
PaaS ELEMENTS FOR HOSTING SERVICE-BASED
APPLICATIONS∗

Sami Yangui1,2 and Samir Tata1
1Institut Telecom, Telecom SudParis, UMR CNRS Samovar, Evry, France
2Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia

Keywords: PaaS, Service Deployment, Application Deployment.

Abstract: Cloud Computing is a new supplement, consumption, and delivery model for IT services based on Internet
protocols. It typically involves provisioning of dynamically scalable and often virtualized resources. In this
environment, there are several issues related to the inadequacies of hosting platforms and mechanisms to
ensure the smooth developing and running of service-based applications (communication protocols, ESB,
Service containers, etc.). In this paper, we present a new comer of platform as a service (PaaS) based on
our already developed service micro-containers to avoid compatibility and portability constraints imposed by
classical Cloud platforms. Several platform use cases are discussed.

1 INTRODUCTION

Cloud Computing is a specialized distributed comput-
ing paradigm (Foster et al., 2008). It differs from tra-
ditional ones on the fact (1) it is massively scalable,
(2) it can be encapsulated as an abstract entity that de-
livers different levels of services to customers outside
the Cloud, (3) it is driven by economies of scale and
(4) can be dynamically conFigured (via virtualization
or other approaches) and delivered on demand.

As a part of our work, we focus on deploy-
ment and execution application aspects in the Cloud
especially for service-based applications. Taxon-
omy of Cloud Computing systems shows that all
the existing systems which supports service-based
application deployment and execution are limited
to a programming framework which makes the use
of those Clouds difficult, since Cloud clients need
to use the related programming language before
using the Cloud (Rimal et al., 2009). For ex-
ample, Amazon imposes Amazon Machine Image
(AMI) and Amazon MapReduce framework (Ama-
zon, 2011), Force.com imposes Apex language for
database service (Force, 2011), Azure imposes Mi-
crosoft.Net (Microsoft, 2011), Google App Engine
imposes MapReduce programming framework (Dean

∗The work presented in this paper was partially sup-
ported by the French FUI CompatibleOne project. http://
compatibleone.org/bin/view/Main/

and Ghemawat, 2004) (Engine, 2011), and so on.
Similarly, the same type of constraints are im-

posed on developers to deploy service-based applica-
tions in the Cloud raises often portability and com-
patibility issues. Concretely, Cloud providers tries to
diversify to the maximum the offered API to access
to their Cloud services. We can cite among other the
following APIs: Amazon API (Varia, 2011), GoGrids
API (GoGrid, 2011), Suns Cloud API (Sun, 2011) and
VMwares vCloud. However, no Cloud provider can
provide the all existing API for access and deploy-
ment in Cloud platforms and therefore cannot satisfy
all the portability and compatibility constraints that
can meet developers community in the Cloud. In this
paper, we propose a newcomer of platform as a ser-
vice (PaaS) which allows developers to deploy, host
and run service-based applications regardless of their
implementations and APIs. The paper is organised as
follows : Section 2 presents a state of the art of clas-
sical Cloud platforms. Our findings are discussed in
section 3. Finally, we conclude our paper and present
our future work in Section 4.

2 STATE OF THE ART

In this section, we present a state of the art of different
classical PaaS architectures. We are interested essen-
tialy on PaaS components and containers which inter-

476 Yangui S. and Tata S..
PaaS ELEMENTS FOR HOSTING SERVICE-BASED APPLICATIONS.
DOI: 10.5220/0003932204760479
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 476-479
ISBN: 978-989-8565-05-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



venes in service deployment and execution processes
to study platforms behavior on deployment taks and
highlight API limitations support of these platforms.

Google offers Google App Engine (GAE) (En-
gine, 2011) is one of the platforms which offer de-
vlopement and deployment features for applications
coupled to the GAME API (Zahariev, 2009). Among
the interesting features that provide the platform,
there is a possibility to connect to the internal SI se-
curely. There is also Heroku PaaS which is optimized
for Web applications developement using Ruby and
Rack (Heroku, 2011). The functioning of Heroku is
quite simple: The infrastructure used is Amazon Web
Services (AWS) through Internet while the deploy-
ment and the management of applications is done us-
ing Git. Microsoft is also a main actor in Cloud PaaS
solutions. Microsoft Azure offers typical data storage
(SQL Azure Storage), running applications on Web
servers (IIS Web Role), an equivalent of Windows ser-
vices (Work Role), bus systems and data management
access (Microsoft, 2011).

