
IMPROVING FLEXIBILITY OF WORKFLOW MANAGEMENT
SYSTEMS VIA A POLICY-ENHANCED COLLABORATIVE

FRAMEWORK

Alfredo Cuzzocrea1 and Marco Fisichella2

1ICAR-CNR and University of Calabria, Cosenza, Italy
2L3S Research Center, Hannover, Germany

Keywords: Workflow Management Systems, Process Intelligence, Collaborative Processes.

Abstract: Workflow Management Systems available to date present limitations concerning the flexibility of the resulting
processes, which enlarge the gap between business processes models, humans and their activities. In real-
world scenarios, especially when collaboration among human actors takes place, it is often the case that the
tasks a process consists of appear in many subtle variants according to the actor who has to carry them out.
In this paper we focus on a system which integrates Web platform for collaborative processes, COOPER,
and a policy manager based on Semantic Web technologies, PROTUNE, can enhance process flexibility and
variability to accommodate the needs of different process actors.

1 INTRODUCTION

Workflow Management Systems (WfMSs) support
the definition and execution of business processes by
combining atomic activities, each one characterized
by its own set of input and output resources and pa-
rameters, as well as of actors who are enrolled to carry
them out. The output of an activity is (part of) the in-
put of the activity (or activities) immediately follow-
ing it. The possibility of specifying which actor(s)
have to carry out an activity enforces coordination
among them.

WfMSs available to date present limitations con-
cerning their flexibility, which enlarge the gap be-
tween business processes models, humans and their
activities (Bardram et al., 2006). In real-world sce-
narios it is often the case that the tasks a process con-
sists of appear in many subtle variants according to
the actor who has to carry them out. This is espe-
cially true in all those organizational contexts where
collaboration within teams requires people to coor-
dinate by means of “light-weight” processes that al-
low them to reach a given goal (Bardram et al., 2006;
Nodenot et al., 2004), e.g., the release of some ar-
tifacts. One can think for example to the develop-
ment of team-based projects within a company, but
also to the so-called ”learning-by-doing”, an increas-
ingly diffused form of learning through which indi-
viduals (e.g., students in university, employees in or-

ganizations in different domains, company partners
and customers, etc.) learn by working on a project
and sharing activities with others peers. In all the pre-
vious cases, processes exhibit an explosive number of
alternatives that depend on the specific needs of the
involved actors. Such alternatives may refer to the
coordination flow of the different tasks, as well as to
the execution of single tasks. Flexibility might be re-
quired for example to enlarge or restrict the user ac-
cess to some services or contents, based on the users’
rights on the company information asset, their matu-
rity level in performing some activities, the evolution
of background knowledge and competencies, and so
on. Such processes therefore escape the ability of be-
ing fully modeled at design time, as it happens for
traditional business processes (Bardram et al., 2006),
and should be flexible enough to be adapted to the
needs of the individual actors. At a larger vision,
flexibility may also be intended as the capability of a
system to automatically discovery (and integrate) new
services/processes via intelligent methodologies (e.g.,
(Cuzzocrea et al., 2011; Cuzzocrea and Fisichella,
2011)).

In this paper we focus on a system based on poli-
cies which can be used to overcome these limitations.
According to (Sloman, 1994)’s well-known defini-
tion, policies are “rules governing the choices in the
behavior of a system”, i.e., statements which describe
which decision the system must take or which actions

701Cuzzocrea A. and Fisichella M..
IMPROVING FLEXIBILITY OF WORKFLOW MANAGEMENT SYSTEMS VIA A POLICY-ENHANCED COLLABORATIVE FRAMEWORK.
DOI: 10.5220/0003937507010708
In Proceedings of the 8th International Conference on Web Information Systems and Technologies (WEBIST-2012), pages 701-708
ISBN: 978-989-8565-08-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

it must perform according to specific circumstances.
Policy languages are special-purpose programming
languages which allow to specify policies, whereas
policy engines are software components able to en-
force policies expressed in some policy language.

Process engines and policy engines can be consid-
ered to be complementary tools to enhance process
flexibility: process engines allow one to define and
execute processes, but they fall short whenever pro-
cess modifications have to occur during the execution
of the process (Fisichella et al., 2011). On the other
hand, being based on decision making, it appears nat-
ural combining policy and process engines in order to
overcome the limitations mentioned above. Policies
could be for example exploited within a process task
in order to adapt it to the end-users’ specific needs and
access rights (intra-activity policies). On the other
hand, policies could be exploited at the level of the
overall process in order to determine the activity/ies
to be next performed based on the outcome of the pre-
ceding activity/ies (inter-activity policies).

