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Abstract: This paper describes an intelligent, mixed-initiative scheduler which supports users in the organization and re-
vision of their calendars, helping them to allocate personal and shared activities involving other collaborators.
Our scheduler exploits well-known temporal reasoning techniques to suggest complete schedules, as well as
to guide the user in the exploration of the possible changes to the timing of tasks, in order to enable her/him to
modify the calendar in an informed way. We have integrated our scheduler into a Collaborative Task Manager
service supporting the management of projects and distributed tasks.

1 INTRODUCTION

The increasing adoption of online calendars for orga-
nizing people’s schedules and their availability “in the
cloud” offer excellent opportunities for the develop-
ment of services holistically supporting the manage-
ment of personal and shared activities at home and
at the workplace. In fact, the ubiquitous availability
of such tools enables users to manage their work and
personal schedules, providing a user-centered per-
spective of their commitments. However, in order to
help users to organize their activity contexts, which
might involve different groups of people, an explicit
task scheduling support is needed, which analyzes the
schedules of the involved users and suggests feasible
time intervals for the execution of activities.

As a first step towards addressing this issue, we
propose an intelligent, mixed-initiative scheduler sup-
porting the generation and revision of the user’s calen-
dar, given her/his commitments and those of the other
actors involved in the shared activities. The main fea-
ture of our scheduler is its mixed-initiative, conser-
vative support: besides the generation of complete
schedule proposals, our system helps the user to re-
vise a schedule by suggesting alternative allocations
of the tasks to be moved. The scheduler proposes
conservative changes to the user’s calendar in order to
maintain previous commitments as originally planned
or with minor temporal shifts; in turn, the user can
choose the preferred one and apply it. The calendars
of all the involved actors are updated accordingly.

Our scheduler is based on the exploitation of Tem-

poral Constraint Satisfaction Problems (TCSP) tech-
niques, used to generate safe full schedule proposals
as well as to present all of the admissible intervals for
the placement of specific tasks.

The rest of this paper is organized as follows: Sec-
tion 2 presents a running example describing a usage
scenario for our mixed-initiative scheduler. Section 3
describes the services offered by the system and its
underlying model. Section 4 explains the technical
details behind our proposal. Section 5 presents some
related work and Section 6 concludes the paper.

2 RUNNING EXAMPLE

We describe the services offered by our mixed-
initiative scheduler by means of a running example.
Let’s suppose that, as new tasks are assigned to a user
U , they are placed within free spots in the user’s cal-
endar, either manually byU or by the mixed-initiative
scheduler, without involvingU in the decision. This
process is only adequate as long as new tasks can be
scheduled without affecting the other tasks that are al-
ready in the calendar.

Figure 1 shows the user interface of our mixed-
initiative scheduler and displays a possible calendar
where we assume that the tasks have been placed in
this way. The placement of tasks satisfies some con-
straints given by the user: for example, the Library
meeting cannot take place at lunch time (13.00 to
14.00)1or after 17.00, and must take place before Th-
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ursday 11.00. Moreover, the Phd meeting and the
phone call must take place on Wednesday, before
20.00, and the phone call must take place after the
Phd meeting, e.g., because the user has to talk to Mr.
Smith about a decision taken in the meeting.

Let’s assume that a new task arrives (e.g., meet-
ing the plumber for fixing a leaking sink), that takes 3
hours and has to be done on Wednesday before 18.00.
It is easy to see that there is no free spot in the calen-
dar where the new task can be placed. Then, the user
can ask for the help of the mixed-initiative scheduler:

• The user can ask when the task can be allocated;
the scheduler replies that it could start at 13.00,
14.00 or 15.00, since this would only require to
anticipate or postpone the afternoon tasks, with-
out affecting theorderof the current ones. Indeed,
if the new task is placed at 13.00 or 14.00, it is
sufficient to delay the Ph.d meeting and the phone
call. Otherwise, if it is placed at 15.00, a solution
can be found by anticipating the Ph.d meeting and
deferring the phone call, and slipping the new task
between them.

