
WATERMARKING IMAGES USING 2D REPRESENTATIONS
OF SELF-INVERTING PERMUTATIONS

Maria Chroni, Angelos Fylakis and Stavros D. Nikolopoulos
Department of Computer Science, University of Ioannina, GR-45110 Ioannina, Greece

Keywords: Watermarking Techniques, Image Watermarking Systems, Intellectual Property Rights, Color Images,
Self-inverting Permutations, 2D-representations of Permutations, Encoding, Decoding, Algorithms.

Abstract: In this work we propose an efficient and easily implemented codec system, which we named WaterIMAGE,
for watermarking images that are intended for uploading on the web and making them public online. An
important fact of our system is that it suggests a way in which an integer number can be represented in a two
dimensional grid and, thus, since images are two dimensional objects that representation can be efficiently
marked on them. In particular, our system uses an efficient technique which is based on a 2D representation of
self-inverting permutations and mainly consists of two components: the first component contains an encoding
algorithm which encodes an integerw into a self-inverting permutationπ∗ and a decoding algorithm which
extracts the integerw from π∗, while the second component contains codec algorithms which are responsible
for embedding a watermark into an imageI, resulting the imageIw, and extract it fromIw. Our system
incorporates important properties which allow us to successfully extract the watermarkw from the imageIw

even if the input image has been compressed with a lossy method and/or rotated. All the system’s algorithms
have been developed and tested in JAVA programming environment.

1 INTRODUCTION

Internet technology, becomes day by day an indis-
pensable tool for everyday life since most people use
it on a regular basis and do many daily activities on-
line (Garfinkel, 2001). As a consequence, transferring
digital information via the Internet, such as audio, pic-
tures, video, or software, has also become very popu-
lar during the last years.This frequent use of internet
means that measures taken for internet security are
indispensable since the web is not risk-free. One of
those risks is the fact that the web is an environment
where intellectual property is under threat.And that’s
where watermarks come to place.

Watermarking. Watermarks are symbols which are
placed into physical objects such as documents, pho-
tos and bank notes and their purpose is to carry in-
formation about an object’s authenticity. In our case
the watermarks have digital form and they are embed-
ded into digital objects, this technique is called digital
watermarking.

The watermarking problem can be described as
the problem of embedding a watermarkw into an ob-
ject I and, thus, producing a new objectIw, such that
w can be reliably located and extracted fromIw even

after Iw has been subjected to transformations (Coll-
berg and Nagra, 2010); for example, compression in
case the object is an image.

Motivation. We believe that protecting intellectual
material on the web is one of the major issues con-
cerning the proper use of the internet. Digital images
are a very characteristic part of this material found
online and our target is to make people feel free to
upload their images without hesitating because of the
fear of their work being unauthorized used.

Watermarking is the ideal solution for protecting
your property of the images and keeping them visi-
ble to the public as well, so research towards imper-
ceptible secure and robust image watermarking tech-
niques is vital. As mentioned, there are already var-
ious methods that can achieve that, but every single
method requires attention and that’s because we can
not discriminate a specific method as the best. Every
case has its ideal solution and the same idea applies
for image watermarking.

Contribution. In this work we present an efficient
and easily implemented codec system, which we
namedWaterIMAGE, for watermarking images that
we are interested in uploading in the web and mak-

380 Chroni M., Fylakis A. and D. Nikolopoulos S..
WATERMARKING IMAGES USING 2D REPRESENTATIONS OF SELF-INVERTING PERMUTATIONS.
DOI: 10.5220/0003936003800385
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 380-385
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

ing them public online; this way web users are now
enabled to consider how to protect their own images.

2 BASIC TOOLS

In this section we present basic tools which are used
by our image watermarking system. In particular,
we first describe discrete structures, namely, permuta-
tions, self-inverting permutations, and bitonic permu-
tations, and then briefly outline a codec system (en-
coding/decoding algorithms) which encodes an inte-
gerw into a self-inverting permutationπ∗ and extracts
it from π∗. Finally, we propose a 2D representation of
permutations and give a 3D representation of color
images.

2.1 Self-inverting Permutations

Informally, a permutation of a set of objectsS is an
arrangement of those objects into a particular order,
while in a formal (mathematical) way a permutation
of a set of objectsS is defined as a bijection fromS
to itself (i.e., a mapS→ S for which every element of
S occurs exactly once as image value)(Sedgewick and
Flajolet, 1996; Golumbic, 1980).

