
EXPLORING NON-TYPICAL MEMCACHE ARCHITECTURES FOR
DECREASED LATENCY AND DISTRIBUTED NETWORK USAGE

Paul G. Talaga and Steve J. Chapin
Syracuse University, Syracuse, NY, U.S.A.

Keywords: Memcache, Latency, Network Utilization, Caching, Web-farm.

Abstract: Memcache is a distributed in-memory data store designed to reduce database load for web applications by
caching frequently used data across multiple machines. In a distributed web serving environment applications
rely on many network services to complete each request. While faster processors have lowered computation
time and available network bandwidth has increased, signal propagation delay is a constant and will become
a larger proportion of latency in the future. We explore how data-locality with Memcache can be exploited to
reduce latency and minimize core network traffic. A model is developed to predict how alternate Memcache
configurations would perform for specific applications followed by an evaluation using the MediaWiki open-
source web application in a miniature web farm setting. Our results verified our model and we observed a
66% reduction in core network traffic and a 23% reduction in Memcache response time under certain network
conditions.

1 INTRODUCTION

Originally developed at Danga Interactive for Live-
Journal, the Memcache system is designed to reduce
database load and speed page construction by pro-
viding a scalable key/value caching layer available to
all web servers. The system consists of Memcache
servers (memcached instances) for data storage, and
client libraries which provide a storage API to the web
application over a network or local file socket connec-
tion. No durability guarantees are made, thus Mem-
cache is best used to cache regenerable content. Data
is stored and retrieved via keys, that uniquely deter-
mines the storage location of the data via a hash func-
tion over the server list. High scalability and speed
are achieved with this scheme as a key’s location
(data location) can easily be computed locally. Com-
plex hashing functions allow addition and removal of
Memcache servers without severely affecting the lo-
cation of the already stored data.

As web farms and cloud services grow and use
faster processors, the relative delay from network ac-
cess will increase as signal propagation is physically
limited. Developing methods for measuring and ad-
dressing network latencies is necessary to continue to
provide rich web experiences with fast, low latency
interactions.

As an example, consider a webserver and a Mem-
cache server on opposite ends of a datacenter the

size of a football field. The speed of light limits the
fastest round-trip time in fiber to about 1µs. Current
network hardware claim a round-trip time (RTT) for
this situation between 22µs and 3.7ms(RuggedCom,
2011), more than an order of magnitude slower than
the physical minimum. Assuming Memcache is using
TCP with optimal ACKs or UDP, 100 Memcache re-
quests would take between 2.2ms and 370ms, ignor-
ing all processing time. Compare this to the 200ms
recommended page response time for web content
and Memcache latency becomes significant in some
situations. This is backed by multiple measurements
of latencies in both Google App Engine and Amazon
EC2 showing between 300µs and 2ms RTT between
two instances(Newman, 2011; Cloudkick, 2011).

Related to latency is network load. More net-
work utilization will translate into more latency, lead-
ing to costly network hardware to keep utilization
low.(RuggedCom, 2011). Reducing network load, es-
pecially the highly utilized links, will keep latency
low.

This work explores how data locality can be ex-
ploited to benefit Memcache to reduce latency and
core network utilization. While modern LAN net-
works in a data center environment allow easy and
fast transmission, locating the data close to where it is
used can lower latency and distribute network usage
resulting in better system performance(Voldemort,
2011). When looking at inter-datacenter communi-

36 Talaga P. and Chapin S..
EXPLORING NON-TYPICAL MEMCACHE ARCHITECTURES FOR DECREASED LATENCY AND DISTRIBUTED NETWORK USAGE.
DOI: 10.5220/0003933200360046
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 36-46
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

cation latency becomes even more pronounced.
We present five architecture variants, two novel

to this area based on prior multi-processor caching
schemes, two natural extensions, and the last the typ-
ical Memcache architecture. In addition to showing
performance for a single application and hardware
configuration, we develop a network and usage model
able to predict the performance of all variants under
different configurations. This allows mathematical
derivation of best and worst case situations, as well
as the ability to predict performance.

Our contributions are outlined below:

1. Develop a model for predicting web caching per-
formance

2. Present a tool for gathering detailed Memcache
usage statistics

3. Reformulate two multi-CPU caching methods
into the web-caching area and compare them to
three other typical architectures

4. Evaluate MediaWiki performance under various
Memcache architectures

The rest of the paper consists of: Section 2 reviews
background material, such as Memcache operation,
assumed web farm network topology, and a defini-
tion of constants we use to characterize a web appli-
cation. Next, Section 3 describes our developed tool
for logging and analyzing Memcache’s performance
which is used to build an application’s usage profile.
Section 4 describes the five Memcache architectures
along with estimation formula for network usage and
storage efficiency. Section 5 analyzes the five archi-
tectures with respect to latency, with analysis of best
and worst case scenarios. Our experimental results
are shown in Section 6 in which we show how well
our model and estimation formula match actual per-
formance.A discussion of relevant issues is given in
Section 7, followed by related work in Section 8, and
our conclusion in Section 9.