This paper focus on a system leveraging on both
approaches applied to COOPER (Ceri et al., 2009),
a Web platform for the definition and execution of
collaborative processes, characterized by a reference
model that ensures process flexibility, effectively sup-
porting the dynamic, user-based management of col-
laboration processes. We in particular investigate
the exploitation of PROTUNE (Coi and Olmedilla,
2008) for the specification and management of poli-
cies. PROTUNE is a policy framework based on Se-
mantic Web technologies, that supports the creation
and enforcement of advanced policies, covering not
only traditional access control but also trust negotia-
tion (to automate for example privacy-aware informa-
tion release), and second generation explanation facil-
ities (to improve user awareness about – and control
on – policies).

2 THE PROTUNE POLICY
FRAMEWORK

Policies are encountered in many situations of our
daily life. Especially with the advent of the digi-
tal era, the specification of policies has emerged in
many web-related contexts and software systems. E-
mail client filters are a typical example of policies.
Some of the main application areas where policies
have been lately used are security and privacy as well
as specific business domains, where they take on the
name of “business rules” (but (Li et al., 2006), (Li
and Wang, 2006) and (Stoller et al., 2007) for other
policies’ application areas). In general, policies are a

well-known approach to protecting security and pri-
vacy of users in the context of the Semantic Web:
policies specify who is allowed to perform which ac-
tion on which object depending on properties of the
requester and of the object as well as parameters of
the action and environmental factors (e.g., time). The
application of suitable policies for protecting services
and sensitive data may determine success or failure of
a new service.

The use of formal policies yields many advantages
compared to conventional approaches: formal poli-
cies are usually dynamic, declarative, have a well-
defined semantics and allow to be reasoned over
(Lloyd, 1987) and (Sloman, 1994). PROTUNE is a
framework for specifying and cooperatively enforcing
security and privacy policies on the Semantic Web.
PROTUNE is based on Datalog and, as such, it is an
LP-based policy language (Coi and Olmedilla, 2008).
A PROTUNE program is basically a set of normal
logic program rules (Lloyd, 1987) A L1; : : : ; Ln
where n� 0, A is an atom (called the head of the rule)
and L1; : : : ; Ln (the body of the rule) are literals, i.e.,
8i : 0� i� n Li equals either Ai or�Ai for some atom
Ai. Rules whose body is empty are called facts.

Given an atom p(t1; : : : ; ta) where a� 0, p and a
are called the name and the arity respectively of the
predicate exploited in the atom, whereas t1; : : : ; ta are
terms, i.e., either constants or variables.

With respect to Datalog, PROTUNE presents
the following main differences: (i) policy language
– PROTUNE is a policy language and not a lan-
guage for data retrieval; (ii) actions – the evalua-
tion of a literal might require to perform actions;
(iii) objects PROTUNE supports objects, i.e., sets of
(attribute;value) pairs linked to an identifier.

Being PROTUNE a policy language, its applica-
tion scenarios are essentially different than the ones of
Datalog, which is a language for data retrieval: whilst
a Datalog query is meant to retrieve (explicit or im-
plicit) information from a knowledge base, the typical
PROTUNE query is a request by a human or software
agent to access some resource or service. Moreover,
whoever issues a Datalog query is automatically al-
lowed to retrieve the requested information, whereas
in general not everyone issuing a PROTUNE query
is allowed to access the requested resource or service.
For this reason, whilst the process of evaluating a Dat-
alog query is single-step, the process of evaluating a
PROTUNE query involves up to two steps: checking
whether the query can be evaluated and, if this is the
case, actually evaluating it.

