
INTRUSION TOLERANCE AS A SERVICE
A SLA-based Solution

Massimo Ficco and Massimiliano Rak
Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli, Aversa, Italy

Keywords: Intrusion Tolerance, Service Level Agreements, SLA, Cloud, Denial of Services.

Abstract: Among the incredible number of challenges in Cloud Computing two of them are considered of great rele-
vance: Service Level Agreement management and Security management. In this paper we will try to show
how it is possible, using a cloud-oriented API derived from the mOSAIC project, to build up an SLA-oriented
cloud application which enables the delivery of security solutions as a service. We will focus on intrusion tol-
erance solutions, i.e., systems which grant that a system maintain a (limited) availability even when a security
attack take place.

1 INTRODUCTION

Cloud Computing is an emerging reality. Following
the NIST definition, Cloud computing is “a model for
enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing
resources (e:g:, networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned
and released with minimal management effort or Ser-
vice Provider interactions [...]”. The key idea is the
delegation to the network of every kind of resources,
that can be obtained and managed on a self-service
based approach and with the perception of infinite
amount of available resources.

At the state of art, the most diffused actual solu-
tions focus on the so-called Infrastructure as a Ser-
vice (IaaS) Providers, which mainly offer virtual ma-
chines (and storage systems) following the as a ser-
vice paradigm. This kind of services are offered
now by both big players, like Amazon, IBM and Mi-
crosoft, and by little providers, like Rackspace and
GoGrid. Such resources are offered to Cloud users on
the basis of a pay-per-use model: the resources are
payed only for their effective usage (CPU active time,
amount of data stored, etc).

In such environment, a well-known diffused prob-
lem is related to the security features that can be of-
fered (and granted) by such Cloud Providers: are the
offered virtual machines protected against security at-
tacks (like Denial of Services)? Due to the pay-per-
use business model these problems are really relevant:
who pays for resources consumption due to a security

attack?
In order to define a clear agreement between re-

sponsibility assignment, a lot of interests are assum-
ing the Service Level Agreements (SLAs). An SLA is
an agreement between a Service Provider and a cus-
tomer, that describes the Service, the service level tar-
gets, and specifies the responsibilities of the Provider
and the customer. SLAs aim at offering a simple and
clear way to build up an agreement between the fi-
nal users and the Service Providers in order to es-
tablish what is effectively granted in terms of qual-
ity. From user point of view, a SLA is a contract that
grants him/she about what he/she will effectively ob-
tain from the service. From Cloud Providers point of
view, SLAs are a way to have a clear and formal def-
inition of the requirements that the application must
respect. SLAs are a way to formalize the agreements,
but no stable solutions exists today in order to monitor
and enforce the respect of such agreements, even if a
lot of research effort is spent today in such problems.

In this paper we will try to show how it is pos-
sible, using a Cloud-oriented API derived from the
mOSAIC project (mOSAIC Project, 2010; van Sin-
deren F. Leymann et al., 2011; Massimiliano Rak,
2011), to build up a SLA-oriented Cloud application,
which enables an IaaS Cloud Provider to offer secu-
rity service customized on user needing on the top of
the resources delivered.

The problem on which we focus is to offer, in a
transparent way, a service that is ables to offer the typ-
ical IaaS services (mainly Virtual Machines delivery,
starting and stopping) enriching them with ad-hoc so-

375Rak M. and Ficco M..
INTRUSION TOLERANCE AS A SERVICE - A SLA-based Solution.
DOI: 10.5220/0003941003750384
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 375-384
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



lutions for protecting the delivered resources against a
set of security attacks. The goal is to enable the Cloud
user to negotiate with the provider the level of secu-
rity offered, so that the service offered (for example
a Web server) will be protected against a given set of
attacks. The user pays for the additional security ser-
vice, but he/she is granted that the services is tolerant
to a given set of Denial of Services attacks (i:e:, con-
tinues to work even under attack) and the additional
load generated is not charged.

