user-client and establishes a
secure session with the user-client. Similarly, the
user-client must make sure that it connects to a trusted
cloud provider network. We use IPsec (Frankel and
Krishnan, 2011) to establish a standard VPN session
between the user-client and the provider network. We
use certificate-based key exchange for the session es-
tablishment for which both entities are assumed to
have their digital certificates issued by a mutually
trusted CA.

After the establishment of the IPsec connection,
the user-client sends a resource discovery request to
the Procurement Server which pools a list of avail-
able resources and presents them to the user-client.
The user-client selects one of the presented resources
which matches his criteria (feature-set, security, pol-
icy, resource location etc.). The user-client then goes
through the billing and payment cycle which is not
part of our protocol and is not covered here. Once
the payment is done, the user-client gets a resource
definition file which is a provider-signed XML file
containing all important information about the pro-
cured resource. This includes 1) the URI of the re-
source which is used to connect to the resource, 2)
a link to access reference measurements of the pro-
cured platform which are used in the platform in-
tegrity verification to be performed in the next step,
3) links to platform usage policies which are enforced
on the platform, e.g. licensing, 4) a list of clients (user
or provider) who can access this platform along with
their access rights, and 5) links to any other Service
Level Agreements (SLAs). The externally linked files

SECURELY�LAUNCHING�VIRTUAL�MACHINES�ON�TRUSTWORTHY�PLATFORMS�IN�A�PUBLIC�CLOUD�-�An
Enterprise's�Perspective

515

are integrity protected by including their checksums
in the provider signed resource.xml file. This resource
definition file is important in the sense that it presents
the provider statement about the integrity state of the
procured platform. The novelty of our solution lies
in that the user can validate the proclaimed integrity
of the provisioned resource. This validation is per-
formed in the next step of the VM launch protocol.

5.2 Platform Integrity-verification

Before launching the VM to the procured platform,
the user-client needs to validate the integrity of the
target platform as proclaimed by the provider. This
is done according to the TCG attestation procedure
(TCG Architecture Overview, 2007). We use an attes-
tation protocol similar to the one described in (Huang
and Peng, 2009) and (Sailer et al., 2004). The attesta-
tion starts with the user-client sending a nonce (N) to
the cloud platform with a request to report its integrity
state. The Management Agent requests the Integrity
Manager to generate an Attestation Response. The at-
testation response contains the current state of PCRs
and the Integrity Report. The IM requests the TPM to
get the current state of PCRs signed with SKAIK (see
Section 4.2). This is done using the TPM Quote (TPM
Commands, 2007) command. The Integrity Report,
current PCR state and the AIK-Certificate are sent
back to the user-client. The user-client validates the
AIK-Certificate, nonce and the signatures and com-
pares the received Integrity Report with the Reference
Manifests (RM) collected from Provider Reference
Manifest Authority (PRA) using the link provided in
resource definition XML file in the previous step (see
Figure 1). The role of PRA is to create/aggregate,
sign and publish reference metrics for each cloud plat-
form (IMM, 2006). Once the validations are success-
ful, the user-client then computes the hash (h1) of the
received Attestation Response which is used to bind
the next VM launch step to the current integrity veri-
fication step of the launch protocol.

5.3 VM Launch

The final stage of the proposed protocol is the actual
launch of the user VM. We protect user data and ap-
plications (user programs) by cryptographically bind-
ing them to the cloud platform using the TPM. Such
binding mechanism fulfills an important security re-
quirements, that is, the user data is available only if
the cloud platform is running trusted software compo-
nents thus protecting data confidentiality against mal-
ware. The platform-sealed launch introduced here is
done by using a specially created non-migratable or

certified-migratable, asymmetric key (Kbind) which is
created in the pre-launch phase (see Section 4.2). The
user-client requests for the PKbind along with assur-
ances that the Kbind is a non-migratable or certified-
migratable TPM key, and it can only be released/used
if the cloud platform is in the trusted state as attested
in the previous step. The cloud platform loads Kbind

User Client (UC)

Public Cloud

Cloud

Platform

IPsec Security Association

(IKE, Mutual Authentication)

Resource Response: resource.xml

Validate(CertAIK, SignAIK, N)

Validate(Integrity Report)