• If the user is not satisfied with meeting the
plumber in the afternoon, (s)he can try to move
the Library meeting to make room for the new
task. For this purpose, the user points to the Li-
brary meeting task and asks the temporal reasoner
again for help. The reasoner replies that, consid-
ering only the user’s tasks in the current schedule,
the Library meeting can be moved to Wednesday
at 8.00, 9.00, 14.00, 15.00 or to Thursday either at
8.00 or at 9.00 (in which case, the write paper task
should be anticipated to Wednesday afternoon).

If, after exploring several possibilities with the
help of the scheduler, the user is still unsatisfied, (s)he
can request a brand new schedule. However, this may
cause many of the other tasks to change their times
and their relative order.

3 MIXED-INITIATIVE TASK
SCHEDULING

Our scheduler is integrated in a Collaborative Task
Manager (CTM) service (Ardissono et al., 2011;
Ardissono et al., 2012) that supports distributed col-
laboration by enabling users to synchronize with each
other in the execution of shared activities.

1We use 24-hours notation so that, e.g. 13.00 and 14.00
stand respectively for 1pm and 2pm.

3.1 The Collaborative Task Manager

The CTM manages task nets that regulate the execu-
tion of complex activities, denoted as activity frames,
possibly decomposed in simpler tasks which can be
organized in patterns typical of workflow nets; e.g.,
sequence, parallel split, exclusive choice, synchro-
nization, simple merge, etc. (van der Aalst et al.,
2008). Figure 2 shows the user interface of the CTM
for the visualization of an activity frame: the CTM
visualizes the task net by coloring nodes on the basis
of their state. By clicking on a specific node, the user
can view the details of the represented task.

Within an activity frame, a task is modeled by
specifying various types of information, among which
the involved actors, the task state (disabled, enabled,
done), the expected duration, the task deadline (if
any) and the dependencies on other tasks. For in-
stance, in the activity frame of Figure 2, T3 is alter-
native to T2 and is enabled only after T1 is done. Ac-
tivity frames can also include simpler “to dos”, repre-
senting elementary tasks that the user wants to sched-
ule, even though they do not have a precise deadline
or structure. Overall, the CTM is based on Allen’s
Getting Things Done model for the organization of
human activity (Allen, 2003).

Using the user interface of the CTM, the actors
involved in an activity frame can manage their tasks
and “to dos”: as the user interface is web-based, they
can monitor the evolution of a collaboration on a stan-
dard web browser. Moreover, the CTM supports user
awareness by means of a notification service that in-
forms users about relevant events, such as the enable-
ment of a task (Ardissono and Bosio, 2012).

The CTM alone enables users to carry out activ-
ities according to the dependencies specified in the
task net. However, it does not help them to decide at
which time exactly they have to, or can, perform a par-
ticular task because it is not integrated with the actors’
calendars. The role of our mixed-initiative scheduler
is thus that of extending the CTM capabilities, help-
ing users to plan their activities in advance, but also
to react to unexpected events, such as changes in task
deadlines, or the occurrence of new commitments.

3.2 Our Mixed-initiative Scheduler

3.2.1 Features

The main requirements driving the design of our
scheduler are the following:

• Safe Scheduling:the proposed solutions must be
consistent with the constraints imposed on the
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Figure 1: Visualization of a user’s schedule (week).

Figure 2: User interface of the CTM.
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tasks in the user’s calendar and with the commit-
ments of the other involved actors; i.e., the mixed-
initiative scheduler must propose task allocations
that are feasible for all the participants.

• Mixed-initiative: if the user wants to inspect the
space of possible solutions, e.g., to allocate a new
task, or to move a task in the calendar, the sched-
uler has to visualize the admissible time slots for
the task (if any), so that the user can select the pre-
ferred schedule modification. In other words, the
user has an active role in guiding the scheduler’s
operations rather than being only responsible for
accepting or rejecting the proposed solutions.

• Collaboration Support:tasks are scheduled for all
the involved actors, taking into account their cal-
endars and the deadlines of their other commit-
ments.