The remainder of this paper is organized as fol-
lows: next section is dedicated to clarify the approach
adopted to solve the problem. Section 3 is dedicated
to intrusion tolerance technologies and offers a basis
for the description of the Intrusion Tolerant solution
adopted in our proposal, described in Section 4. Sec-
tion 5 describes the technology we adopted in order
to build up the solution, while Section 6 describes our
Cloud application that enables the offering of SLA ne-
gotiation and enforcement. Section 7 describes the
final integrated solution and the offered SLAs. Sec-
tion 8 summarizes the related work and Section 9 con-
cludes the paper.

2 THE PROPOSED APPROACH

The problem we focus on this paper is the design and
implementation of a system able to offer Intrusion
Tolerance (IT) solutions as a Service. The key idea
is that the approach of offering security solutions as a
Service can be better obtained following a SLA-based
approach: final user invokes the services always in the
same way, but, due to the integration of the system
together with an SLA-based application, the services
offered can be enriched with security mechanisms.

In order to better illustrate the problem, Figure 1
shows the approach we proposed: the Cloud Provider
offers typical Infrastructure as a Service (IaaS) func-
tionalities, offering virtual machines following a well
known interface. In the example presented, the Cloud
Provider offers, among the list of available images,
a set of images offering pre-configured Web Servers:
the user, invoking the provider’s services, is ables to
startup a Web Server, that he is able to customize
and/or enrich with given functionalities.

Thanks to the adoption of the mOSAIC Frame-
work (see section 5), the provider is ables to offer
more complex services on the top of the virtual ma-
chines. In the proposed example, the provider offers
SLA-based application, which enables the final user
to negotiate, trough the WS-Agreement standard de-
scription, the quality of services delivered.

In this paper, we will show that it is possible even

Figure 1: Intrusion Tolerance as a Service with SLA-based
approach.

to negotiate security-oriented parameters. In our case
study, we will show that the delivered machine will
be enriched, after the negotiation, with IT techniques,
that grant the user against some of possible Denial of
Services (DoS) attacks.

As shown in Figure 1, the user invokes exactly the
same service, but, due to the SLA negotiation process,
instead of the binding to the unprotected Web Server,
he will receive the binding to a VM, which is enriched
with IT functionalities. Service invocation does not
change and from final user, obtaining a standard ma-
chine or a protected one is completely transparent.

Moreover, trough the SLA-based application, it is
possible to help Cloud Provider and user to agree on
the details of the security granted, identifying the fea-
tures that should be offered.

3 INTRUSION TOLERANCE:
DEFINITIONS, METHODS AND
TECHNIQUES

Intrusion Tolerance is the ability of a system to con-
tinue providing (possibly degraded) adequate service,
despite the presence of malicious faults, i:e:, delib-
erate attacks on the security of the system by both in-
siders and outsiders. In order to enforce the IT several
techniques can be used.

Replication is the technique most commonly used
to perform IT. It consists to use more replicas of the
same component and use specific voting algorithms,
which are used to resolve any difference in redundant
responses and to arrive at a consensus result based on
the responses of perceived non-compromised compo-
nents in the system. It has two complementary goals:
masking of intrusions, thus tolerating them, and pro-
viding integrity of the data. Examples of algorithms

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

376



Figure 2: Intrusion tolerant architecture.

are Byzantine replication algorithms (P. Kouznetsov
and Druschel, 2006).

Using a rejuvenation approach, critical compo-
nents are periodically rejuvenated to remove the ef-
fects of malicious and intelligent attackers that find
ways to compromise them. Example of rejuvena-
tion procedures could aim at loading a clean version
of the application or change the cryptographic keys
(Marsh and Schneider, 2004; N. F. Neves and Veris-
simo, 2006).

Redundancy is an approach different from replica-
tion, which is just one type of redundancy. Replicated
components are pure replicas of each other. If the
attacker has found a technique to subvert one com-
ponent and all are pure replicas, it is likely that all
components are likewise vulnerable. To combat this,
another common technique used is ‘diversity’. Di-
versity is the property such that the redundant com-
ponents should be substantially different in one or
more aspects, from hardware diversity and operat-
ing system diversity, to software implementation di-
versity. Therefore, through the use of diversity, the
probability of a replica being compromised is inde-
pendent of the occurrence of intrusion in other repli-
cas (A. K. Caglayan and Eckhardt, 1989; R. Mista and
Medidi, 2002).