The evaluation of a Datalog (and, more generally,
of a Prolog) literal is based on SLDNF-Resolution
(Lloyd, 1987): the evaluation of a negative literal (i.e.,

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

702

of a literal of the form not A, where A is an atom) is
(un)successful if it is (not) the case that the evalua-
tion of the body of all rules whose head matches A
is unsuccessful. The evaluation of a positive literal
(i.e., of a literal of the form A, where A is an atom) is
(un)successful if it is (not) the case that the evaluation
of the body of some rule whose head matches A is suc-
cessful. Only PROTUNE logical literals are evaluated
in such a way, whereas the evaluation of PROTUNE
provisional literals requires to perform an action: the
evaluation of a positive (resp. negative) provisional
literal is successful if the execution of such action is
(resp. is not) successful. The PROTUNE engine uni-
vocally identifies the action to be performed based on
the predicate exploited in the literal. The name and
arity of the predicate are interpreted as an URL point-
ing to a software component (a jar file). By need
such component is automatically resolved, deployed
and finally exploited to actually perform the action.

Beside minor things (PROTUNE constants can be
booleans and numbers as well) the biggest difference
between Datalog and PROTUNE with respect to the
built-in data types is that PROTUNE supports objects,
i.e., sets of (attribute;value) pairs linked to an iden-
tifier. Attributes and values can be objects in turn and
attributes can be multi-valued. Objects are referred
to by their identifiers, whereas a generic value of the
attribute attr of an object id is denoted by id:attr, ac-
cording to the well-known Java-like dot notation. Fi-
nally, a value val can be defined for the attribute attr
of an object id by asserting the fact id:attr = val.

We conclude by briefly mentioning further fea-
tures of PROTUNE, namely the distributed query
evaluation process and the explanation facility. In
Datalog the evaluation of a query and, more generally,
of a literal is a local process: only the local knowledge
base (i.e., the Datalog program) is inspected in order
to retrieve the requested information. On the contrary,
the author of a PROTUNE policy can state that some
literal has to be evaluated by the requester: if dur-
ing the evaluation of a query Q1 issued by a requester
R1 it happens that such literal has to be evaluated, a
counter-query Q2 is issued to R1 with the request to
evaluate it. Counter-queries can nest to an arbitrary
depth, so that the evaluation of a PROTUNE query
can evolve to a negotiation between the actors in-
volved. In order to make explicit that a literal has to be
evaluated by the requester, the policy author must tag
that literal with an annotation which in PROTUNE’s
jargon is called metarule.

Metarules are also used to support PROTUNE’s
explanation facility: explanation metarules define
verbalization patterns which are instantiated by the
explanation facility to produce a human-readable de-

scription of the policy. Such description is then ex-
ploited to answer a predefined set of user queries.
So far four kinds of queries are supported: How-to
queries describe which activities the requester has to
carry out in order to get access to a given resource or
service. What-if queries are meant to help requesters
to foresee the evolution of a hypothetical situation. Fi-
nally, Why and Why-not queries merge the description
of the policy with transaction-dependent information
in order to explain the outcome of a transaction which
already occurred.

3 THE COOPER PLATFORM

This Section introduces COOPER, the engine we
chose to use for process definition and execution. The
choice of COOPER is due to the flexibility that it
is able to support at process level, which is possible
thanks to the easy integration of ”externally” defined
process tasks. The most salient feature of COOPER
is that it allows cooperating team members (i.e., the
platform end-users) to dynamically define collabora-
tive processes, and easily modify planned processes,
to cope with the evolution of individuals as well as
of the whole team. Giving the end-users the possibil-
ity to define and modify their processes requires the
system to offer easy-to-use definition interfaces, able
to guide people in the composition of processes with-
out requiring any specific knowledge and expertise on
process design. Guiding inexperienced users requires
that the system be “aware” of the semantics of the do-
main where processes must be executed. Such aware-
ness can be achieved through libraries of pre-defined
activity types, able to reflect and support the possible
tasks that users might need to coordinate and execute
in a given context.

Activity types represent the definition of process
tasks, that are regularly performed by users to col-
laborate, and that can be used within collaborative
processes. Their definition implies associating the
underlying task with a hypertext front-end, which is
used as user interface for the execution of the activ-
ity. Some atomic activities have a general nature (e.g.,
those related to the management of documents), and
can therefore be adopted in several domains where
collaborative processes are required. Some other ac-
tivities may however be particular for specific con-
texts and their identification requires an investigation
of the addressed domain. Starting from a library of
activity types, the system thus guides the composition
of sound, “well-structured” processes (Kiepuszewski
et al., 2000). In (Ceri et al., 2009) we show how the
offered mechanisms for process definition guarantee

IMPROVING�FLEXIBILITY�OF�WORKFLOW�MANAGEMENT�SYSTEMS�VIA�A�POLICY-ENHANCED
COLLABORATIVE�FRAMEWORK

703

the semantically correct execution and termination of
process instances, and the possibility to easily (flexi-
bly) modify processes even during runtime. Providing
guarantees on the process semantics aims at assisting
the continuous re-definition or evolution of running
processes by users that in most cases are inexperi-
enced.