• Conservativeness:unless the user requests a
new schedule, the mixed-initiative scheduler must
search for solutions that are as conservative as
possible with respect to the existing commitments
in order to avoid a complete reorganization of the
actors’ daily schedules.

As described in section 3.1, the Collaborative Task
Manager enables the user to define the tasks to be per-
formed by specifying their actors, duration, deadline,
and other types of information. Even though some
tasks have a fixed starting time, e.g., meetings, other
ones can be scheduled in alternative ways and there is
a safe starting time window which spans from the in-
stant of time when they are enabled (earliest starting
time) until the very last minute they have to be started
to meet their deadline. In order to safely schedule a
task, it has to be allocated within its safe starting time
window. However, the specific allocation is not by it-
self a hard constraint to be met and can be modified
for re-scheduling purposes. We thus model two main
types of information: the basic constraints of tasks,
which have to be met in any schedule proposal, and
the specific configuration of a calendar, which repre-
sents the user’s current decisions about how to orga-
nize the activities, but can be revised. The represen-
tation of tasks, and the temporal reasoning approach
adopted in our work, reflect this idea.

As discussed later on, a critical aspect concerns
the execution of shared tasks, whose scheduling af-
fects multiple actors. In this respect, our current pro-
posal fully addresses the management of a single cal-
endar. In contrast, it provides a partial solution to the
synchronization of multiple calendars, to be further
developed in our future work.

3.2.2 Interaction with the User

Figure 1 shows the user interface of the mixed-
initiative scheduler we developed. This user interface
is only aimed at testing the scheduling capabilities of
our prototype and we will restyle it after having col-
lected feedback from our users.

• The central portion of the page shows the user’s
schedule for the current week in a calendar and
summarizes the definition of all the allocated
tasks; see the table at the bottom of the page.

– On the right of the user’s schedule, theSchedule
start andSchedule endbuttons enable the user
to request a new schedule following different
task allocation policies. If at least one schedule
solution exists:

∗ TheSchedule startpolicy proposes one where
tasks that can be started earlier are allocated
before the others.

∗ TheSchedule endpolicy produces a schedule
where tasks are allocated depending on their
urgency, i.e., tasks whose deadline is earlier
are allocated before the others.

The former policy produces tighter schedules,
reducing the free time slots in the user’s calen-
dar. The latter is more cautious and tends to
reserve time after the expected termination of
tasks, which might be possibly exploited for re-
covery purposes if problems occur during the
task execution.

– By clicking on a cell of the calendar the user
can view the alternative allocations of the re-
lated task in her/his schedule and can select
the one to be applied. As a consequence, the
system generates a new schedule satisfying the
user’s choice and visualizes it in the calendar (if
the user does not select anything, the schedule
is not modified).

• The lower portion of the page provides details
about the tasks allocated in the calendar. More-
over, it offers a form that enables the user to enter
tasks which do not have to be handled by the Col-
laborative Task Manager (e.g., simple “to -dos”
that are not part of a complex activity handled via
the CTM).

3.2.3 Software Components

We developed our mixed-initiative scheduler by inte-
grating two subsystems:

• The scheduling module, given a set of tasks, their
definition (e.g., duration, deadline and earliest
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starting time) and the task allocation policy se-
lected by the user (schedule start or end) attempts
to allocate the tasks in the calendars of the in-
volved actors and proposes a solution, if it ex-
ists. Unless specified by the user at task definition
time, we assume that tasks cannot be scheduled in
parallel; e.g., the same person cannot attend two
meetings at the same time. Thus, the scheduler
sequentially allocates the non overlapping tasks.

• The temporal reasoner, given the current sched-
ule, the overall constraints imposed on the tasks
and a problem to be solved (e.g., adding a task to
the schedule or moving a task to a different time),
searches for safe reallocation hypotheses concern-
ing the problematic task. For this purpose, the
execution of other tasks might be shifted back or
ahead, within their starting time windows, in or-
der to reserve enough free time for the user.

4 MIXED-INITIATIVE
SCHEDULING AS A TCSP

4.1 Background

As described later on in section 4.2, the constraints
that must be satisfied by the tasks in a user’s calendar
can be represented as a Temporal Constraint Satisfac-
tion Problem (TCSP) (Dechter et al., 1991).