Indirection allows designers to insert protection
barriers and fault logic between clients and servers/-
components that provide services. Since the indirec-
tion is hidden outside of the black box system, clients
see only what looks like a COTS server. There are at
least four main types of indirection used by IT sys-
tems: proxies, wrappers, virtualizations, and sand-
boxes.

Several previous techniques, commonly named
proactive, aim at preventing system components be-
ing compromised. Reactive techniques aim at mitigat-
ing and reacting to intrusion. For example, they aim
at minimizing stolen resources and disable inappro-
priate information flows (e:g:, through roll back and
roll forward) to react/mitigate intrusion impact on the

system. Intrusion detection and correlation mecha-
nisms can be used to detect intrusion and identify the
specific recovery action (Ficco, 2010) . For example,
in replication, it could force the recovery of a replica
that is detected or suspected of being compromised.

Reconfiguration can be proactive or reactive and
can help in prevention, elimination as well as toler-
ance. A wide variety of reconfiguration strategies are
employed (D. Heimbigner. and Wolf, 2002). A chal-
lenge in devising the reconfiguration mechanisms is
to protect them from being (mis)used by the attacker.
It is important that the reconfiguration process be not
very predictable by the attacker. Therefore, a major
challenge is to make them unpredictable and resilient
to oscillations due to transient and malicious effects
that may lead to reconfigurations that drive the sys-
tem to an inconsistent state.

4 AN INTRUSION TOLERANT
SOLUTION

As case study, in this paper we adopt a Intrusion Tol-
erant reactive technique. The proposed IT architec-
ture is composed of two subsystems, with distinct
properties (Figure 2).

The first subsystem is the Application VM that
hosts the application to protect, whereas the second
subsystem, named ITmOS, is the VM that hosts the
IT mechanisms. The two subsystems are connected
through a secure channel isolated from other connec-
tions.

The interaction of the application with the outside
world is done only through the network, using a Proxy
(based on running Squid Web proxy (Squ, )) hosted
on the ITmOS VM.

A VM Monitor monitors the Application VM. It
is a Java-based component based on Ganglia-Gmond,
which is a real-time monitoring system (Gan, ). It is
used to collect system resources consumption (includ-
ing CPU, memory, disk).

INTRUSION�TOLERANCE�AS�A�SERVICE�-�A�SLA-based�Solution

377



Figure 3: CPU consumption with different message fre-
quencies.

An Intrusion Detector module collects data from
the Proxy and alerts the Decision Engine component
whether an anomalous behavior is observed. The De-
cision Engine is a centralized engine, which receives
and correlates security data. It determines whether
the monitored data are malicious behaviors, and what
the effects on the monitored subsystem. It is respon-
sible to identify the best reaction to take, in order
to mitigate the attack effects on the target applica-
tion. In particular, it analyzes the received data and
performs the reactions by the Proxy in response to
the attacks, filtering messages to the guest system
as needed. The Intrusion Detector is connected to a
Cloud Agent, which provide the necessary facilities to
interact with the VM Monitor through a secure com-
munication channel.

4.1 An Example of Intrusion Tolerance
Approach for Denial of Service
Attacks to Web Server

In our previous work (Ficco and Rak, 2011), we
present an IT approach for Denial of Service attacks
to Web Server, which exploits XML vulnerabilities.
We focus on the Deeply-Nested XML DoS attacks
(XDoS), which exhaust the computational resources
of the target system by forcing the XML parser within
the server application to process numerous deeply-
nested tags. In particular, the attack consists of in-
serting of a large number of nested XML tags in the
Web messages.

Figure 3 shows the CPU consumption depending
on the number of nested XML tags and the frequency
with which the malicious Web messages are injected.
We perform different attack scenarios. Each scenario
consists of a sequence of messages injected with a
fixed frequency and a fixed number of nested tags.