Compute h1 = hash(Attestation Response)

Closed Network
Public Network

Secure Channel Established

Attestation Request: N

Attestation Response : Sign_SKAIK{PCR, N}, IR, CertAIK

Key Request

Key Response

PKbind, TPM_CERTIFY_INFO2, Sign_SKAIK{TPM_CERTIFY_INFO2}

CertUC, Sign_SKUC{ Enc_KVM(VM Image,Policy, UserSW), Enc_PKbind(KVM), h }

Validate(SignAIK)

Validate(TMP_CERTIFY_INFO2)

Generate KVM

Compute h2 = hash(Key Response)

Compute h = hash (h1 + h2)

Management

Agent TCB

CredM: Validate(CertUC, SignUC)

IM: Validate(h)

PM: Validate User License

IM: Unseal(Kbind)

IM: Dec_SKbind(KVM)

IM: Dec_KVM(VMOVF)

CM: Launch(VM Instance)

CredM: Get(PKbind)

IM: Get Seal State Info

IM: SignAIK(PCR, N)

CM: Request(IML)

IM: Generate Integrity Report (IR)

CredM: CertAIK

IM
 =

 I
n

te
g

ri
ty

 M
a

n
a

g
e

r,
 C

M
 =

 C
o

m
p

a
rt

m
e

n
t
M

a
n

a
g

e
r,

 P
M

 =
 P

o
lic

y
 M

a
n

a
g

e
r,

 C
re

d
M

 =
 C

re
d

e
n

ti
a

l
M

a
n

a
g

e
r

Resource Discovery

Resource Connect: resource.xml

VM_Launch_Success

R
e

s
o

u
rc

e
 D

is
c
o

v
e

ry
P

la
tf
o

rm
 I
n

te
g

ri
ty

-

V
e

ri
fi
c
a

ti
o

n
V

M
 L

a
u

n
c
h

Procurement Server

Gateway

Figure 3: VM launch protocol.

and calls TPM CertifyKey() command (TPM Com-
mands, 2007). The validation result of this com-
mand includes a TPM CERTIFY INFO structure which
is sent to the user-client along with Kbind . The
TPM CERTIFY INFO structure is KAIK signed which
certifies that Kbind is a non-migratable TPM key.
The TPM CERTIFY INFO structure includes the digest
for Kbind which is compared against the computed
digest of the received Kbind to authenticate the re-
ceived Kbind . The TPM CERTIFY INFO structure also
includes the required PCR INFO digest which is com-
pared against the expected/trusted PCR hash value to
ensure that Kbind can only be used when the platform
is in a trusted state.

After all validations, the user-client generates a
symmetric key KV M which is used to encrypt the VM
package10 which contains the VM image, any user
credentials and user applications which will run in

10The VM is packaged using Open Virtualization Format
(OVF).

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

516

the user VM instance. The KV M is encrypted with
PKbind to ensure the required platform-binding prop-
erties stated earlier. In order to cryptographically
bind the different protocol steps - attestation, bind
key exchange and launch - the user-client computes
the hash of Key Response message(h2), appends it
to h1(computed in previous stage), and computes h
which is also sent to the cloud platform. Finally, the
user-client signs the VM Launch command (shown
below) so that the user cannot repudiate the VM
launch later on.

Certuc;Sign SKuc[KV MfV MOV Fg;PKbindfKV Mg;h]

The cloud platform performs the necessary valida-
tions and checks the user license for VM launch
rights, and (optionally) also updates the correspond-
ing charging records. It then loads the bind key, de-
crypts the KV M , decrypts the VM package and asks
the Compartment Manager to run the user VM in-
stance. Finally, a SUCCESS or FAIL launch message
is returned to the user-client. After successful VM
launch the user-client can then connect to the running
VM instance for any management operation.

6 IMPLEMENTATION

The Secure VM Launch Protocol, as presented in the
previous section, requires multiple entities/platforms
communicating with each other in a complete IaaS
provisioning system (see Figure. 1). In order to setup
a complete framework and test a running prototype
of the launch protocol, we implemented the required
functionalities for the following entities:

� User-provider client.

� Procurement server.

� Cloud platform: management agent.

In the following sections, we discuss the implementa-
tion of these different entities in more details.