TCSPs are a class of Constraint Satisfaction Prob-
lems (CSPs) (Dechter, 1992) tailored to the represen-
tation of temporal constraints.

A TCSP involves a set of variablesX1, . . . ,Xn with
continuous domains representing time points. Con-
straints can be unary or binary; a unary constraint:

(a1 ≤ Xi ≤ b1)∨ . . .∨ (an ≤ Xi ≤ bn)

constrains the value of one variableXi to be in one of
the intervals[a1,b1], . . ., [an,bn]. A binary constraint:

(a1 ≤ Xj −Xi ≤ b1)∨ . . .∨ (an ≤ Xj −Xi ≤ bn)

constrains the difference between two variablesXj , Xi
to be in one of the intervals[a1,b1], . . ., [an,bn].

As we shall see, TCSPs have the expressive power
to capture all of the constraints of interest to this work.
We solve TCSPs with a Constraint Logic Program-
ming (CLP) solver, as described in Section 4.3.

For implementing some important features of our
approach, we have to focus on a subclass of TCSPs,
the Simple Temporal Problems (STPs) (Dechter et al.,
1991), where all of the constraints are binary and do
not contain disjunctions:

(a≤ Xj −Xi ≤ b)

This class of problems can be represented as a graph
named Simple Temporal Network (STN), and it has
two important characteristics:

• checking whether a STN is consistent takes poly-
nomial time (Dechter et al., 1991; Planken et al.,
2011)

• the same polynomial algorithm used for checking
the consistency, alsominimizesthe STN; i.e., for
each pair of variablesXi , Xj , it computes an inter-
val [amin,bmin] such that in every global solution,
the following holds:

amin ≤ Xj −Xi ≤ bmin

vice versa, for each valueδ ∈ [amin,bmin] there is
a global solution such thatXj −Xi = δ.

We solve STPs with a specialized STN solver, as de-
scribed in section 4.4.

4.2 Representing Tasks for Scheduling
Purposes

We express the time constraints in the user’s calen-
dar as TCSP constraints. Starting from the basic con-
straints defined for a task (and stored by the Collabo-
rative Task Manager), we associate two numeric vari-
ablesTs andTe to the start and end time of each task
T. For simplicity, we assume that the value of a vari-
ableTs (resp. Te) is the number of one-hour slots in
our calendar between Monday 8.00 and the start (re-
spectively the end) of taskT.

Let us start by consideringdeadlines, durations
and precedences, following the example schedule
shown in Figure 1.

A deadline, such as “the Library meeting (LM)
must take place before 11.00 on Thursday”, is ex-
pressed as:

LMe ≤ 39
since in our calendar there are 39 one-hour slots be-
tween Monday 8.00 and Thursday 11.00 (see Fig-
ure 1). With a slight abuse, we use the term deadline
also to indicate constraints on the exact end of a task;
for example, the fact that the Prog2 class (P2) must
endexactlyon Wednesday at 13.00, is captured by:

P2e = 29

which is equivalent to 29≤ P2e ≤ 29.
To express aduration, such as the fact that the Li-

brary meeting lasts 2 time slots, we simply write:

LMe−LMs = 2

A precedence, such as the fact that the Phone call
to Mr. Smith (CS) must take place after the Phd meet-
ing (PM), is expressed as:

CSs−PMe ≥ 0
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It is easy to see that all of the above constraints
can be represented not only as a TCSP, but also as a
Simple Temporal Network. However, there is an addi-
tional kind of constraints that is fundamental for com-
puting an admissible schedule of the tasks: thenon-
overlappingconstraints. A typical non-overlapping
constraint states that a taskT cannot overlap with
another task. For example, the fact that the Library
meeting (LM) cannot overlap with the Prog2 class
(P2) is expressed as:

P2s−LMe ≥ 0∨LMs−P2e ≥ 0

i.e., either LM ends before P2 starts, or vice versa.
Clearly, there must be one of these constraints be-
tween each pair of tasksT, T ′ in the calendar.