2 BACKGROUND

2.1 Memcache

As previously mentioned, Memcache is built using a
client-server architecture. Clients, in the form of an
instance of a web application, set or request data from
a Memcache server. A Memcache server consists of
a daemon listening on a network interface for TCP
client connections, UDP messages, or alternatively
through a file socket. Daemons do not communi-
cate with each other, but rather perform the requested

Memcache commands from a client. An expiration
time can be set to remove stale data. If the allocated
memory is consumed, data is generally evicted in a
least-recently-used manner. For speed, data is only
stored in memory (RAM) rather than permanent me-
dia.

The location of a Memcache daemon can vary.
For small deployments a single daemon may exist on
the webserver itself. Larger multi-webserver deploy-
ments generally use dedicated machines to run mul-
tiple Memcache daemons configured for optimal per-
formance (large RAM, slow processor, small disk).
This facilitates management and allows webservers to
use as much memory as possible for web script pro-
cessing.

Clients access data via a library API. As of Mem-
cached version 1.4.13 (2/2/2012), 16 commands are
supported, categorized into storage, retrieval, and sta-
tus commands. Various APIs written in many lan-
guages communicate via these commands, but not all
support every command.

Below is an example of a PHP snippet which uses
two of the most popular commands, set and get to
quickly return the number of users and retrieve the
last login time.

function get_num_users(){

$num = memcached_get("num_users");

if($num === FALSE){

$num = get_num_users_from_database();

memcached_set("num_users", $num, 60);

}

return $num;

}

function last_login($user_id){

$date = memcached_get(’last_login’ . $user_id);

if($date === FALSE){

$date = get_last_login($user_id);

memcached_set(’last_login’ . $user_id, $date, 0);

}

return $date;

}

Rather than query the database on every function
call, these functions cache the result in Memcache. In
get_num_users, a cache timeout is set for 60 seconds
which causes the cached value to be invalidated 60
seconds after the set, causing a subsequent database
query. Thus, at most once a minute the database
would be queried, with the function returning a num-
ber at most a minute stale. To cache session informa-
tion, the last_login function stores the time of last
login by including the $user_id in the key. On logout
(or timeout) another function clears the cached data.
During an active session the last_login function
will only access data the current session stored and
will be of no use to other users. Thus, if sticky load
balancing (requests from the same session are routed

EXPLORING�NON-TYPICAL�MEMCACHE�ARCHITECTURES�FOR�DECREASED�LATENCY�AND�DISTRIBUTED
NETWORK�USAGE

37

to the same server or rack) is used the data could
be stored locally to speed access and reduce central
network load. Alternatively, as in get_num_users,
some data may be used by all clients. Rather than
each webserver requesting commonly used data over
the network, it may make sense for a local copy to
be stored, avoiding the need for repeated network ac-
cess. Caching data locally, when possible, is the basis
for the proposed architectures.

2.2 Assumed Network Topology

Network topology greatly influences the performance
of any large interconnected system. We assume a net-
work topology consisting of multiple web, database,
and Memcache servers organized into a physical hier-
archical star topology.

Web servers, running application code, are
grouped into racks. These can either be physical racks
of machines, separate webserver threads in a single
machine, or an entire data center. Instances within the
same rack can communicate quickly over at most two
network segments, or within the same machine. The
choice of what a rack describes depends on the over-
all size of the web farm. Whatever the granularity,
communication is faster intra-rack than inter-rack.

Racks are connected through a backbone link.
Thus, for one webserver in a rack to talk to another
in a different rack at least 4 network segments con-
nected with 3 switches must be traversed.

To generalize the different possible configura-
tions, we assume network latency is linearly related
to the switch count a signal must travel through, or
any other devices connecting segments. Thus, in our
rack topology the estimated RTT from one rack to an-
other is l3 because three switches are traversed, where
l3 = 3 � 2 � switch+ base for some switch and base
delay values.

Similarly l2 represents a request traversing 2
switches, such as from a rack to a node on the back-
bone and back. l1 represents traversing a single
switch, but we’ll use the term llocal to represent this
closest possible network distance. In some cases we’ll
use llocalhost to represent l0, where no physical network
layer is reached. This metric differs from hop count
as we count every device a packet must pass through,
rather than only counting routers.

2.3 Network & System Constants

We define a set of variables and constants which de-
fine a particular instance of an application. This in-
cludes datacenter size, switch performance, Mem-
cache usage statistics, and application use parameters.

Set Hit Set Miss Add Hit Add Miss
Replace Hit Replace Miss Delete Hit Delete Miss
Increment Hit Increment Miss Decrement Hit Decrement Miss
Get Hit Get Miss App/Prepend Hit App/Prepend Miss
CAS11 CAS21 CAS31 Flush

Figure 1: 20 monitored Memcache commands.