Hereafter, we shall say thatπ∗ is a permutation
over the setN9.

Definition 2.1.1.Let π = (π1,π2, . . . ,πn) be a permu-
tation over the setNn, wheren > 1. The inverse of the
permutationπ is the permutationτ = (q1,q2, . . . ,qn)
with qπi = πqi = i. A self-inverting permutation (or,
for short, SIP) is a permutation that is its own inverse:
ππi = i.

By definition, every permutation has a unique in-
verse, and the inverse of the inverse is the original
permutation. Clearly, a permutation is a SIP (self-
inverting permutation) if and only if all its cycles are
of length 1 or 2; hereafter, we shall denote a 2-cycle as
c = (x,y) and an 1-cycle asc = (x), or, equivalently,
c = (x,x).

The permutationπ∗ = (5,6,9,8,1,2,7,4,3) is a
SIP with cycles:(1,5), (2,6), (3,9), (4,8), and(7,7).

2.2 Encoding Numbers as SIPs

Next, we present an algorithm for encoding an inte-
ger w into a self-inverting permutationπ∗ and an al-
gorithm for extractingw from π∗; both algorithms run
in O(n) time, wheren is the length of the binary rep-
resentation of the integerw (author’s algorithms). The
encoding process uses the notion ofBitonic Permuta-
tions which we briefly describe below.

Bitonic Permutations. The key-object in our algo-
rithm for encoding integers as self-inverting permu-
tations is the bitonic permutation: a permutationπ =
(π1,π2, . . . ,πn) over the setNn is called bitonic if ei-
ther monotonically increases and then monotonically
decreases, or else monotonically decreases and then
monotonically increases. For example, the permuta-
tionsπ1 =(1,4,6,7,5,3,2) andπ2 =(6,4,3,1,2,5,7)
are both bitonic.

Our encoding algorithm uses only bitonic permu-
tations that monotonically increase and then mono-
tonically decrease. Letπ be such a bitonic permuta-
tion over the setNn and letπi, πi+1 be the two con-
secutive elements ofπ such thatπi > πi+1. Then,
the sequenceX = (π1,π2, . . . ,πi) is called first in-
creasing subsequence ofπ and the sequenceY =
(πi+1,πi+2, . . . ,πn) is called first decreasing subse-
quence ofπ.

We next give some notations and terminology
we shall use throughout the encoding and decod-
ing process. Letw be an integer number. We de-
note byB = b1b2 · · ·bn the binary representation of
w. If B1 = b1b2 · · ·bn and B2 = d1d2 · · ·dm be two
binary numbers, then the numberB1||B2 is the bi-
nary numberb1b2 · · ·bnd1d2 · · ·dm. The binary se-
quence of the numberB = b1b2 · · ·bn is the sequence
B∗ = (b1,b2, . . . ,bn) of lengthn.

Let B = b1b2 · · ·bn be a binary number. Then,
f lip(B) = b′1b′2 · · ·b

′
n is the binary number such that

b′i = 0 (1 resp.) if and only ifbi = 1 (0 resp.),
1≤ i≤ n.

Algorithm W-to-SIP: We briefly outline an algo-
rithm for encoding an integer as self-inverting permu-
tation. Our algorithm, which we call EncodeW-to-
SIP, takes as input an integerw, computes the binary
representationb1b2 · · ·bn of w, and then produces a
self-inverting permutationπ∗ in O(n) time (Chroni
and Nikolopoulos, 2010).

Algorithm SIP-to-W: Having presented the encod-
ing algorithm EncodeW-to-SIP, let us now present
an extraction algorithm, that is, an algorithm for de-
coding a self-inverting permutation. More precisely,
our extraction algorithm, which we call DecodeSIP-
to-W, takes as input a self-inverting permutationπ∗
produced by the algorithm EncodeW-to-SIP and re-
turns its corresponding integerw. The time complex-
ity of the decode algorithm is alsoO(n), wheren is the
length of the permutationπ∗ (Chroni and Nikolopou-
los, 2010).

2.3 2DM Representations

Given a permutationπ over the setNn = {1,2, . . . ,n},

WATERMARKING�IMAGES�USING�2D�REPRESENTATIONS�OF�SELF-INVERTING�PERMUTATIONS

381

1

2

3

4

5

6

6

5

4

3

2

1

1 2 3 4 5 6

Figure 1: A 2DM representation of the self-inverting per-
mutationπ = (5,6,9,8,1,2,7,4,3).

we first define a two-dimensional representation (2D-
representation) of the permutationπ that is useful for
studying properties which help us to define, later, a
more suitable representation ofπ for efficient use in
our watermarking system.