6.1 User-provider Client

The cloud user needs a client for resource pro-
curement, VM launch and its later management11.
Similarly, the provider also needs a client for the
management and administrative tasks on the provi-
sioned cloud platform. In our prototype, we have
implemented a single client that can run in two
operational modes, i.e. launch and manage, and
thus can be used by the user or provider. In this
paper, we only focus on the cloud user using the

11VM management is not covered in this paper.

client program in the launch mode. This is done by
specifying the ’launch’ argument along with a ’user
certificate’ which authenticates the cloud user to the
Procurement Server and Cloud Platform. The client
program can be executed as follows:

runClient launch user.cer

The client program running in launch mode by the
cloud user connects to the Procurement Server(see
Section 6.2) and receives a resource.xml file (see
Section 5.1) if a resource is procured successfully.
The resource.xml file is then parsed to locate the
URI of the procured cloud platform and connects to
it for Integrity Verification before finally sending the
VM Launch request.

6.2 Procurement Server

Conceptually, the Procurement Server can be a com-
bination of multiple entities like cloud controller
which pools and allocates cloud resources, Payment
and Licensing engines to sell available cloud re-
sources. However, our implementation of the Pro-
curement Server is limited to listening to the user-
client requests for available resources and generating
the signed resource.xml file to be sent back to the
user-client who can then use this file to connect to the
procured resource.

6.3 Cloud Platform: Management
Agent

The cloud platform which runs the VM instance for
the user, performs the integrity verification and VM
launch functionalities for the user. It runs a Manage-
ment Agent in the privileged domain which can ac-
cess TPM services. The Management Agent and its
modules can use TPM services only through the TCG
Software Stack (TSS, 2007) for which we use a Java-
based implementation of the TSS called jTSS, devel-
oped at the Institute for Applied Information Process-
ing and Communication (IAIK), Graz University of
Technology.

The Management Agent listens for the client re-
quests to launch his/her VM and runs the VM launch
protocol. The sequence of messages between the
user-client and the Management Agent perform Plat-
form Integrity Verification (see Section 5.2) and VM
Launch (see Section 5.3). For this purpose, three im-
portant response messages are generated by the Man-
agement Agent:

� Attestation response.

SECURELY�LAUNCHING�VIRTUAL�MACHINES�ON�TRUSTWORTHY�PLATFORMS�IN�A�PUBLIC�CLOUD�-�An
Enterprise's�Perspective

517

� Bind-key response.

� Launch response.

These response messages are generated using the
modules in the Services Layer, most notably the In-
tegrity Manager and the Compartment Manager, and
are discussed in the following sections.

6.3.1 Attestation Response

The Attestation Response contains the 1) PCR Quote,
2) Integrity Report and 3) the AIK Certificate.
The PCR Quote is generated by the hardware TPM
using SKAIK which is accessed by calling the
getQuote(expectedPcrComposite, N) method of
the Integrity Manager. The Compartment Man-
ager uses the requestIML() method to load the In-
tegrity Report and the AIK Certificate is loaded using
the getAikCertificate() method of the Credential
Manager. Finally, the generated Attestation Response
is sent to the user-client for integrity verification.

6.3.2 Bind-key Response

The purpose of sending the Bind-Key Response to the
user-client is to allow the user to validate that the
Kbind is a TPM-based key and it can only be used if
the platform is in the state verified by the user-client
in the previous step of integrity verification. This is
achieved by calling the certifyBindKey() method
of the Integrity Manager which loads Kbind and KAIK
to generate a KAIK signed TPM CERTIFY INFO struc-
ture. The bind-key response message is sent to the
user-client which includes PKbind along with a KAIK
signed TPM CERTIFY INFO structure which can only
be generated by the TPM thereby certifying Kbind .