To simplify our model we assume the following
traits:

1. Linear Network Latency - Network latency
is linearly related to network device traversal
count.(RuggedCom, 2011)

2. Sticky Sessions - A web request in the same ses-
sion can be routed to a specific rack or webserver.

llocalhost�Average RTT to localhost’s memcached (ms) (l0)

llocal�Average RTT to a nearby node through one device (ms) (l1)

ln�Average RTT traversing n devices (round-trip) (ms)

where ln < lm j n < m

r�Number of racks

k�Replication value

ps�Proportion of session specific keys on a page [0�1]

rwcmd �Percent of commands which are reads [0-1]

rwnet �Percent of network traffic which are reads [0-1]

switch�Delay per switch traversed (ms)

base�Constant OS and Memcache processing overhead (ms)

sizeob ject �Average size of typical on-wire object (bytes)

sizemessage�Size of message used in Snoop and Dir (bytes)

The ps value is central to our approaches. It gives
a measure of how many Memcache requests are for
data pertinent only to that session per returned page.
If only session information is stored in Memcache
a ps value of 1 would be the result for the applica-
tion. If half the keys are for session and half not,
then ps = 0:5. For example if an application used
the above get_num_users() and last_login($id)
once per page then for 100 user sessions Memcache
would store 101 data items, of which 100 are session
specific. In our page oriented view of ps only half the
Memcache requests per page could take advantage of
locality caching, thus producing a ps value of 0.5.

For a more detailed application model we define
a usage scenario as the above values plus the rela-
tive frequency of Memcache commands an applica-
tion uses. Some commands are further broken down
into a hit or miss as these may incur different latency
costs. Figure 1 lists the 20 different request types.

3 MEMCACHETACH

Predicting Memcache usage is not easy. User de-
mand, network usage and design all can influence the

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

38

switch (ms) 0.11 ps 0.56
base (ms) 4.4 rwcmd 0.51

Avg. data size (Kbytes) 3.3 Mem. requests per page 16.7
Avg. net size (bytes) 869

Set hit 24% Set miss 0%
Add miss 0% Replace hit 0%

Replace miss 0% CAS1 0%
CAS2 0% CAS3 0%

Delete hit 2% Delete miss 0%
Inc hit 0% Inc miss 21%

Dec hit 0% Dec miss 0%
App/Prepend hit 0% App/Prepend miss 0%

Flush 0% Get hit 44%
Add hit 0% Get miss 7%

Figure 2: MediaWiki usage values (full caching).

performance of a Memcache system. Instrumentation
of a running system is therefore needed. The Mem-
cache server itself is capable of returning the keys
stored, number of total hits, misses, and their sizes.
Unfortunately this is not enough information to an-
swer important questions: What keys are used the
most/least? How many clients use the same keys?
How many Memcache requests belong to a single
HTTP request? How much time is spent waiting for a
Memcache request?

To answer these and other questions we developed
MemcacheTach, a Memcache client wrapper which
intercepts and logs all requests. While currently an-
alyzed after-the-fact, the log data could be streamed
and analyzed live to give insight into Memcache’s
performance and allow live tuning. Analysis provides
values for ln, ps, rwcmd , rwnet , switch, base, sizeob ject ,
plus the ratio of the 20 Memcache request types, as
well as other useful information about a set of Mem-
cache requests. Figure 2 shows the measured values
for MediaWiki from a single run in our mock datacen-
ter with full caching enabled of 100 users requesting
96 pages each. See Section 6 for further run details.

The average page used 16.7 Memcache requests,
waited 46ms for Memcache requests, and took
1067ms to render a complete page.

56% of keys used per page were used by a single
webserver, showing good use of session storage, and
thus a good candidate for location aware caching.

As implemented, MemcacheTech is written in
PHP, not compiled as a module, and writes uncom-
pressed log data. Thus, performance could improve
with further development. Additionally, every Mem-
cache request issues a logfile write for reliability. Two
performance values are given in Figure 3. O f f did
not use MemcacheTech, while Logging saved data on

1CAS - Compare-and-Swap
CAS1 = Key exists, correct CAS value.
CAS2 = Key exists, wrong CAS value.
CAS3 = Key does not exist.

State Avg page generation time (ms) std.dev samples (pages)
Off 1067 926 13,800

Logging 1103 876 13,800

Figure 3: MemcacheTach overhead.

each Memcache call. See Section 6 for implementa-
tion details. On average MemcacheTech had a statis-
tical significant overhead of 36ms.

MemcacheTach is available at http://
fuzzpault.com/memcache.

4 MEMCACHE
ARCHITECTURES

Here we describe and compare Memcache architec-
tures currently in use, two natural extensions, and our
two proposed versions. All configurations are im-
plemented on the client via wrappers around exist-
ing Memcache clients, thus requiring no change to the
Memcache server.

Estimation formula for network usage of the cen-
tral switch and space efficiency are given using the
variables defined in Section 2.3. An in-depth discus-
sion of latency is given in Section 5.

4.1 Standard Deployment Central -
SDC

The typical deployment consists of a dedicated set
of memcached servers existing on the backbone (l2).
Thus, all Memcache requests must traverse to the
Memcache server(s) typically over multiple network
devices. Data is stored in one location, not replicated.