In this representation, the elements of the permu-
tationπ = (π1,π2, . . . ,πn) are mapped in specific cells
of ann× n matrixA as follows:

• integer i −→ entry A(π−1
i , i)

or, equivalently,

• the cell at rowi and columnπi is labeled by the
numberπi, for eachi = 1,2, . . . ,n.

Based on the previous 2D representation of a per-
mutation, we next propose a two-dimensional marked
representation (2DM representation) of a permutation
which is an efficient tool for watermarking images.

In our 2DM representation, a permutationπ over
the setNn = {1,2, . . . ,n} is represented by ann× n
matrix A∗ as follows:

• the cell at rowi and columnπi is marked by a
specific symbol, for eachi = 1,2, . . . ,n.

Figure 1 shows the 2DM representation of the permu-
tationπ. Note that, as in the 2D representation, there
is also one symbol in each row and in each column of
the matrixA∗.

We next present an algorithm which extracts the
permutationπ from its 2DM representation matrix.
More precisely, letπ be a permutation overNn and
let A∗ be the 2DM representation matrix ofπ (see,
Figure 1); given the matrixA∗, we can easily extract
π from A∗ in linear time (in the size of matrixA∗) by
the following algorithm:

Algorithm Extractπ from 2DM
Input: the 2DM representation matrixA∗ of π;
Output: the permutationπ;

1. For each rowi of matrixA∗, 1≤ i≤ n, do:
find the marked cell and letj be its column;
setπi← j;

2. Return the permutationπ;

Remark 2.3.1. It is easy to see that the resulting per-
mutationπ, after the execution of Step 1, can be taken
by reading the matrixA∗ from top row to bottom
row and write down the positions of its marked cells.
Since the permutationπ is a self-inverting permuta-
tion, its 2D matrixA has the following property:

• A(i, j) = j if πi = j, and
• A(i, j) = 0 otherwise, 1≤ i, j ≤ n.

Thus, the corresponding matrixA∗ is symmetric:

• A∗(i, j) = A∗(j, i) = “mark” if πi = j, and
• A∗(i, j) = A∗(j, i) = 0 otherwise, 1≤ i, j ≤ n.

Based on this property, it is also easy to see that the
resulting permutationπ can be also taken by reading
the matrixA∗ from left column to right column and
write down the positions of its marked cells.

2.4 Color Images

A digital image is a numeric representation of a 2-
dimensional image; it has a finite set of values, called
picture elements or pixels, that represent the bright-
ness of a given color at any specific point in the im-
age.

In our system we use theRGB model, where the
name comes from the initials of the three additive col-
ors Red, Green and Blue. The range of colors can be
represented on the Cartesian 3-dimensional system.
The axes x, y and z are used for the red green and
blue color respectively

In our system, since a color is a triple of integers
(x,y,z), a digital imageI of resolutionN×M (i.e., it
containsN rows andM columns of pixels) is stored in
a three-dimensional matrixImg of sizeN×M×3 as
follows:

if the pixel I(i, j) of the imageI has (x,y,z)
color, then Img(i, j,1) = x, Img(i, j,2) = y, and
Img(i, j,3) = z.

3 OUR IMAGE WATERMARKING
SYSTEM

Having proposed an efficient method for encoding in-
tegers as self-inverting permutations using the bitonic
property of a permutation, and the 2DM representa-
tion of self-inverting permutations, we next describe

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

382

the two main algorithms of our image watermark-
ing system; the encoding algorithm EncodeSIP-to-
IMAGE which encodes a self-inverting permutation
π∗, corresponding to watermarkw, into an imageI
resulting the watermarked imageIw and the decoding
algorithm DecodeIMAGE-to-SIP which extracts the
permutationπ∗ from the imageIw.

3.1 Embed Watermark into Image

We next describe the algorithm EncodeSIP-to-
IMAGE of our codec system which embeds a self-
inverting permutation (SIP)π∗ into an imageI; recall
that, in our system we use a SIPπ∗ over the setNn∗ for
encoding the watermarkw, wheren∗= 2n+1 andn is
the length of the binary representation of the integer
w (author’s technique); see, Subsection 2.2.