There may be additional non-overlapping con-
straints. For example, in our scenario of section 2,
the Library meeting must not take place at lunch time
(i.e. from 13.00 to 14.00) or after 17.00; to express
this constraint on Monday, we write:

LMe ≤ 5∨LMe ≥ 8
LMe ≤ 9∨LMe ≥ 14

similar constraints must be added for each day of the
week under consideration.

4.3 The Scheduling Module

Given the set of tasks to be allocated in the user’s cal-
endar, the scheduling module (developed by exploit-
ing the JaCoP Constraint Solver (JaCoP, 2011)) gen-
erates a schedule by handling the task definitions as
constraints to be solved in a Constraint Satisfaction
Problem. This type of activity has been largely ex-
plored in the research on Constraint Satisfaction; thus,
we briefly describe it, leaving space for the temporal
reasoning process, which is peculiar of our work.

If a task is not a precise appointment, its start and
end times are time windows during which the task has
to be executed (unless its duration is the same as the
distance between such time points). The scheduling
module thus represents the start and end time of each
task as time intervals themselves, defining them as Fi-
nite Domain Variables whose domains represent the
eligible time instants for starting/ending the task. For
instance, if a task T must start after t0, end by t1 and
its duration is d, its starting time window is [t0, t1-d].

Given the start and end Finite Domain Variables
of the tasks to be scheduled and the existing non-
overlapping constraints, the scheduling module per-
forms a domain reduction on such variables in order
to restrict their domains to the feasible values. If a
solution exists (i.e., for each Finite Domain Variable,
the domain is not null), the scheduling module ex-
plores the solution space for setting such variables to

specific values, which represent the proposed alloca-
tion time. Otherwise, the scheduling module returns a
“no solution” value, which describes the fact that the
set of considered constraints is not satisfiable, i.e., a
schedule addressing all the requirements specified by
the user cannot be generated.

Different strategies could be applied in the ex-
ploration of the solution space, leading to different
schedules. As previously described, we have selected
two alternative strategies: allocating earlier tasks be-
fore or allocating more urgent tasks before. Techni-
cally, such policies are implemented by selecting the
order of the variables to set during the exploration of
the solution space (i.e., the set of possible configura-
tions of the variables). In theSchedule startpolicy,
the variables having the smallest minimum values in
their domains are set before the others, which results
in an early allocation of the tasks that can start ear-
lier. In theSchedule endpolicy the variables having
the smallest maximum values in their domains are set
before the others, which results in an early allocation
of the tasks that must end earlier.

In order to support an incremental mixed-initiative
scheduling of tasks, and the possibility of reason-
ing on a subset of all the tasks to be considered, the
scheduling module operates on a constraint set that
is a clone of the original task specification. In this
way, at each instant of time, the set of constraints to
be considered can be reset or modified as needed. It
is thus possible to create a history of the generated
scheduling solutions and allow the user to navigate it
and choose the preferred alternative.

It should be noticed that the constraints to be
solved in the generation of a schedule might con-
cern personal and shared tasks. Scheduling a shared
task means allocating it in the calendar of all the in-
volved actors, which are known thanks to the infor-
mation available in the Collaborative Task Manager
in which our mixed-initiative scheduler is integrated.
The scheduling module fully supports the allocation
of shared tasks because the constraints belonging to
the calendars of the involved users can be fused to
search for a global solution by merging their con-
straints: in fact, even though each actor is committed
to several tasks, those to be performed by different
actors can overlap in the overall schedule; thus, task
constraints can be merged to represent the complete
set of activities to be scheduled.2 If the overall set of
constraints is not satisfiable (because there is no free
slot where the involved actors can perform the shared

2If more than one actor is involved in a task to be re-
scheduled, the task instances present in the various calen-
dars are unified by imposing that their start and end times
are equal.
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LMe

[26,35]
[27,36]

Figure 3: Basic STN for wednesday tasks.

task), the scheduling module returns a “no solution”.
However, if the failure is returned after the user has
selected one of the (conservative) suggestions made
by the temporal reasoner (see next section), it may
still be possible to request a complete (non conser-
vative) re-scheduling of all of the activities, to see if
different solutions can be found which accommodate
the new task.