This forms the standard for network usage as all
information passes through the central switch:

Network Usage: 100%

All available Memcache space is used for object
storage:

Space Efficiency: 100%

4.2 Standard Deployment Spread - SDS

This deployment places Memcache servers in each
webserver rack. Thus, some portion of data (1=r)
exists close to each webserver (l1), while the rest is
farther away (l3). Remember that the key dictates
the storage location, which could be in any rack, not
the local. This architecture requires no code changes
compared to SDC, but rather a change in Memcache
server placement.

With some portion of the data local, the central

EXPLORING�NON-TYPICAL�MEMCACHE�ARCHITECTURES�FOR�DECREASED�LATENCY�AND�DISTRIBUTED
NETWORK�USAGE

39

switch will experience less traffic:

Network Usage: r�1
r %

All available space is used for object storage:

Space Efficiency: 100%

4.3 Standard Deployment Replicated -
SDR

To add durability to data, we store k copies of the data
on different Memcache daemons, preferably on a dif-
ferent machine or rack. While solutions do exist to
duplicate the server (repcached(KLab, 2011)), we du-
plicate on the client and use locality to read from the
closest resource possible. This can be implemented
either through multiple storage pools or, in our case,
modifying the key in a known way to choose a dif-
ferent server or rack. A write must be applied to all
replicas, but a read contacts the closest replica first,
reducing latency and core network load.

Reading locally can lower central switch usage
over pure duplication:

Network Usage: rwnet � (1� k
r)+(1� rwnet)� (k� k

r)%

The replication value lowers space efficiency:

Space Efficiency: 1=k%

4.4 Snooping Inspired - Snoop

Based on multi-CPU cache snooping ideas, this archi-
tecture places Memcache server(s) in each rack allow-
ing fast local reads(Hennessy and Patterson, 2006; Li
and Hudak, 1989). Writes are local as well, but a data
location note is sent to all other racks under the same
key. Thus, all racks contain all keys, but data is stored
only in the rack where it was written last. This scheme
is analogous to a local-write protocol using forward-
ing pointers(Tanenbaum and Steen, 2001). An update
overwrites all notes and data with the same key. To
avoid race conditions deleting data, notes are stored
first in parallel, followed by the actual data. Thus, in
the worst case multiple copies could exist, rather than
none. A retrieval request first tries the local server,
either finding the data, a note, or nothing. If a note
is found the remote rack is queried and the data re-
turned. If nothing is found then the data does not ex-
ist.

The broadcast nature of a set could be more effi-
ciently sent if UDP was used with network broadcast
or multicast. Shared memory systems have investi-
gated using a broadcast medium, though none in the
web arena(Tanenbaum et al., 1994).

Based on the metric ps, the proportion of keys
used during one HTTP request which are session spe-
cific, and the message size sizemessage, we have the
following estimation for central switch traffic:

Network Usage: rwnet � (1� ps)+ (1�rwnet)�sizemessage�r
sizeob ject

%

Storage efficiency depends on the size of the mes-
sages compared to the average object size:

Space Efficiency: sizeob ject
sizemessage�(r�1)+sizeob ject

%

4.5 Directory Inspired - Dir

An alternate multi-CPU caching system uses a central
directory to store location information(Hennessy and
Patterson, 2006; Li and Hudak, 1989). In our case, a
central Memcache cluster is used to store sharing in-
formation. Each rack has its own Memcache server(s)
allowing local writes, but reads may require retrieval
from a distant rack. A retrieval request will try the
local server first, and on failure query the directory
and subsequent retrieval from the remote rack. A stor-
age request first checks the directory for information,
clears the remote data if found, writes locally, and fi-
nally sends a note to the directory.

Rather than many notes being sent per write as
with Snoop, Dir is able to operate with two requests,
one to retrieve the current note, and the second to set
the new one, no matter how many racks are used. This
allows Dir to stress the central switch the least.

Network Usage: rwnet � (1 � ps) � sizemessage+sizeob ject
sizeob ject

+

(1�rwnet)�sizemessage�2
sizeob ject

%

Likewise with Snoop, message size dictates stor-
age efficiency:

Space Efficiency: rwnet � (1� ps)� sizemessage+sizeob ject
sizeob ject

+

(1�rwnet)�sizemessage�3
sizeob ject

%

5 LATENCY ESTIMATION

We evaluate the above architecture options by esti-
mating latency over each Memcache command using
variables defined in Section 2.3. We use individual
Memcache commands divided into a hit or miss for a
more accurate latency estimation as covered in Sec-
tion 2.3.

Formulas were derived which predict the es-
timated latency for each of the 20 request types
over all architectures assuming the star network
model and environment variables. All 85 for-
mula are viewable with detailed descriptions at

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

40

http://fuzzpault.com/memcache.
As an example, the set command would have a la-

tency of l2 under SDC, while using SDS a set would
be 1

r � llocal +
r�1

r � l3 because some portion of the
keys would be local. SDR would take l3 because mul-
tiple sets can be issued simultaneously. Snoop would
need llocal + l3 with the data being sent to the local
and messages sent to all other racks.

Dir requires a round trip to the directory to learn
about other racks which may already contain the same
key. Thus the formula for a set using Dir is more
complex: 2� l2 + ps� llocal +(1� ps)l3 + llocal

Using a set of variables, here from a run of Medi-
aWiki(mediawiki, 2011), we can vary parameters to
gain an understanding of the performance space un-
der different environments.