6.3.3 Launch Response

The Launch Response is a simple SUCESS mes-
sage for the user-client or a detailed ERROR mes-
sage in case of a failed launch. The Launch Response
message is generated by the getLaunchResponse()
method of the Management Agent which performs
validations for user certificate, signature and the re-
ceived hash value (h). Furthermore, it calls the
decryptKvm() method of the Integrity Manager to
get the symmetric key KV M , which is required to de-
crypt the received VM package. Since KV M is en-
crypted with PKbind (a TPM-based key), the Integrity
Manager requests the TPM to use the correspond-
ing SKbind to decrypt KV M . The bind key (Kbind)
is created (see Section 4.2) with the property that it
can be used for decryption only if the TPM PCRs

have the same value as stated at the time of key cre-
ation12. This implies that only a platform in a good
known state (i.e. verified integrity state) can get de-
crypted KV M and hence can decrypt the VM package.
Once the VM package is successfully decrypted, the
Compartment Manager uses the unpackage() and
launchVM() methods to launch the user VM.

7 SECURITY ANALYSIS

We analyze the security of our launch protocol in the
following sections along with reflections on the way
threats identified in section 2.2 are addressed. The
summary of the security analysis is presented in the
Table 1.

7.1 Authentication

Due to the well known vulnerabilities, (Somorovsky
et al., 2011), we decided to not fully rely on and use
the existing cloud interfaces and APIs for VM launch.
Instead, we used existing well established protocols
such as IKE (with certificate-based key exchange) and
IPSec for the establishment of a virtual private net-
work (VPN) between the user-client and the provider
network. The mutual authentication of both entities
protects against any impersonation attempts by the at-
tacker (Threats 2 and 3). The user-client also checks
the authenticity of the cloud platform during platform
integrity verification (Section 5.2). We also ensure
that only the authenticated cloud platform receives
and runs the user VM by sealing the VM image to
the target cloud platform (Threat 5)

7.2 Confidentiality

The confidentiality of the user applications and data is
ensured by binding the VM image to the trusted cloud
platform (Threat 8). This is done by using the bind
key which is cryptographically bound to the provider-
stated and user-validated state of the platform. This
means that the user data and applications cannot be
accessed even if the VM image is used to create a VM
instance on another compromised platform because it
cannot be decrypted on any platform other than the
trusted one. However, a provider with administra-
tive access to the cloud platform can get a memory
dump of the running user VM to extract user creden-
tials (Rocha and Correia, 2011). Similarly, an insider

12The platform is not required to be in the expected state
at the time of key creation.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

518

Table 1: Security analysis of our proposed mechanisms to mitigate threats.

Threat Security Service Applied Mechanism
1. Insecure Interfaces Authentication IPSec, IKE association
2. User Client Authenticity Authentication IPSec, IKE association
3. Provider Network Attacks Authentication Gateway, IPSec
4. Disowning Malicious VM Non-repudiation User-signed VM Launch
5. Cloud Platform Authenticity1 Authentication Remote Attestation, VM Sealing
6. Insider Attacks1 Platform Integrity Remote Attestation
7. Mis-configured Cloud Platform1 Platform Integrity Remote Attestation
8. User-data Leak1 Confidentiality VM Sealing
1 Solved by our proposed techniques.

can migrate the running VM to a compromised plat-
form to generate more possibilities of breach of con-
fidentiality. Our proposed approach to protect against
such insider attacks is to restrict the access of such
sensitive administrative tasks (e.g taking snapshot of
the running VM, VM migration, etc.) by enforc-
ing access rights through the Policy Manager mod-
ule. The resource.xml file, which represents the
procured resource, contains a list of clients (provider
and user) with their access permissions which could
be reviewed by the user before launching his VM. The
details of a trusted Policy Manager with Access Con-
trol Module, which could allow sensitive administra-
tive tasks like VM migration, is a subject of future
work.

Another aspect of data and applications confiden-
tiality is the protection against attacks from a mali-
cious VM running in parallel on the same physical
platform. It is very hard to give any firm guarantees
with respect to the secure isolation provided by any
virtualization layer (Ormandy, 2007). We use XEN
which is a widely used open virtualization layer that
has been and is subject to continuous in depth security
analysis.

7.3 Integrity

The cloud platform integrity is an important secu-
rity requirement for a cloud user which is achieved
by using the TCG mechanism of remote attestation,
thereby addressing threat 6 and 7. We presented the
complete architecture (see Section 4) required for the
platform integrity verification performed in the launch
protocol which allows the cloud user to verify the
compliance of the cloud platform to the promised se-
curity profile (Threat 8). However, the Boot Security
and provisioning of the Reference Measurements are
critical in defining the overall integrity of the plat-
form. For example, if the published reference metrics
include bad software or softwares with vulnerabili-
ties, the security of the platform becomes question-
able. Hence, provisioning of high quality reference

metrics assumes good softwares as well, which is a
challenge in the proposed architecture.