We can also quote open source PaaS like Cloud
Foundry (Xebia, 2011), CloudBees (CloudBees,
2011) or OpenShift (OpenShift, 2011)

A comprehensive study of these platforms allowed
us to highlight limitations and constraints imposed by
classical PaaS to developer community. For exam-
ple, in CloudBees platform,RUN@CLOUDservice
supports only languages that are based on JVM like
Scala, Clojure or Jruby, even if that there is one plat-
form user who define a Grails CloudBees plugin (Plu-
gin, 2011) and he still to maintain it regularly. Sim-
ilarly, the specific JVM and APIs offered by GAE
are not 100% standard and requires adapting applica-
tions to deploy to take advantage of the power of the
platform even if the API is high-level and a number
of common frameworks and JVM-based languages
are supported. Another limitation observed concerns
Microsoft Azure which supports only .NET applica-
tions. In addition to that, we note the restrictions
on platforms communication protocols and on bind-
ings implementations of deployed services. For ex-
ample,Routercomponent from Cloud Foundry and
Reverse proxycomponent from Heroku allows only
HTTP messages ingoing and outgoing platforms.

Our objective is to propose a new comer of PaaS
which is independent of any API Cloud platform. To
do this, we have to resume our previous work on
micro-service containers. Service micro-containers
are scalable and come adress limitations of classi-
cal service containers in Cloud environments (Yangui
et al., 2011).

3 CLOUDSERV: A PaaS FOR
SERVICE-BASED
APPLICATIONS

In this section, we firstly explain briefly our previous
works on scalable service micro-containers. Then, we
present our PaaS called CloudServ. We describe sev-
eral deployment scenarios using CloudServ. We first
treat the case of simple construction and deployment
of an elementary service before moving to the case of
deploying a service-based applications.

3.1 Previous Work

As a part of our work, we defined a new approach for
service-based application deployment and execution
on the Cloud. We designed a newcomer of service
containers which can be scalable (Mohamed et al.,
2011). We got the idea to create a service micro-
container that is able to contain not more than one
service. This micro-container provides the minimal
functionalities to manage the life cycle of the de-
ployed service. With this idea we have shown that we
used the minimal resources to encourage the pay as-
you-go model of Cloud Computing (Grossman, 2009)
and we could enforce the elasticity of Cloud because
we use just the resources needed. We have also con-
ducted conclusive experiments against classical ser-
vice containers (like Apache Axis2) to validate the
reliability and scalability on micro-containers (Yan-
gui et al., 2011).

Since we consider several types of services (lan-
guages, bindings, etc.), we are able to generate the
correspondent micro-container for each service to be
deployed. Micro-containers are built dynamically
from the deployment framework that we have realized
as part of our work (Yangui et al., 2011).

As shown in (Figure 1) , each service micro-
container consists of three modules: (1) Communica-
tion module to establish communication and to sup-
port connection protocols, (2)Processing module to
process ingoing and outgoing data into and out of the
server (packing and unpacking data) and (3)Service
module to store and invoke the requested service.

In the following subsection, we show how micro-
containers are generated and deployed in order to de-
ploy elementary services on ClouServ. In subsection
3.3, we show how CloudServ support service-based
application deployment from deploying a set of ele-
mentary service compositions.

3.2 Elementary Service Deployment

Figure 1 presents our deployment framework. To de-

PaaS�ELEMENTS�FOR�HOSTING�SERVICE-BASED�APPLICATIONS

477



ploy an application in a micro-container, one must
mainly provide for the deployment framework two
elements: the application with all its components
(code, resources, etc.) and a deployment descriptor
that specifies the container options to run the applica-
tion (Figure 2, action 1). Processing module analyzes
then the sources, detects the service bindings types
and associate to the service sources a communication
module implementing these bindings and a process-
ing module to run the service. The resulting code rep-
resents the generated micro-container code. It is com-
posed only of the necessary modules for the deployed
service, no more, no less (Yangui et al., 2011). The
framework generates then a micro-container which
hosts the service and implements its bindings regard-
less of its communication protocol support as long as
they are included in Generic communication package
(Figure 2, action 2).

Figure 1: Global architecture of the performed system.

Henceforth we can proceed to the deployment
task. We deploy the obtained micro-container in one
of the created platform VMs (Figure 2, action 3). Af-
ter that, we can invoke it using a client from the SaaS
layer (Figure 2, action 4) or even from another de-
ployed micro-container on CloudServ (Figure2, ac-
tion 5).

Once deployed, the service is completely au-
tonomous. If it is invoked via its micro-container,
it runs locally and returns the execution result to the
requester before processing any other requests. The
Cloud platform we used is very simple. It consists
of a set of VMs created using OpenNebula from IaaS
layer resources as described in Figure 2.

3.3 Application Deployment

For service-based applications deployment on Cloud-
Serv, we proceed by decomposing the application into

Figure 2: Deployment steps of an elementary service on the
platform.

a set of elementary services. More explicitly, for
each application deployment request, we try to divide
it into multiple elementary services deployment re-
quests. We consider two specification of service com-
position: Service Component Architecture (SCA)
(SCA, 2011) and Business Process Execution Lan-
guage (BPEL) (Juric, 2006). BPEL consumes only
SOAP-based service orchestrations (Weaver, 2005).
Besides, SCA supports heterogeneous protocols re-
covering several binding component implementation.
In this paper, we treat the case of SCA. BPEL treat-
ment can be easily deduced from our proposal.