The algorithm takes as input a SIPπ∗ and an
image I, in which the user wants to embed the
watermarkw = π∗, and produces the watermarked
imageIw; it works as follows:

Step 1: The algorithm first computes the 2DM
representation of the permutationπ∗, that is, it
computes then∗× n∗ arrayA (see, Subsection 2.3);
the entry(i,π∗i) of the arrayA contains the symbol
“*”, 1 ≤ i≤ n∗.

Step 2:Next, the algorithm computes the sizeN×M
of the input imageI and do the following: ifN is an
even number it removes the pixels from the bottom
row of I and reducesN by 1, while if M is an even
number it removes the pixels from the right column
of I and reducesM by 1. The resulting image has size
N∗×M∗, whereN∗ andM∗ are both odd numbers.

Step 3: Let n∗ be the size of the SIPπ∗ and letN∗ ≤
M∗. Now the algorithm takes the input imageI and
places on it an imaginary gridG , which covers almost
the whole imageI, having

n∗× n∗ grid-cellsCi j(I)

eachCi j(I) of size

⌊N∗/n∗⌋×⌊N∗/n∗⌋

where, 1≤ i, j ≤ n∗.
It places the imaginary gridG on I as follows:

it first locates the central pixelP0
cent of the imageI,

which is at position(⌊N∗/2⌋+1,⌊M∗/2⌋+ 1), then
locates the central pixelp0

ii of the central grid-cell
Cii(I), wherei = ⌊n∗/2⌋+ 1, and places the gridG
on imageI such that bothP0

cent andp0
ii have the same

position inI.

Step 4:Then it scans the image and goes to each grid-
cell Ci j(I) (there are alwaysn∗× n∗ grid-cells in any

image) and locates the central pixelp0
i j of the grid-

cell Ci j(I) and also the four pixelsp1
i j, p2

i j, p3
i j, and

p4
i j around it, 1≤ i, j ≤ n∗; hereafter, we shall call

these four pixelscross pixels.
Then, it computes the difference between the

brightness of the central pixelp0
i j and the average

brightness of the twelve pixels around it, that is, the
pixels pℓ1i j , pℓ2i j , andpℓ3i j (ℓ= 1,2,3,4), and stores this

value in the variable dif(p0
i j) (see, Figure 2).

Finally, it computes the maximum absolute value
of all n∗× n∗ differences dif(p0

i j), 1≤ i, j ≤ n∗, and
stores it in the variable Maxdif(I).

Step 5:The algorithm goes again to each central pixel
p0

i j of each grid-cellCi j and if the corresponding entry
A(i, j) contains the symbol “*”, then it increases

• the brightnessk0
i j of the central pixelp0

i j, and

• the brightnessk1
i j, k2

i j, k3
i j, andk4

i j of its cross pix-
els.

Actually, it first increases the central pixelp0
i j by the

value e0
i j so that it surpasses the image’s maximum

difference Maxdif(I) by a constantc; that is,

• k0
i j + e0

i j = Maxdif(I)+ c

and, then, it sets the brightness of the four cross pixels
p1

i j, p2
i j, p3

i j, andp4
i j equal tok0

i j.

In our system we usec = 5, and thus the bright-
nessk0

i j of the central pixel of each grid-cellCi j is

increased bye0
i j, where

e0
i j = Maxdif(I)− k0

i j +5 (1)

where, 1≤ i, j ≤ n∗.
Let Iw be the resulting image after increasing the

brightness of then∗ central and the corresponding
cross pixels, with respect toπ, of the imageI. Here-
after, we call then∗ central pixels ofI as2DM-pixels;
recall that,p0

i j is a 2DM-pixel if A(i,πi) = “*”, or,
equivalently, the cell(i,πi) of the matrixA is marked.

Step 6:The algorithm returns the watermarked image
Iw.

3.2 Extract Watermark from Image

Next we describe our decoding algorithm which is
responsible for extracting the watermarkw = π∗ form
imageIw. In particular, the algorithm, which we call
DecodeIMAGE-to-SIP, takes as input a watermarked
imageIw and returns the SIPπ∗ which corresponds
to integer watermarkw; the steps of the algorithm are
the following:

WATERMARKING�IMAGES�USING�2D�REPRESENTATIONS�OF�SELF-INVERTING�PERMUTATIONS

383

k
2

ij

k
4

ij

Cij grid-cell

k
1

ij k
0

ij k
3

ij

k
21

ij k
22

ij k
23

ij

k
31

ij

k
32

ij

k
33

ij

k
43

ijk
42

ijk
41

ij

k
13

ij

k
12

ij

k
11

ij

Figure 2: The brightnesskℓi j of the central and cross pixels

pℓi j of the grid-cellCi j(I), 0≤ ℓ≤ 4, and the brightnesskℓmi j

of the cycle-cross pixelspℓmi j , 1≤ ℓ≤ 4 andm = 1,2,3.