An attack scenario takes about 30 seconds. In par-
ticular, Figure 3 represents the average value of CPU
for the different scenarios, which are performed using
different message frequencies and with a number of
tags nested to different depths. The experiment shows
that it is sufficient to inject messages with about 3000
nested tags every 100 ms, to make unavailable the Ap-
plication VM (i:e:, to exhaust the CPU resource).

4.1.1 XDoS Attack Reaction

The implemented solution allows to trigger a specific
reaction to mitigate the effects of the XDOS attacks.

In order to detect the attack, an anomaly-based
monitoring approach is adopted that assigns a weight
to the anomalous events detected. The weight reflects
the anomaly levels with regard to an established pro-
file. If this weight does not exceed a threshold esti-
mated during a training phase, the event is discarded
(i:e:, it is considered as a normal behavior), otherwise
an alarm is triggered and a reaction is activated.

In the proposed architecture (Fig. 2) the Deci-
sion Engine correlates the events generated by both
the VM Monitor hosted on the Application VM and
the Intrusion Detector.

As presented in (Ficco and Rak, 2011), on the
occurrence of an excessive CPU consumption, if an
anomalous number of nested XML tags with respect
to a normal profile is monitored, a reaction in trig-
gered. In particular, the Decision Engine alerts the
Proxy, which filters each Web request that contains a
number of nested tags greater than a fixed threshold.
The purpose of this action is to reduce the CPU load
on the Application VM, thus reducing the period in
which the Web Server is unavailable.

In order to evaluate the proposed solution, a
workload based on TPC Benchmark W (TPC-W) is
adopted (TPC, ). It is a transactional Web bench-
mark. The workload is performed in a controlled
environment that simulates the activities of a busi-
ness oriented transactional Web Server. It simulates
the execution of multiple transaction types that span
a breadth of complexity. Multiple Web interactions
are used to simulate the activity of a retail store, and
each interaction is subjects to a response time con-
straint. The performance metric reported by TPC-W
is the number of Web interactions processed per sec-
ond (WIPS). It is used to simulated stress load and to
assess the effectiveness of the proposed solution by
the WIPS measurements.

An example of recovery effect is shown in Figure
4. It represents the WIPS and CPU variations with re-
spect to the time, during an interval time of tree min-
utes.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

378



The experiment consists of tree temporal win-
dows. During the first two windows, the Decision
Engine is disabled. In particular, the first 60 seconds
show the values of the WIPS and the CPU load in
absence of the attack. The second 60 seconds show
the attack effects. We injected malicious messages
with 3000 nested tags every 200 ms. During this pe-
riod, the CPU load is about 100% and the number of
TPC-W interactions processed is very low. Finally,
during the last 60 seconds, the Decision Engine is en-
abled. When the Decision Engine detects the condi-
tion of a reaction (i:e:, the attack is in progress and
the CPU consumption exceed the 90%), it alerts the
Proxy, which filters all the suspicious messages. The
reaction is applied until the CPU load falls below the
90%.

Figure 4: WIPS evaluation during a intrusion recovery pro-
cess.

5 mOSAIC: DEVELOPMENT OF
DISTRIBUTED CLOUD
APPLICATIONS

mOSAIC aims at offering a simple way to develop
Cloud application. The target user for the mOSAIC
solution is a developer (mOSAIC User). In mOSAIC
a Cloud application is modeled as a collection of com-
ponents that are able to communicate each other and
consume Cloud resources (i:e:, resources offered as a
service from a Cloud Provider). Cloud applications
often are offered in the form of So f twareasaService
and can be accessed from users different from the
mOSAIC developer. Users different from the mO-
SAIC User, which uses a Cloud application are de-

fined FinalUsers.
The mOSAIC solution is a framework composed

of three independent components: Platform, Cloud
Agency and Semantic Engine. The first one (mOSAIC
Platform) enables the execution of application devel-
oped using mOSAIC API; the second one (Cloud
Agency) acts as a provisioning system, brokering re-
sources from a federation of Cloud Providers; the last
one (Semantic Engine) offers solution for reasoning
on the resources needing and the application needing.
For the needing of this paper, we need concepts re-
lated to Platform and Cloud Agency, while Semantic
Engine will not be focused in this context.

mOSAIC solution can be adopted in three dif-
ferent scenarios: (i) when a developer wants to de-
velop an application, which runs independently from
the Cloud Providers, (ii) when an IaaS Provider aims
at offering enhanced services, and (ii) when a single
user (like a scientist) is interested to start his own ap-
plication in the Cloud for computational purposes. In
this paper, we will focus on the second scenario (the
one dedicated to a Provider).