Defining an orchestration between such compo-
nents, which have different implementations and vari-
ous bindings types, makes deployment task very con-
sistent and complicated in a Cloud platform due to
the difficulty to satisfy all the compatibility and porta-
bility constraints on the platforms mentioned later.
Overall, the developer has to provide to the deploy-
ment framework the composite which describes an
orchestration scenario. It should be noted that the
developer can provide only the services that are not
already deployed on the platform; it can make a sim-
ple reference to the elementary deployed (processed
in subsection 3.2) services in the composite.

We performed a new component called SCA
parser and we integrated it into the deployment frame-
work (Figure 3). This component is responsible for
parsing the composite provided by developer with the
service-based application at the submission of the de-
ployment request (Figure 3, action 1). Deployment
framework generates correspondent micro-containers
taking into account the orchestration scenario and ser-
vice binding types interacting between these compo-
nents (Figure 3, action 2). Thus, once the micro-
containers deployed on the VMs platform, they can

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

478



Figure 3: Deployment steps for service-based application.

participate in a composition scenario to achieve func-
tionality of a service-based application (Figure 3, ac-
tions 4 and 5). Specifically, each micro-container re-
trieves a set of inputs needed to the execution of its
service from the preceding in the global execution
process of a service-based application, runs locally,
and sent to its successor a set of references for its ex-
ecution.

4 CONCLUSIONS

In this paper, we highlighted portability and com-
patibility constraints imposed by classical Cloud
providers and platforms making development and de-
ployment tasks difficult and delicate for users. We
have proposed a new prototype of platform as a
service (PaaS) that tackles these drawbacks called
CloudServ. CloudServ is based on reuse of the scal-
able service micro-containers introduced as a part
of our previous work. Only necessary resources to
implement service binding types, such as communi-
cation protocols, are selected from the deployment
framework of the system and encapsulated in the gen-
erated micro-container to host the deployed service.
We also presented and described several CloudServe
use cases for deployment of service-based applica-
tion. In the near future, we plan to deepen our exper-
iments of CloudServ versus several Cloud platforms
with various scenarios to validate it.

REFERENCES

Amazon (2011). Amazon web services. http://
aws.amazon.com/fr/.

CloudBees (2011). Cloudbees. http://www.cloudbees.com/.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simpli-
fied data processing on large clusters. InSixth Sym-
posium on Operating System Design and Implementa-
tion, OSDI’04, San Francisco, USA.

Engine, G. A. (2011). Google app engine. http://
code.google.com/appengine.

Force, D. (2011). Salesforce.com and force.com developer
resources. http://developer.force.com/.

Foster, I., ans I. Raicuand, Y. Z., and Lu, S. (2008). Cloud
computing and grid computing 360-degree compared.
In The IEEE Grid Computing Environments, GCE’08,
Austin, USA.

GoGrid (2011). Gogrid. http://www.gogrid.com.
Grossman, R. (2009). The case for cloud computing.IT

Professional, 11 Issue:2:23–27.
Heroku (2011). Heroku platform. http://www.heroku.com/.
Juric, M. B. (2006).Business Process Execution Language

for Web Services BPEL and BPEL4WS 2nd Edition.
ISBN:1904811817.

Microsoft (2011). Microsoft azure. http://
www.microsoft.com/azure/default.mspx.

Mohamed, M., Yangui, S., Moalla, S., and Tata, S. (2011).
Service micro-container for service-based applica-
tions in cloud environments. InIEEE WETICE, Paris,
France.

OpenShift (2011). Red hat openshift. https://
openshift.redhat.com/app/.

Plugin, G. C. (2011). Grails cloudbees plugin. http://
grails.org/plugin/cloud-bees.

Rimal, B., E.Choi, and Lumb, I. (2009). A taxonomy and
survey of cloud computing systems. InIn the fifth In-
ternational Joint Conference on INC, IMS and IDC.

SCA (2011). Sca specifications. http://www.ibm.com/
developerworks/library/specification/ws-sca/.

Sun (2011). The sun cloud api. http://kenai.com/projects/
sunCloudapis.

Varia, J. (2011). Amazon white paper on cloud archi-
tectures. http://aws.typepad.com/aws/2008/07/white-
paper-on.html.

Weaver, R. (2005). The business value of the service
component architecture (sca) and service data objects
(sdo). InIBM whitepape.

Xebia (2011). Xebialabs deployement lifecycle man-
agement. http://blog.xebia.fr/2011/04/13/lancement-
du- projet-platform- as-a- service-cloud- foundry-de-
spring-source/.

Yangui, S., Mohamed, M., Tata, S., and Moalla, S. (2011).
Scalable service containers. InIEEE International
Conference on Cloud Computing Technology and Sci-
ence, (IEEE CloudCom 2011), Athenes, Greece.

Zahariev, A. (2009). Google app engine.TKK T-110.5190
Seminar on Internetworking.

PaaS�ELEMENTS�FOR�HOSTING�SERVICE-BASED�APPLICATIONS

479