Step 1: The algorithm places again the same imagi-
naryn∗× n∗ grid on imageIw and locates the central
pixel p0

i j of each grid-cellCi j(I), 1≤ i, j ≤ n∗; there
aren∗× n∗ central pixels in total. Then, it finds the
n∗ central pixelsp0

1, p0
2, . . . , p0

n∗ , among then∗× n∗,
with the maximum brightness using a known sorting
algorithm (Cormen et al., 2001).

Step 2: In this step, the algorithm takes then∗ grid-
cell C1,C2, . . . ,Cn∗ of the imageIw which correspond
to n∗ central pixelsp0

1, p0
2, . . . , p0

n∗ , and compute an
n∗× n∗ matrix A∗ as follows:

• Initially, setA∗(i, j)← 0, 1≤ i, j ≤ n∗;

• For each grid-cellCm, 1≤m≤ n∗, do:

if (i, j) is the position of the grid-cellCm in the
grid G then setA∗(i, j)← “ ∗ ”;

It is easy to see that, then∗× n∗ matrix A∗ is exactly
the 2DM representation of the self-inverting permu-
tationπ∗ embedded in imageIw by the algorithm En-
codeSIP-to-IMAGE.

Then, the permutationπ∗ can be extracted
from the matrix A∗ using the algorithm Ex-
tract π from 2DM; see, Subsection 2.3.

Step 3: Finally, the algorithm returns the self-
inverting permutationπ∗.

4 PERFORMANCE

Our image watermarking system mainly consists of
four algorithms, each of which is responsible for a
particular codec operation:

• EncodeW-to-SIP: algorithm for encoding an in-
tegerw into a self-inverting permutationπ∗;

• DecodeSIP-to-W: algorithm for extractingw
from π∗;
• EncodeSIP-to-IMAGE: algorithm for encoding a

self-inverting permutationπ∗ into an integerI;

• DecodeIMAGE-to-SIP: algorithm for extracting
π∗ form the watermarked image;

The two algorithms that are considered the basic ones
for our system are those responsible for embedding a
SIP into an image and extracting the SIP from it.

We next discuss some issues concerning the per-
formance of our image watermarking system. In par-
ticular, we mainly focus on the embedding algorithm
EncodeSIP-to-IMAGE and the efficiency of water-
marking imageIw produced by this algorithm, and
also on important properties of then∗× n∗ matrix A∗

which stores the 2DM representation of a SIP. Finally
we show the time and space performance of our sys-
tem by computing the complexity of their algorithms.

It is worth noting that our system incorporates
such properties which allow us to successfully extract
the watermarkw from the imageIw even if the in-
put imageIw of algorithm DecodeIMAGE-to-SIP has
been compressed with a lossy method and/or rotated.

We have evaluated the embedding and extracting
algorithms by testing them on various and different in
characteristics images that were initially in JPEG for-
mat and we had positive results as the watermark was
successfully extracted at every case even if the image
was converted back into JPEG format. What is more,
the method is open to extensions as the same method
might be used with a different marking procedure part
of the EncodeSIP-to-IMAGE algorithm.

All the system’s algorithms have been initially
developed and tested in MATLAB (Gonzalez et al.,
2003) and then redeveloped and also tested in JAVA.

Compression.The experimental results show that the
watermarkw is “well hidden” in the imageIw. We be-
lieve that it is because we mark the image by chang-
ing the difference between the brightness of the 2DM-
pixels p0

i j of the n∗ × n∗ imaginary grid and its 12

neighborhood pixels around it, that is, the pixelspℓ1i j ,

pℓ2i j , andpℓ3i j , for ℓ = 1,2,3,4 (see, Figure 2 and also
Step 2 of the embedding algorithm EncodeSIP-to-
IMAGE); recall that, we also set the brightness of the
four cross pixels of each 2DM-pixelp0

i j, that is, the

pixels p1
i j, p2

i j, p3
i j, andp4

i j, to be equal to the bright-

ness of the 2DM-pixelp0
i j.