We first look at how network switch speed can ef-
fect performance. Remember we assumed the num-
ber of devices linearly relates to network latency, so
we vary the single device speed between 12:7µs and
1:85ms, with an additional 4:4ms OS delay, in the Fig-
ure 4 plots (at end of document). Latency measures
round trip time, so our X axis varies from 0.025ms to
3.7ms. Three plots are shown with ps values of 10%,
50%, and 90% with weightings derived from our Me-
diaWiki profile.

As seen in Figure 4, ps compresses the plots ver-
tically, showing improved performance for location-
aware schemes using higher ps values. When ps=0.9
and a switch latency of 0.3ms SDS and Snoop are
equivalent, with Snoop preforming better as switch
latency increases further.

Next we take a closer look at how ps changes re-
sponse time in Figure 5 using a fixed switch latency
of 1:0ms and our MediaWiki usage profile.

Predictably all 3 location-averse schemes (SDC,
SDS, and SDR) exhibit no change in performance
as ps increases. As ps increases Snoop and Dir im-
prove with Snoop eventually overtaking SDC when
ps=0.86.

So far we’ve analyzed performance using Medi-
aWiki’s usage profile. Now we look at the more gen-
eral case where we split the 20 possible commands
into two types: read and write, where read consists of
a get request hit or miss, and write is any command
which changes data. MediaWiki had 51% reads when
fully caching, or about one read per write. Figure 6
varies the read/write ratio while looking at three ps
values.

With high read/write ratios Snoop is able to out-
perform SDC, here when switch=1.0ms at rw = 0:75.

These plots show when ps is near one and slow
switches are used, Snoop is able to outperform all
other configurations. In some situations, like session

storage (ps = 1) across a large or heavily loaded dat-
acenter, Snoop may make larger gains. From an esti-
mated latency standpoint Dir does not preform well,
though as we’ll see in the next section its low network
usage can overcome this.

6 EXPERIMENTAL RESULTS

To validate our model and performance estimation
formula, we implemented our alternate Memcache
schemes and ran a real-world web application, Medi-
aWiki(mediawiki, 2011), with real hardware and sim-
ulated user traffic. Three MediaWiki configurations
were used:

1. Full - All caching options were enabled and set to
use Memcache.

2. Limited - Message and Parser caches were dis-
abled, with all other caches using Memcache.

3. Session - Only session data was stored in Mem-
cache.

The simulated traffic consisted of 100 users regis-
tering for an account, creating 20 pages each with text
and links to other pages, browsing 20 random pages
on the site, and finally logging out. Traffic was gen-
erated with jMeter 2.5 generating 9600 pages per run.
The page request rate was tuned to stress Memcache
the most, keeping all webservers busy, resulting in
less-than optimal average page generation times. A
run consisted of a specific MediaWiki configuration
with a Memcache configuration.

The mock datacenter serving the content consisted
of 23 Dell Poweredge 350 servers running CentOS
5.3, Apache 2.2.3 with PHP 5.3, APC 3.1, PECL
Memcache 3.0, 800MHz processors, 1GB RAM, par-
titioned into 4 racks of 5 servers each. The remaining
3 servers were used for running the HAProxy load
balancer, acting as a central Memcache server, and a
MySQL server respectively. Four servers in each rack
produced web pages, with the remaining acting as the
rack’s Memcache server.

To measure Memcache network traffic accurately
the secondary network card in each server was placed
in separate subnet for Memcache traffic only. This
subnet was joined by one FastEthernet switch per
rack, with each rack connected to a managed FastEth-
ernet (10/100 Mb/s) central switch. Thus, we could
measure intra-rack Memcache traffic using SNMP
isolated from all other traffic. To explore how our
configurations behaved under a more utilized network
we reran all experiments with the central switch set to
Ethernet (10 Mb/s) speed for Memcache traffic.

EXPLORING�NON-TYPICAL�MEMCACHE�ARCHITECTURES�FOR�DECREASED�LATENCY�AND�DISTRIBUTED
NETWORK�USAGE

41

Figure 4: MediaWiki profile under different switch speeds and ps values.

Figure 5: MediaWiki profile under different ps values.

Figure 6: Varying read/write ratio and ps values.

Using MemcacheTach we measured MediaWiki
in all configurations with results presented in Figure
7. Only non-zero Memcache commands are listed for
brevity.

Parameter Full Limited Session
Set 24% 23% 50%

Delete hit 2% 3% 0%
Inc miss 22% 24% 0%

Get hit 44% 42% 50%
Get miss 8% 8% 0%

ps .56 .59 1
rwcmd .51 .49 .5
rwnet .61 .78 .54

Avg. net size (bytes) 870 973 301

Figure 7: MediaWiki usage for each configuration.

Switch (ms) Base (ms)
100Mb/s 1.0 1.5
10Mb/s 1.3 1.7

Figure 8: Measured network performance.