Figure 1 shows the architecture of the COOPER
platform, where different modules interoperate and
make use of data and metadata. Process definition is
performed via a process editor, a Web front-end that
makes use of a predefined activity type library and,
possibly, of existing process/template models. Pro-
cess execution is performed via the COOPER’s col-
laboration environment, which leverages on the hy-
pertext front-ends of the predefined activity types to
allow users to produce and consume process data in
form of resources stored in the resource repository.
Process advancement is then governed by the stored
process definitions, which are interpreted during pro-
cess execution by a dedicated process engine that con-
tains the necessary application logic to maintain the
running processes’ metadata and, hence, to drive the
activity flow in the collaboration environment.

The COOPER approach overlaps the ideas of pro-
cess model and process instance: each process defini-
tion has only one executing instance or, the other way
around, each process execution has its own process
definition. A process definition bears all metadata
(process structure, role assignments, resource assign-
ments) and runtime data (state of the process, states
of activities, execution time stamps) necessary for the
correct execution. This allow us to support process
modification operations.

Figure 1 also highlights the competences of the in-
dividual actors in the COOPER platform. The activity
designer identifies and designs the activity types that
are available in the platform. The process designer
then instantiate the activities types and defines pro-
cess templates. The process designer can also be a
team leader who wants to organize the wok of his/her
team. The users then perform the actual work. Users
can also play the role of process designers. They are
indeed enabled to define new processes by extending
templates, or by composing new models from scratch.
They are in any case allowed to modify template-
based process definitions during runtime, after the
process has been launched, with the only limit of not
violating the template constraints that the process may
hold by definition.

Based on this architecture, COOPER can be ex-
tended by delegating external modules (from now on
handlers) to process given activities. Each handler
is responsible for activities of a given type. Policies

with the same type have the same input/output pa-
rameters. As soon as COOPER starts processing a
new activity, it checks its type and, if some handler is
available for activities of that type, it hands the activ-
ity over to such handler. Input parameters and con-
text information (like the current user) are provided
by COOPER to the handler and return parameters are
provided back from the handler to COOPER. To some
extent, control on the workflow itself can be delegated
to handlers, since they can provide COOPER with the
activities to be started after they return.

Such extension point (Birsan, 2005) of COOPER
will be exploited for the approaches presented in Sec-
tion 5 and Section 6.

Figure 1: The architecture of the COOPER platform (Ceri
et al., 2009).

4 APPLICATION SCENARIOS

To better understand our approach, we will consider
two simple scenarios that require the collaboration of
multiple actors.

4.1 Scenario I

Imagine a team leader wants to suggest to team com-
ponents some events e.g., conferences to attend. Team
components select one conference and search for a
hotel in the event location. Later, they ask the orga-
nization treasurer for the monetary availability. The
process is composed by three activities: (i) an activ-
ity is related to the team leader who has to suggest a
listing of conferences to attend; (ii) an activity associ-
ated to the employee, who must select the conference
and book a hotel; and (iii) an activity associated to
the treasurer, who has to check the cash and allocate,
if available, the amount request. The treasurer will
conclude the activity with a confirmation or negation

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

704

Figure 2: Example of Mashup encapsulated within the pro-
cess flow according to the definition of an activity supported
by four components.

message sent to the employee.
Suppose that the definition of this process requires

the inclusion of an activity for the process of booking
the hotel and that such activity can be supported by
four components as shown in Figure 2. We suppose
these four components are already registered in the
platform: the service “Find a Conference” supplying
the list of the conferences indexed by DBWorld, the
service “Hotel Retrieve” supplying a list of hotels for
a given place of interest, the Flickr.NET component to
display the images for a given hotel, and Google Maps
to show the directions to a given address or point of
interest. When the team leader selects a conference
from the conference listing component, the hotel list-
ing will be updated and will display all the hotels in
that area, the image displayer will show an image of
the selected hotel while the map will display its loca-
tion. In other words, the way the employees’ activity
is performed depends on the outcome of the first one
(namely, which conference the team leader opted for).
In such a scenario, policies can help to adapt the first
activity to the end user’s need or right, e.g. some team
leader could select only conferences which will be or-
ganized in places within the same continent or below
a kilometric distance threshold from his/her own com-
pany location.