4.4 The Temporal Reasoner

The deadlines, durations and precedences can be
straightforwardly expressed without disjunctions, and
therefore can be encoded in a Simple Temporal
Network (STN). Figure 3 depicts the STN for the
constraints of our running example regarding the
Wednesday tasks. It shows the new task Meet
Plumber (MP) to be inserted, as well as Library meet-
ing (LM), Prog2 class (P2), Ph.d meeting (PM) and
Phone Call to Smith (CS) (assuming that the tasks
cannot be performed before Wednesday).

The z time point represents Monday 8.00, while
the intervals on the arcs express the minimum
and maximum distance between the connected time
points; for example, interval[26,39] on the arc con-
nectingzandLMe represents:

26≤ LMe− z≤ 39

i.e., LM must end at most on Thursday 11.00, and at
least on Wednesday 10.00. The dotted arc represents
the precedence between PM and CS; its associated in-
terval (omitted for readability) would be[0,+∞]; i.e.,
CSs must followPMe by at least 0 hours.

The minimization of this STN only restricts the
intervals of the arcsz−PMe andz−CSe (the restricted
intervals are depicted in italics in the figure). In par-
ticular, the maximum value ofPMe (end of Phd meet-
ing) becomes 35 (Wednesday 19.00) because there
must be time for making the phone call to Mr. Smith
afterwards. Similarly, the minimum value ofCSe be-

comes 27 (Wednesday 11.00) because there must be
time for the Ph.d meeting before.

Note that this STN does not take into account
the non-overlapping constraints and, in particular, its
minimization does not affect the interval for the end
PMe of the new task (Meet plumber), which is still be-
tween 11.00 and 18.00 on Wednesday. Unfortunately,
not all of the time points within this interval are ad-
missible, as can be seen by considering, e.g., that the
two time slots between 11.00 and 13.00 are rigidly
allocated to the Prog2 class.

When the STN solver is invoked to show all the
feasible time intervals for starting the Meet plumber
task, we want it to return only admissible time points.
Let us start by considering how we can take into ac-
count the non-overlapping between tasks (below, we
will also discuss the non-overlapping between a task
and certain time slots, such as lunch time for the Li-
brary meeting).

From the current schedule (Figure 1), we can infer
the current order of the tasks that are already in the
calendar. We make the assumption that the order of
these tasks cannot change, while the Meet plumber
new task can be placed between any two of them.

Algorithm 1 implements this idea. It takes as in-
puts a new taskT to insert, the sequence of the other
tasks(T1, . . . ,Tk) in the order in which they appear in
the current schedule, and an STNN encoding the ba-
sic deadline, duration and precedence constraints for
T1, . . ., Tk andT. Each possible positioning ofT in
the sequence determines a total orderOrd among the
tasks (includingT); such a total order is asserted as a
set of precedence constraints intoN , and the result-
ing net is minimized, yielding an interval[mini ,maxi ]
of possible values for the startTs of T.

The algorithm returns a setFInt containing all of
such intervals. If the current order of the tasks is not
allowed to change, the intervals inFInt represent all

Algorithm 1: Feasible intervals for adding a new task.

input :
new taskT
other tasks in current schedule order(T1, . . . ,Tk)
STN N (deadlines, durations, precedences)

FInt ⇐ /0
for i = 0. . .k do

Ord⇐ (T1, . . . ,Ti ,T,Ti+1, . . .Tk)
N ′ ⇐ assert orderOrd in N
N ′ ⇐ minimizeN ′

FInt ⇐ FInt ∪
{ get interval[mini,maxi ] for Ts from N ′}

end for
return FInt
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MPe

[2,2]
P2s P2e

[2,2]

PMs PMe CSs CSe

z

[2,2] [1,1]

[26,39]
[25,36]

[26,36]

[29,29]

MPs
[3,3]

[27,34]

LMe
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[34,35]
[26,27]

[35,36]

[29,30]

Figure 4: STN for order (LM, P2, MP, PM, CS).

of the possible choices for starting taskT.
Going back to our example scenario, the new task

is MP, the other tasks (in the current scheduled order)
are (LM,P2,PM,CS), and the basic STNN is the
one depicted in Figure 3. Figure 4 shows the netN ′

computed by the algorithm at the 3rd iteration (i = 2),
when the new taskMP is placed betweenP2andPM.