7.4 Non-repudiation

Both parties should have mechanisms to prove the
transaction/action in case of repudiation by the other
party (Threat 4). Two such critical actions and cor-
responding security requirements are 1) a proof that
the cloud user has requested and paid for the resource
to launch his VM, and 2) a proof that the cloud user
has actually sent a request to run his VM instance (so
that he cannot disown it later). In our protocol, non-
repudiation is achieved by sending a provider signed
resource.xml for the first action and the signature
of the cloud user on the VM Launch request for the
second action.

7.5 Replay Protection

The cloud user sends a nonce (N) in the attestation
request which is returned in the attestation response
(signed TPM Quote). The Attestation Response and
the Bind-key Response are hashed to keep session
binding and protect against replay attacks. The ran-
domness in the hash values (h,h1 and h2) comes from
the original nonce (N) sent in the attestation request.

8 CONCLUSIONS

In this paper we have addressed one of the major hur-
dles for enterprises to shift their business processes
to the clouds, i.e. lack of security guarantees. We
identified major security threats with respect to vir-
tual machine provision in IaaS. Many of the identi-
fied threats are general and well known for any dis-
tributed system for which standard security mecha-
nisms already exist. We proposed a novel launch pro-
tocol which uses standard security mechanisms for
the known threats and combined those with trusted
computing techniques to fill the trust deficit between

SECURELY�LAUNCHING�VIRTUAL�MACHINES�ON�TRUSTWORTHY�PLATFORMS�IN�A�PUBLIC�CLOUD�-�An
Enterprise's�Perspective

519

cloud stakeholders. In addition, we have designed a
complete software architecture needed to run the pro-
tocol and protect the VM data. Our protocol enables
technical trust which allows cloud users to validate
the security guarantees given by the cloud provider
before using the provisioned service. We also imple-
mented the designed protocol to evaluate its feasibil-
ity in terms of implementation effort and complex-
ity. Finally, we performed security analysis to val-
idate that all security requirements are fulfilled and
all identified threats have been addressed comprehen-
sively. In our analysis, we showed how a user VM can
strongly be bounded to a particular platform to ful-
fill users’ security requirements. However, this strong
binding also limits the flexibility with respect to load
management, platform upgrade, etc. These limita-
tions can be reduced by adding trusted VM migration
mechanism to the solution. Our suggested architec-
ture allows opportunities for such extensions but the
details are left for future research.

REFERENCES
acTvSM (2010). Advanced Cryptographic

Trusted Virtual Security Module.
http://www.iaik.tugraz.at/content/research/trusted co
mputing/actvsm/.

Aslam, M. and Gehrmann, C. (2011). Security Considera-
tions for Virtual Platform Provisioning. In ECIW ’11:
Proceedings of the 10th European Conference on In-
formation Warfare and Security, pages 283–290, UK.
The Institute of Cybernetics at the Tallinn University
of Technology, Academic Publishing Limited.

Berger, S., Cáceres, R., Goldman, K. A., Perez, R., Sailer,
R., and van Doorn, L. (2006). vTPM: Virtualizing the
Trusted Platform Module. In USENIX-SS’06: Pro-
ceedings of the 15th Conference on USENIX Security
Symposium, Berkeley, CA, USA. USENIX Associa-
tion.

Chisnall, D. (2007). The Definitive Guide to the Xen Hyper-
visor (Prentice Hall Open Source Software Develop-
ment Series). Prentice Hall PTR, Upper Saddle River,
NJ, USA.

CircleID (2009). Survey: Cloud Computing ’No Hype’,
But Fear of Security and Control Slowing Adoption.
http://www.circleid.com/posts/20090226 cloud comp
uting hype security/.

Cloud Computing and Security (2010). Cloud
Computing and Security - A Natural Match.
http://www.trustedcomputinggroup.org/resources/clo
ud computing and security a natural match.