4.2 Scenario II

Imagine a team working in a business project that re-
quires the involvement of professionals from differ-
ent fields. A first version project proposal must be ap-
proved by the team leader at certain point of time. Af-
ter that, there must be: (i) a proper description of the
necessary technical work; (ii) a description of the ma-
terial and people involved; (iii) a description of costs;
and (iv) a description of the marketing planning. After
these activities, a new activity is assigned to the team
leader to review all the documentation to continue the
project development.

Suppose that the definition of the activity is a
mashup utilizing Google Docs API1, allowing doc-
ument editing and versioning control. The same ac-
tivity can be reused for the four activities previously
listed if the necessary actions are the same; however
each activity refers to a very specific group of team
members. So it is up to the team leader to approve the
proposal in the first instance. Afterwards the process
will split into four different parallel sub-processes.
Continuing in each activity, developers would doc-
ument the technical issues, technicians and personal
would describe the necessary material and people,
treasurer would calculate the finances and the market-
ing members would describe market strategies. Once
each team has finished each respective assignment,
the workflow joints back together to an approval ac-
tivity for the team leader. Notice that whether the four
parallel activities are performed depends on the out-
come of the first one (namely, whether the team leader
approved the proposal).

5 INTER-ACTIVITY POLICIES

As we argued in Section 4, in many real-world work-
flows it is often the case that: (i) the way an activ-
ity is performed and (ii) whether an activity is at all
performed depends on the outcome of the activity/ies
previously performed. Furthermore, the possibility to
select which next activity will be executed based on
some conditions or output from previous activity/ies
has been previously solved by other process engine,
but in this Section we concentrate our treatment about
how to solve this problem exploiting the policies, such
that we demonstrate to provide a complete process en-
gine based on policies.

The exchange of input parameters and return val-
ues described in Section 3 is a suitable mechanism
provided by COOPER to determine the way an ac-
tivity has to be performed based on the outcome
of the one(s) previously performed: with respect to
the scenario described in Section 4.1, the activity of
the employees could be modeled as a parameterized
COOPER activity whose execution depends on the
value of a parameter which is meant to represent the
list of conferences to attend. The instantiation of this
parameter could be provided by the COOPER activity
modeling the team leader’s activity.

On the other hand, as we mentioned in Sec-
tion 1, COOPER does not natively provide any
means to identify whether an activity should be per-
formed based on the outcome of the activity/ies pre-

1http://code.google.com/apis/documents/overview.html

IMPROVING�FLEXIBILITY�OF�WORKFLOW�MANAGEMENT�SYSTEMS�VIA�A�POLICY-ENHANCED
COLLABORATIVE�FRAMEWORK

705

Figure 3: Extension of COOPER by means of inter-activity
policies.

viously performed. For this reason we decided to
exploit COOPER’s extension mechanism described
in Section refsec:cooper in order to add branches to
COOPER workflows: we defined a new activity type
(namely, branch activity) and an handler for them
(namely, branch-activity handler or BA-handler).

Fig. 3 shows how a generic branch activity is pro-
cessed by COOPER extended with our BA-handler.
According to COOPER’s generic extension mecha-
nism (see Section 3), as soon as a branch activity
comes in (1), it is redirected to the BA-handler, to-
gether with input parameters and context informa-
tion (2). The BA-handler acts as a mediator and for-
wards such information to the PROTUNE engine (3).
The PROTUNE Engine uses (among else) such infor-
mation in order to answer the BA-handler’s question
about the upcoming activity (4), which is eventually
forwarded back to COOPER (5).

A generic inter-activity policy is a set of rules like
the following.

allow(getNextActivity(Activity))
conditions()

Against query getNextActivity(Activity) issued by
the BA-handler, the PROTUNE engine instantiates
the variable Activity with the identifier of the activ-
ity to be performed next. Conditions have to be ful-
filled in order for the given instantiation to take place.
As described in Section 2, the PROTUNE policy lan-
guage allows to define expressive condition involving,
among else, properties of the current user, activity and
environmental properties (e.g., time).