First of all, several intervals are restricted due to
the minimization. In particular, the interval on the
arcz−MPe is restricted to[32,33] (Wednesday from
16.00 to 17.00); when we ask the STN for the inter-
val on the arcz−MPs, we get[29,30] meaning that,
if MP is placed betweenP2 andPM, it can start on
Wednesday between 13.00 and 14.00.

The full execution of the algorithm yields the fol-
lowing set of intervals:

/0 whenMP is the first task
/0 whenMP is between LM and P2
[29,30] whenMP is between P2 and PM
[31,31] whenMP is between PM and CS
/0 whenMP is the last task

If we take the union of the overlapping intervals, we
conclude that the meeting with the plumber can start
on Wednesday from 13.00 to 15.00 (interval [29,31]).

Let us now show how it is possible to handle the
non-overlappingbetween a task and certain time slots,
by assuming that the user is not satisfied with the in-
terval [29,31] forPMs computed by Algorithm 1, be-
cause it would be preferable to meet the plumber in
the morning. The user then attempts to make room for
MP by selecting the Library meeting task and asking
the STN solver to suggest where to move this task.

The computation of the possible start intervals of
LM is made with an algorithm similar to Algorithm 1,
which explores the effects of placing LM in each
position within the current order of the other tasks
(P2,PM,CS). However, there is a parallel ordering
to be explored; if we denote respectively as I1, I2

LMs
[2,2]

P2s P2e
[2,2]

PMs PMe CSs CSe
[2,2] [1,1]

LMe

I1s [1,1] I1e I2s [3,3] I2e

Figure 5: Moving LM after P2 in the afternoon.

the lunch time (13.00 to 14.00) and the late afternoon
(17.00 to 20.00) on Wednesday, the algorithm must
also explore the placement of LM in each position
within the order(I1, I2). Figure 5 shows a portion
of the STN where LM has been placed between P2
and PM in the order of tasks, and between I1 and I2
in the order of non-admissible slots.

The minimization of this particular network yields
an interval [30,31] for starting LM (14.00 to 15.00).
The algorithm also explores all the other combina-
tions of the position of LM in the tasks order and in
the non-admissible slots order, yielding the following
admissible starting intervals:

[24,25] LM first task before lunch
[30,31] LM between P2 and PM after lunch
[31,31] LM between PM and CS after lunch
[36,37] LM on Thursday after Write paper

If we take the union of the overlapping intervals, we
conclude that we can start LM on Wednesday from
8.00 to 9.00 or from 14.00 to 15.00, and on Thursday
from 8.00 to 9.00. Going back to the goal of the user,
the Library meeting can be moved to Wednesday af-
ternoon or Thursday morning, saving room for task
Meet plumber on Wednesday morning.

It should be noticed that the described techniques
could be extended to handle shared tasks. For exam-
ple, after computing the slots where the Library meet-
ing could be placed, we have only taken into account
the current user’s calendar. However, it might be nec-
essary or desirable to also take into account the calen-
dars of the other people attending the meeting.

It is out of the scope of this paper to present the
extended techniques that address this issue. In Fig-
ure 6 we give a hint of how a (portion of) STN en-
compassing multiple calendars may look like. There,
tasks B and V of USR1 and USR2 represent the same,
shared task (e.g., a meeting), and this is expressed in
the net by the fact thatBs−Vs ≥ 0 andVs−Bs ≥ 0,
i.e. Bs=Vs. The extensions needed to handle such an
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Figure 6: A multi-user scenario with cross-dependencies.

STN may benefit from distributed solving of the Sim-
ple Temporal Problem (Boerkoel and Durfee, 2010)
and may involve negotiations among the schedules
of different users (as partially done in (Tarumi et al.,
1997), where a user affected by a change made by an-
other user can accept or refuse it).