Note that, we change the brightness of the 2DM-
pixels by increasing them so that they surpass the im-
age’s maximum difference Maxdif(I) by a constantc,
where in our implementationc = 5. We add five be-
cause if we compress the image the values of the pix-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

384

els may slightly change, and we want our watermark
to be robust. We also believe that this technique de-
spite being simple, it is efficient because the bright-
ness of each of then∗ marked central pixels does
not have a great difference from the brightness of the
12 neighborhood pixels and thus the modified central
pixel, along with the cross pixels, does not change
something significantly in the image.

Rotation. The watermarked images produced by our
embedding method have a property worth to be ref-
erenced. And this is certain characteristics noticed
at the 2DM representation of the image’s watermarks
which in our system are self-inverting permutations.
Sometimes an image might show an indeterminate de-
piction, such as a night sky or an aerial view. These
types of images might be rotated changing the coor-
dinates of the watermark’s marks making invalid the
watermark that we are about to extract. Also it is
about an indeterminate depiction which does not al-
low someone to tell which is the right angle of the
image.

Thanks to our embedding method’s properties this
problem can be overcome. It has to do with the co-
ordinates of the marks of a 2DM representation of a
self-inverting permutation found on imageIw. Those
coordinates allow us to turn the image into the initial
angle and then extract the watermark successfully.

The 2DM representation of a self-inverting per-
mutation has the following properties:

(i) The main diagonal of then∗× n∗ symmetric ma-
trix A∗ have always one and only one marked cell,
and

(ii) this marked cell are always in the entries(i, i) of
A∗, wherei = ⌈ n∗

2 ⌉+1,⌈ n∗
2 ⌉+2, . . . ,n∗.

If the main diagonal of matrixA∗ has no marked
cell then we rotate the image by 90 degrees. Addition-
ally, if the marked cell of the main diagonal is in entry
(i, i) with i≤ ⌈ n∗

2 ⌉, then we turn the image by 180 de-
grees and thus we end up at the initial image from
which we are able to extract the right watermark.

Time and Space Complexity.The total time perfor-
mance of our codec system, neglecting the conver-
sion of the input imageI into raw raster format, is
N × n∗ for embedding the watermarkw into I and
N + M + (n∗ × n∗)× log(n∗ × n∗) for extractingw
from the watermarked imageIw. Moreover, the extra
space needed by our codec system is linear in the size
of the input image, i.e., it uses only some extra aux-
iliary variables and an auxiliary matrix for the 2DM
representation of the self-inverting permutation.

5 CONCLUDING REMARKS

In this paper, we proposed a codec system, which we
named WaterIMAGE, for watermarking images that
are intended for online publication.

The proposed WaterIMAGE system has the fol-
lowing design and functional advantages:

• it is an efficient image watermarking system; the
experimental results showed that the watermarkw
is “well hidden” in the imageIw,

• its embedding method incorporates properties that
allow us to successfully extract the watermarkw
for the imageIw even if the imageIw has been
compressed with a lossy method and/or rotated,

• it is a simple and easily implemented system, and

• finally, as far as the time and space needed for the
encoding/decoding process, it performs very well.

We should point out that the main feature of our Wa-
terIMAGE system is the fact that it uses a combina-
torial object to watermark an image; we show that
an integer can be efficiently represented by a self-
inverting permutation which, in turn, can be repre-
sented in the 2-dimensional space and, thus, this rep-
resentation forms a suitable watermarking object for
images. In our system we propose a marking method
but apart from that the investigation of alternative and
more efficient methods for marking an image using a
2D representation of a permutation are an open prob-
lem for further research.

REFERENCES

Chroni, M. and Nikolopoulos, S. (2010). Encoding water-
mark integers as self-inverting permutations. InProc.
Int'l Conference on Computer Systems and Tech-
nologies (CompSysTech'10) , volume ACM ICPS 471,
pages 125 – 130.

Collberg, C. and Nagra, J. (2010).Surreptitious Software.
Addison-Wesley.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001).
Introduction to Algorithms. MIT Press, 2nd edition.

Garfinkel, S. (2001).Web Security, Privacy and Commerce.
O’Reilly, 2nd edition.

Golumbic, M. (1980).Algorithmic Graph Theory and Per-
fect Graphs. Academic Press, Inc., New York.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. (2003).
Digital Image Processing using Matlab. Prentice-
Hall.

Sedgewick, R. and Flajolet, P. (1996).An Introduction to
the Analysis of Algorithms. Addison-Wesley.

WATERMARKING�IMAGES�USING�2D�REPRESENTATIONS�OF�SELF-INVERTING�PERMUTATIONS

385