CSA Guide (2009). Security guidance for crit-
ical areas of focus in cloud computing.
http://www.cloudsecurityalliance.org/guidance/csagu
ide.v2.1.pdf.

Frankel, S. and Krishnan, S. (2011). IP Security (IPsec) and
Internet Key Exchange (IKE) Document Roadmap.
RFC 6071 (Informational).

Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., and
Asokan, N. (2007). Beyond Secure Channels. In STC
’07: Proceedings of the 2007 ACM Workshop on Scal-
able Trusted Computing, pages 30–40, New York, NY,
USA. ACM.

Haldar, V., Chandra, D., and Franz, M. (2004). Seman-
tic Remote Attestation - A Virtual Machine directed
approach to Trusted Computing. In USENIX Virtual
Machine Research and Technology Symposium, pages
29–41.

Huang, X. and Peng, Y. (2009). An Effective Approach
for Remote Attestation in Trusted Computing. In
WISA 2009 : Proceedings of the 2nd International
Symposium on Web Information Systems and Applica-
tions, pages 80–83, FIN-90571, OULU, FINLAND.
Academy Publisher.

IMM (2006). TCG Infrastructure Archi-
tecture Part-II - Integrity Management.
http://www.trustedcomputinggroup.org/resources.

Jansen, B., Ramasamy, H. V., and Schunter, M. (2006).
Flexible Integrity Protection and Verification Archi-
tecture for Virtual Machine Monitors. In The Second
Workshop on Advances in Trusted Computing (WATC
06 Fall.

Krutz, R. L. and Vines, R. D. (2010). Cloud Security:
A Comprehensive Guide to Secure Cloud Computing.
Wiley Publishing.

Landfermann, R., Kuhlmann, D., Kuhlmann, D., L, R.,
Ramasamy, H. V., Ramasamy, H. V., Schunter,
M., Schunter, M., Ramunno, G., Ramunno, G.,
Vernizzi, D., and Vernizzi, D. (2006). D.: An Open
Trusted Computing Architecture – Secure Virtual Ma-
chines Enabling User-defined Policy Enforcement.
www.opentc.net.

Ormandy, T. (2007). An empirical Study into the Secu-
rity Exposure to Hosts of Hostile Virtualized Environ-
ments. In CanSecWest.

Rocha, F. and Correia, M. (2011). Lucy in the sky without
diamonds: Stealing confidential data in the cloud. De-
pendable Systems and Networks Workshops, 0:129–
134.

Sailer, R., Zhang, X., Jaeger, T., and van Doorn, L. (2004).
Design and implementation of a tcg-based integrity
measurement architecture. In Proceedings of the 13th
conference on USENIX Security Symposium - Vol-
ume 13, SSYM’04, pages 16–16, Berkeley, CA, USA.
USENIX Association.

Somorovsky, J., Heiderich, M., and Jensen, M. (2011). All
your clouds are belong to us: security analysis of
cloud management interfaces. computing security.

TCG Architecture Overview (2007). TCG
Specification Architecture Overview.
http://www.trustedcomputinggroup.org/resources.

Threats, C. (2010). Top Threats to Cloud Computing. Tech-
nical Report Version 1.0, Cloud Security Alliance.

TMI (2010). TCG Trusted Multi-Tenant Infrastructure.
http://www.trustedcomputinggroup.org/developers/tr
usted multitenant infrastructure.

TPM Commands (2007). TPM Specifica-
tion, TPM Main Part-III Design Principles.
http://www.trustedcomputinggroup.org/resources.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

520

TSS (2007). TCG Software Stack (TSS) Specification.
http://www.trustedcomputinggroup.org/resources.

Van Doorn, L. (2007). Trusted Computing Challenges. In
STC ’07: Proceedings of the 2007 ACM Workshop on
Scalable Trusted Computing, pages 1–1, New York,
NY, USA. ACM.

Vaquero, L. M., Rodero-Merino, L., and Morán, D. (2011).
Locking the sky: a survey on iaas cloud security. Com-
puting, 91:93–118.

SECURELY�LAUNCHING�VIRTUAL�MACHINES�ON�TRUSTWORTHY�PLATFORMS�IN�A�PUBLIC�CLOUD�-�An
Enterprise's�Perspective

521