5 RELATED WORK

The support offered by our mixed-initiative sched-
uler can be compared to various types of systems, de-
scribed in the following.

Meeting support services help the user identify-
ing suitable time slots for allocating shared tasks on
the basis of the availability of the actors to be in-
volved. See, for instance Google Calendar (Google,
2012) and previous agent-based meeting scheduling
services such as the one described in (Macho et al.,
2000). However, such tools do not provide any
scheduling support.

To-do-list managers, such as Remember The Milk
(Remember The Milk, 2011), are connected to the
user’s calendar but typically do not provide any
scheduling support. They only present the lists of
things allocated in a certain time slot.

Task managers, such as Things (Cultured Code,
2011) and DoIt (DoIt.im, 2011), support the manage-
ment of tasks, deadlines and task dependencies but
they do not schedule tasks, either.

Opportunistic schedulers, typically based on plan-
ning technology, synchronously guide the user in the
execution of activities according to the pending goals
to be achieved. However, they do not provide the user
with an overview of long-term schedules, do not man-
age the shared activities and are not mixed-initiative:
they basically suggest opportunities of action, which
the user may accept or ignore. For instance, see
(Horvitz and Subramani, 2007).

Complex schedulers plan the execution of tasks ac-
cording to deadlines and to the surrounding context,
e.g., in mission planning and robotic applications.
However, they are developed for very particular envi-
ronments and are not suitable for managing the user’s
daily schedules, which is a goal of our work, nor for
handling parallel activity contexts. In contrast, this
is possible in our work because our mixed-initiative
scheduler is integrated with a generic Collaborative
Task Manager handling parallel activity contexts.

Temporal reasoning and scheduling have been in-
troduced in some process management tools to ad-
dress their lack of capability to reason about time.
In (Senkul and Toroslu, 2005) the authors make
use of theOzmulti-paradigm programming language
(Wurtz, 1996) for solving scheduling problems with
CLP techniques similar to the ones at the base of the
JaCoP Constraint Solver used in our work. In (Mans
et al., 2010), a dedicated Java service is used for sim-
ilar purposes. Some process management tools, such
as the one described in (Eder et al., 2003), perform
temporal reasoning to estimate the date where a cer-
tain task will have to be done, with the aim of en-
abling the user to foresee her/his future schedules.
This kind of feature is complementary to those offered
by our system. Other tools, such as WorkWeb System
(Tarumi et al., 1997), schedule multiple workflows by
taking the availability of actors and resources (e.g.,
meeting rooms) into account. The main role of the ac-
tors’ personal schedulers (named Pochet) is that of au-
tomatically (or manually) accepting or rejecting new
tasks and modifications proposed by other agents.

To the best of our knowledge, none of the men-
tioned works supports the kind of mixed-initiative
process which is at the core of our method, i.e., the
ability of the user to invoke thetemporal reasoner
moduleas a support tool for reasoning about the pos-
sible places where specific tasks can be (re)allocated
and thus to pro-actively guide the schedule revision.

6 CONCLUSIONS

We described a mixed-initiative scheduler which sup-
ports the organization of the user’s activities in a
calendar by proposing safe schedules (respecting the
user’s commitments) and by suggesting conservative
schedule revisions when new tasks occur. Our system
also helps the user to identify alternative allocations
of tasks, which guarantee that the overall schedule is
satisfiable. At the current stage, our mixed-initiative
scheduler fully supports the management of personal
tasks. However, it partially supports the scheduling
of shared tasks: it generates global schedules if at
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least one solution satisfying the overall set of con-
straints exists, but it does not support the search for
solutions for repairing to scheduling failures. In our
future work we will extend the system to deal with
such situations by improving the temporal reasoner
that supports the task re-allocation and by developing
an interaction protocol that helps the involved users to
reach an agreement on schedule modifications. Our
future work will also be devoted to testing the scal-
ability of our scheduler and its usability, checking it
with end-users to improve its user interface and inter-
action features.
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