6.1 Latency

To predict latency we require two measurements of
network performance, switch & base. These were
found using a SDS run and calculating the relative
time difference between Memcache commands in-
rack (llocal) and a neighboring rack (l3). Results are
given in Figure 8. Additional statistics available at
http://fuzzpault.com/memcache.

The resulting predicted and observed per Mem-
cache command latences are given in Figure 9.

In the case of fast switching SDC was the best pre-
dicted and observed performer. The location-aware

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

42

Predicted Latency (ms) Observed Latency (ms)
Scheme Full Limited Session Full Limited Session

100Mb/s Central Switch
SDC 3.5 3.5 3.5 3.5 3.9 3.2
SDS 4.1 4.1 4.1 3.8 4.1 3.6

Dir 7.1 7.0 7.2 5.5 5.8 5.8
Snoop 3.9 3.8 3.5 6.1 6.6 7.3

Dup 5.5 5.7 4.1 5.1 5.4 5.3
10Mb/s Central Switch

SDC 4.3 4.3 4.3 12.1 13.9 3.5
SDS 5.0 5.0 5.0 20.1 20.6 4.6

Dir 6.5 6.6 8.8 9.3 9.9 6.3
Snoop 3.6 3.7 4.3 15.6 17.0 10.9

Dup 6.9 7.1 5.0 35.6 29.5 9.2

Figure 9: Expected and measured Memcache latency.

schemes, Dir and Snoop, both don’t fit the expected
values as close as the others. The base and switch val-
ues used to build the predicted latency were based on
carrying full data messages whereas Dir and Snoop
both used smaller messages which would take less
time on average. Snoop’s multi-set note sending may
not be truly parallel showing a higher than expected
latency.

When the central switch was slowed to 10Mb/s
utilization increased and latency also increased. Here
we see that Dir was able to outperform SDC in the
Full and Limited caching cases due to the lower cen-
tral switch utilization, as we’ll see in the next section.
Snoop still performed worse than expected, though
still beating SDS and Dup in the Full caching case.

6.2 Network Load

Using the formula developed in Section 2.1 combined
with the MediaWiki usage data we can compute the
expected load on the central switch and compare it to
our measured values. We used a sizemessage value of
100 bytes, higher than the actual message to include
IP and TCP overhead. The comparison is given in
Figure 10.

Notice Dup’s low network usage even though data
is duplicated. This is a result of a location-aware strat-
egy that writes to different racks and reads from the
local rack if a duplicate is stored there. The low rack
count, 5 in our configuration, assures that almost half
the time data is local.

The actual central switch usage measurements
match well with the predicted values. Note the
location-aware rows. These show the largest skew
due to the small message size and therefore the higher
relative overhead of TCP/IP. This was validated by a
packet dump during SDC/Full and the SDC/Session
runs in which absolute bytes and Memcache bytes
were measured. For SDC/Full, with an average net-
work object size of 870 bytes, 86MB was transfered

Predicted Usage (%) Observed Usage (%)
Scheme Full Limited Session Full Limited Session

100Mb/s Central Switch
SDC 100 100 100 100 100 100
SDS 80 80 80 80 81 73

Dir 38 39 30 35 34 69
Snoop 49 43 76 45 48 116

Dup 99 81 105 101 87 106
10Mb/s Central Switch

SDC 100 100 100 100 100 100
SDS 80 80 80 83 82 81

Dir 38 39 30 37 35 71
Snoop 49 43 76 47 50 118

Dup 99 81 105 106 89 110

Figure 10: Expected and measured network load.

on the wire containing 61MB of Memcache com-
munication, roughly a 30% overhead. SDC/Session
transferred 9.8MB with 301 byte network objects,
yet it contained 5.7MB of Memcache communica-
tion giving an overhead of 41%. Additional traces
showed that for small messages, like the notes trans-
ferred for Dir and Snoop, 70% of the network bytes
were TCP/IP overhead. This is shown by the higher
than expected Session column when location-aware
was used due to the smaller average object size.
This shows that Memcache using TCP is not network
efficient for small objects, with our location-aware
schemes an excellent example of this. Future work
measuring network utilization for Memcache using
UDP would be a good next step, as has been inves-
tigated by Facebook(Saab, 2008).

If sizemessage was 50 bytes, which may be possible
using UDP, we should see Dir and Snoop use only
24% and 33% respectively as much as SDC on the
central switch. Using the binary protocol may reduce
message size further, showing less network usage.

6.3 Review

These results show that the model, application pro-
file, and performance estimation formula do provide
a good estimate for latency and network usage. While
the actual Memcache latency values did not show an
improvement over the typical configuration on our
full speed hardware, they did support our model. In
some cases, as shown by our slower network hard-
ware configuration as well as described in Section 5,
we’d expect locality-aware schemes to perform bet-
ter than the typical. High rack densities and modern
web-servers, even with modern network hardware,
may increase network utilization to a point similar
to our Ethernet speed runs and show increased la-
tency under high load. Location-aware configurations
lower core network utilization allowing more web and
Memcache servers to run on the existing network.