6 INTRA-ACTIVITY POLICIES

As we argued in Section 1 and Section 4, in real-world
scenarios it is often the case that the atomic activities a
business process consists of differ according to the ac-
tor who has to carry them out. Therefore it is needed:
(i) providing workflow designers with the ability to
specify variants in the definition of an activity; and
(ii) enforcing at run-time the right variant according
to the actor who is carrying it out.

A trivial solution would be adopting the approach
we discussed in Section 5 to this case as well: each

variant of an activity could be modeled as an activity
itself and we could identify the right variant at run-
time by resorting to inter-activity policies. Although
this solution is in principle feasible, it has at least a
couple of drawbacks: it is unnatural and (hence) user-
unfriendly.

For this reason it makes sense trying to identify
a different mechanism to specify and enforce fine-
grained activity tuning. We chose to use the Mash-Up
technology.

A mashup combines services coming from hetero-
geneous sources not initially conceived to coexist to-
gether. Especially if supported by an easy-to-use de-
velopment tool, the mashup paradigm can favor the
on-the-fly construction of applications that quickly al-
low users to have insights and make decisions based
on the resulting combined data. Within the COOPER
framework, mashups can certainly facilitate the def-
inition and integration of new activity types by ac-
tivity designers. However, the most tangible advan-
tage is that they can enable process designers to cre-
ate on-the-fly new activity types during process defi-
nition, as well as process actors to easily customize
already defined activities during process execution.
As explained in the following, after its definition, the
mashup can be integrated as an activity in a process.
A process will be able to incorporate one or more
mashups, even different versions of a same mashup.

To achieve the goal of integrating mashups within
process definition, we extend the activity type library,
as defined in COOPER, with a new type, the container
activity (CA), based on two main concepts: (1) as
any other activity type, it exposes some properties that
are required for its integration within a process (e.g.,
start and end time, enrolled process actors, etc.), and
that must be set during process definition; (2) it is a
generic container, aimed at encapsulating externally
defined web resources.

Moreover, a CA can be associated with several
mashups, even different versions of a same mashup,
each of them associated with a particular policy to be
satisfied. While defining a process, one or more CAs
can be used when the ready-to-use activity types do
not match the requirements of some user activities.
The process designer can then define a new service
in a mashup wise (see next) and encapsulate it within
the container. To enable the integration of this new
service within the process flow, s/he can character-
ize the output resource to be produced. Leveraging
the template-based paradigm and the flexibility of
COOPER, the encapsulation of the actual application
supporting the activity execution can even be delayed
at run-time: the process designer just configures the
container properties that are necessary for process en-

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

706

Figure 4: Extension of COOPER by means of intra-activity
policies.

actment, e.g., the enrolled user, the resources to be
produced as activity output, and so on. The actual
mashup for the activity execution can be defined and
encapsulated during the process execution by the en-
rolled actor.

Fig. 4 shows how a generic container activity
is processed by COOPER extended with our CA-
handler. According to COOPER’s generic extension
mechanism (see Section 3), as soon as a container ac-
tivity comes in (1), it is redirected to the CA-handler,
together with input parameters and context informa-
tion (2). The CA-handler forwards such information
to the PROTUNE engine (3). The PROTUNE Engine
uses (among else) such information in order to an-
swer the CA-handler’s question about which mash-
up should be used (4). Differently than the BA-
handler described in Section 5, the CA-handler does
not limit itself to forwarding such information back
to COOPER, but is responsible for: (i) retrieving the
mash-up based on the information provided by the
PROTUNE engine; (ii) coordinating the interaction
of such mash-up with the user; and in particular (iii)
identifying when the user completed the mash-up ac-
tivity (5). At this point the control is returned to
COOPER (6).

A generic intra-activity policy is a set of rules like
the following.

allow(getMashUp(MashUp))
conditions()

Against query getMashU p(MashU p) issued by the
CA-handler, the PROTUNE engine instantiates the
variable MashU p with the identifier of the mash-up
to be provided to the user. Again, Conditions have to
be fulfilled in order for the given instantiation to take
place.