EXPLORING�NON-TYPICAL�MEMCACHE�ARCHITECTURES�FOR�DECREASED�LATENCY�AND�DISTRIBUTED
NETWORK�USAGE

43

Network usage proved difficult to predict due to ad-
ditional TCP/IP overhead, but nonetheless the experi-
mental data backed up the model with all architectures
reducing core traffic, and the best reducing it to 34%
of the typical SDC case.

7 DISCUSSION

7.1 Latency, Utilization, and
Distributed Load

Through this work we assumed network latency and
utilization are independent, but as we saw in the last
section they are closely related. A heavily utilized
shared-medium will experience higher latencies than
an underutilized one. Thus, SDC, SDS, and Dup’s
latency when used on the slow network were much
higher than predicted due to congestion. Unfortu-
nately predicting the saturation point would require
dozens of parameters such as link speeds, specific net-
work devices, server throughput, as well as an esti-
mation of other traffic on the network. At some point
simulation and estimation outweigh actual implemen-
tation and testing.

7.2 Multi-datacenter Case

Thus far we have assumed a Memcache installation
within the same datacenter with appropriate estimates
on latency. In general running a standard Memcache
cluster spanning datacenters is not recommended due
to high (relative) latencies and expensive bandwidth.
The location-agnostic architectures, SDC, SDS, and
partly SDR would not be good choices for this rea-
son. We can apply our same analysis to the multi-
datacenter situation by viewing the datacenter as a
rack, with a high l3 value for intra-datacenter latency.
SDC is no longer possible with its l2 latency, with
SDS taking its place as the typical off-the-shelf ar-
chitecture. If we assume a l3 value of 40ms, a best
case CA to NY latency, with l1 = 5ms inside the data-
center, we arrive at Figure 11 giving average latencies
between the different architectures over different ps
and read/write ratios. For Dir’s directory we assume
it spans both datacenters like SDS.

Here the difference between locality aware and
averse is more pronounced. Snoop and Dir are able
to outperform SDS when ps is above 0.5, especially
for high read/write ratios. SDR preforms poorly due
to consistency checks and multiple writes. Interest-
ingly as more datacenters are added SDS becomes
worse due to a higher proportion of data being far-

ther away while the location aware architectures can
keep it close when ps is high.

7.3 Selective Replication

Replication of a relational database can increase per-
formance by distributing reads. Unfortunately en-
tire tables must be replicated, possibly including sel-
dom used data. In a key/value system such as Mem-
cache replication can offer speed benefits as we saw
in SDR. We looked at the static case where all data
is replicated, but why not selectively replicate fre-
quently used data so we don’t waste space? Snoop
and Dir could be augmented to probabilistically copy
data locally. Thus, frequently used but infrequently
changed data would be replicated allowing fast lo-
cal reads. Unused Memcache memory is a waste, so
by changing the probability of replication on the fly
memory could be used more optimally. We intend to
investigate this in further work.

7.4 Object Expiration

In Memcache, if the allocated memory is consumed
objects are generally removed in a least-recently-used
manner. In a standard deployment this works well, but
in our case where meta information is separate from
data a possibility exists where meta expiration may
cause orphaned data. The new Memcache command
touch, which renews an object’s expiration time, can
be used to update the expiration of meta information
reducing the chance of orphaned data, though the pos-
sibility does still exist. In a best-effort system such
as Memcache such errors are allowed and should be
handled by the client.

7.5 Overflow

The location-agnostic configurations (SDC, SDS, and
SDR) all fill the available memory evenly over all
servers due to the hashing of keys. Location aware
configurations will not fill evenly, as is the case when
some racks set more than others. In this case the data
will be stored close to the sets, possibly overflow-
ing the local Memcache server while others remain
empty. Thus, it is important to evenly load all racks,
or employ some balancing system.

7.6 System Management

Managing a Memcache cluster requires providing all
clients a list of possible Memcache servers. Central
to our location-aware strategies is some method for
each Memcache client to prioritize Memcache servers

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

44

Figure 11: Varying read/write ratio and ps values with an East and West coast DC.

based on the number of network devices traversed.
This can be easy to compute automatically in some
cases. For example, in our configuration IP addresses
were assigned systematically per rack. Thus, a client
can calculate which Memcache servers were within
the same rack and which were farther away based
on its own IP address. Using this or similar method
would minimize the added management necessary to
implement a location-aware caching scheme.

8 RELATED WORK

Memcache is part of a larger key/value NoSQL data
movement which provides enhanced performance
over relational databases by relaxing ACID guaran-
tees. Scalability is achieved by using a hashing sys-
tem based on the key to uniquely locate an object’s
storage location. To achieve locale-aware caching we
must modify the typical key/location mapping sys-
tem. Here we discuss similar systems to Memcache
and concentrate on those which have some locality
component.

The Hadoop Distributed File System(Borthakur,
2011) is designed to manage distributed applications
over extremely large data sets while using commod-
ity hardware. They employ a rack-aware placement
policy able to place data replicas to improve data re-
liability, availability, and network bandwidth utiliza-
tion over random placement. Reads can read from a
close copy rather than a remote one. Additionally,
they identify bandwidth limitations between racks,
with intra-rack faster, supporting our architectures.
Their mantra of ”Moving Computation is Cheaper
than Moving Data” works for large data sets, but in
our web case where data is small this mantra does not
hold. File meta-data is stored and managed in a cen-
tral location similar to our Dir architecture.

Cassandra can use a rack and datacenter-aware
replication strategy(Bailey, 2011) for better reliability
and to read locally. This is convenient when multi-

ple datacenters are used so a read will never query a
remote data center. Voldemort uses a similar system
for replicas using zones(rsumbaly, 2011)(Voldemort,
2011). While the above three systems use some lo-
cality aware policy for replicas they all use a hashing
strategy for primary storage, thus possibly writing the
data far from where it will be used.

Microsoft’s AppFabric provides very similar ser-
vices to Memcache with object storage across
many computers using key/value lookup and storage
(Nithya Sampathkumar, 2009) in RAM. No mention
of key hashing is given to locate data, though they do
mention a routing table to locate data similar in prac-
tice to our Snoop architecture. No mention of how
this table is updated. Their routing table entries ref-
erence a specific cache instance, whereas our Snoop
note refers to a hash space, or rack, possibly contain-
ing thousands of Memcache instances, thereby giving
more storage space and flexibility. Durability can be
added by configuring backup nodes to replicate data,
though unlike our architectures all reads go to a single
node until it fails, unlike ours where any copy can be
read.

EHCACHE Terracotta is a cache system for Java,
containing a BigMemory module permitting serial-
izable objects to be stored in memory over many
servers. Java’s garbage collection (GC) can become
a bottleneck for large in-application caching, thus a
non-garbage collected self-managed cache system is
useful while ignoring typical Java GC issues. Essen-
tially BigMemory implements a key/value store us-
ing key hashing for Java objects similar to Memcache.
Additional configurations are possible.For example it
allows a read and write through mode, backed by
a durable key/value storage system, thereby remov-
ing all cache decisions from the application code.
Replication is done by default (2 copies) and config-
urable(Terracotta, 2011).

The HOC system is designed as a distributed
object caching system for Apache, specifically to
enable separate Apache processes to access others’

EXPLORING�NON-TYPICAL�MEMCACHE�ARCHITECTURES�FOR�DECREASED�LATENCY�AND�DISTRIBUTED
NETWORK�USAGE

45

caches(Aldinucci and Torquati, 2004). Of note is their
use of local caches to speed subsequent requests and
a broadcast-like remove function, similar to our SDS
with duplication.

9 CONCLUSIONS

We’ve seen that when a web application has a high
ps value, many reads per write, or slow a network, a
location-aware Memcache architecture can lower la-
tency and network usage without significantly reduc-
ing available space. The developed model showed
where gains could be made in latency or network us-
age for each Memcache configuration under specific
usage scenarios. Our tool, MemcacheTach, can be
used to measure a web application’s detailed Mem-
cache usage to estimate performance with other ar-
chitectures. Our example web application, Medi-
aWiki, showed that the implemented Memcache ar-
chitectures could reduce network traffic in our config-
uration by as much as 66%, and latency by 23%. As
web applications grow, and their user base becomes
more geographically diverse, the need for systems
which can keep latencies low for all users is needed.
Our proposed reformulation of multi-CPU cache sys-
tems for Memcache show better performance can be
gained within the web datacenter under certain cir-
cumstances, with further gains found for more geo-
graphically distributed data centers over current tech-
niques.

REFERENCES

Aldinucci, M. and Torquati, M. (2004). Accelerating
Apache Farms Through Ad-HOC Distributed Scalable
Object Repository, volume 3149 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg.

Bailey, N. (2011). Frontpage - cassandra wiki.
Borthakur, D. (2011). Hdfs architecture guide.
Cloudkick (2011). Visual evidence of amazon ec2 network

issues.
Hennessy, J. L. and Patterson, D. A. (2006). Computer Ar-

chitecture, Fourth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

KLab (2011). repcached - add data replication feature to
memcached.

Li, K. and Hudak, P. (1989). Memory coherence in shared
virtual memory systems. ACM Trans. Comput. Syst.,
7:321–359.

mediawiki (2011). Mediawiki.
Newman, S. (2011). Three latency anomalies.

Nithya Sampathkumar, Muralidhar Krishnaprasad, A. N.
(2009). Introduction to caching with windows server
appfabric.

rsumbaly (2011). Voldemort topology awareness capability.
RuggedCom (2011). Latency on a switched ethernet net-

work.
Saab, P. (2008). Scaling memcached at facebook.
Tanenbaum, A. S. and Steen, M. V. (2001). Distributed Sys-

tems: Principles and Paradigms. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition.

Tanenbaum, A. S., Tanenbaum, A. S., Kaashoek, M. F.,
Kaashoek, M. F., Bal, H. E., and Bal, H. E. (1994).
Using broadcasting to implement distributed shared
memory efficiently. In Readings in Distributed Com-
puting Systems, pages 387–408. IEEE Computer So-
ciety Press.

Terracotta (2011). Ehcache documentation cache-topo-
logies.

Voldemort, P. (2011). Project voldemort.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

46