7 CONCLUSIONS

In this paper, we have presented an integrated frame-
work where the definition of collaborative processes

is augmented through policies aimed at enhancing
process flexibility to enlarge or restrict the user ac-
cess to services or contents. Collaborative processes
are highly characterized by the need of adapting the
process flow and the execution of single tasks to
the variability of the needs, access rights and back-
ground of the involved actors. To respond to this
need, the COOPER platform has been specifically
conceived to empower end-users to self-define and
modify processes through an easy-to-use Web envi-
ronment. However, COOPER still shows some lim-
its, especially related to the customization of task in-
stances targeting individual process actors. This paper
has shown how such limits can be overcome thanks to
the adoption of the PROTUNE policy manager, still
ensuring the full interoperability with COOPER as to
easy the global integration task.

An initial prototype has allowed us to prove the
feasibility of the concepts illustrated in this paper.
Our future work is devoted to fully implementing the
integration, and to testing its effectiveness and effi-
ciency. This activity will also imply the definition
of a library of pre-defined and reusable policies, ex-
pressing frequent rules for adaptation and/or access
restriction, as well as of policy-enhanced process tem-
plates covering the most frequent collaboration re-
quirements.

ACKNOWLEDGEMENTS

This research has been co-funded by the Euro-
pean Commission within the eContentplus targeted
project OpenScout, grant ECP 2008 EDU 428016
(http://www.openscout.net).

REFERENCES

Bardram, J. E., Bunde-Pedersen, J., and Søgaard, M.
(2006). Support for activity-based computing in a per-
sonal computing operating system. In Grinter, R. E.,
Rodden, T., Aoki, P. M., Cutrell, E., Jeffries, R., and
Olson, G. M., editors, CHI, pages 211–220. ACM.

Birsan, D. (2005). On plug-ins and extensible architectures.
ACM Queue, 3(2):40–46.

Ceri, S., Daniel, F., Matera, M., and Raffio, A. (2009).
Providing flexible process support to project-centered
learning. IEEE Trans. Knowl. Data Eng., 21(6):894–
909.

Coi, J. L. D. and Olmedilla, D. (2008). A review of trust
management, security and privacy policy languages.
In SECRYPT, pages 483–490.

Cuzzocrea, A., De Coi, J.L., Fisichella, M., and Matera, M.
(2011). Graph-based matching of composite OWL-S
services. In DASFAA Workshops, pages 28–39.

IMPROVING�FLEXIBILITY�OF�WORKFLOW�MANAGEMENT�SYSTEMS�VIA�A�POLICY-ENHANCED
COLLABORATIVE�FRAMEWORK

707

Cuzzocrea, A. and Fisichella, M. (2011). Discover-
ing semantic Web services via advanced graph-based
matching. In IEEE SMC, pages 608–615.

Fisichella, M. and Matera, M. (2011). Process flexibility
through customizable activities: A mashup-based ap-
proach. In ICDE Workshops, pages 226–231.

Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C.
(2000). On structured workflow modelling. In Wan-
gler, B. and Bergman, L., editors, CAiSE, volume
1789 of Lecture Notes in Computer Science, pages
431–445. Springer.

Li, N., Tripunitara, M. V., and Wang, Q. (2006). Resiliency
policies in access control. In ACM Conference on
Computer and Communications Security, pages 113–
123.

Li, N. and Wang, Q. (2006). Beyond separation of duty: an
algebra for specifying high-level security policies. In
ACM Conference on Computer and Communications
Security, pages 356–369.

Lloyd, J. W. (1987). Foundations of Logic Programming,
2nd Edition. Springer.

Nodenot, T., Marquesuzaà, C., Laforcade, P., and Sal-
laberry, C. (2004). Model based engineering of learn-
ing situations for adaptive web based educational sys-
tems. In Feldman, S. I., Uretsky, M., Najork, M., and
Wills, C. E., editors, WWW (Alternate Track Papers &
Posters), pages 94–103. ACM.

Sloman, M. (1994). Policy driven management for dis-
tributed systems. J. Network Syst. Manage., 2(4).

Stoller, S. D., Yang, P., Ramakrishnan, C. R., and Gofman,
M. I. (2007). Efficient policy analysis for administra-
tive role based access control. In ACM Conference on
Computer and Communications Security, pages 445–
455.

WEBIST�2012�-�8th�International�Conference�on�Web�Information�Systems�and�Technologies

708