The approach adopted is pretty simple in this case:
the Provider starts up a set of its resources dedicated
to management of the Cloud application and hosting
the mOSAIC Platform. On the top of the Platform,
the Provider runs its own mOSAIC Application that
directly interacts with the IaaS service offered in order
to grant added value services.

5.1 Programming with mOSAIC

A mOSAIC Application is defined as a collection of
interconnected mOSAIC Components. Components
may be offered by the mOSAIC Platform (i) as COTS
(Commercial off-the Shelf) solutions, i:e:, common
technologies embed in a mOSAIC component, (ii)
as Core Components, i:e:, tools offered by mOSAIC
Platform in order to perform predefined operations,
or (iii) new components developed using mOSAIC
API. In last case, a component is a Cloudlet run-
ning in a Cloudlet Container (van Sinderen F. Ley-
mann et al., 2011). mOSAIC Components are inter-
connected trough communication resources, queues
or other communication system (i:e:, socket, web ser-
vices, etc.). The mOSAIC Platform offers some queu-
ing system (rabbitmq and zeroMQ) as COTS compo-
nents, in order to enable component communications.
Moreover, mOSAIC Platform offers some Core Com-
ponents in order to help Cloud application to offer
their functionalities as a service, like an HTTP gate-
way, which accepts HTTP requests and forward them
on application queues. mOSAIC Components run on
a dedicated virtual machines, named mOS (mOSAIC

INTRUSION�TOLERANCE�AS�A�SERVICE�-�A�SLA-based�Solution

379



Operating System), which is based a very small Linux
distribution. The mOS is enriched with a special mO-
SAIC Component, the Platform Manager, which en-
able to manage set of virtual machines hosting the
mOS as a virtual cluster on which the mOSAIC Com-
ponents are independently managed. It is possible
to increase and decrease the number of virtual ma-
chines dedicated to the mOSAIC Application, which
will scale in and out automatically.

The Cloud application is described as a whole in
a file named Application Descriptor, which lists all
the components and the Cloud resources needed to
enable their communications. A mOSAIC developer
has the role of both develop new components and
write Application Descriptors, which collect them to-
gether. mOSAIC API, actually based on Java, en-
ables the development of new components (in the
form of Cloudlets), which self-scale on the above de-
scribed Platform and consume every kind of Cloud
resources like queues, NO-SQL storage system (like
KV store and columnar databases), independently
from the technologies and API they adopt, trough a
wrapping system.

5.2 mOSAIC Offering for SLA-based
Applications

mOSAIC offers a set of features dedicated to SLA
management. In (Massimiliano Rak, 2011), we pro-
posed a first outline of the full architecture, while in
(Rak et al., 2011) we proposed a similar case study in
which we presented an application that offers security
access configurations to a GRID environment in terms
of SLA. The components offered in the SLA architec-
ture should help the application developer to imple-
ment an SLA-based architecture. The main modules
offered are :

� SLA Agreement Management: This module con-
tains all the Cloudlets and components that man-
age the SLA documents and their formal manage-
ment, i:e:, negotiation protocols, auditing, and so
on.

� SLA Monitoring System: This module contains all
the Cloudlets and components needed to detect
the warning conditions and generates alerts about
the difficulty to fulfill the agreements. It should
address both resource and application monitoring.
It is connected with the Cloud Agency.

� SLA Enforcement System: This module includes
all the Cloudlets and components needed to man-
age the elasticity of the application, and modules
that are in charge of making decisions in order to
grant the respect of the acquired needed to fulfill

the agreements.
In this context, we are interested mainly in the

SLA management module, which offers the func-
tionality to automatize the SLA negotiation process.
The main component dedicated to SLA management
is the SLAgw, offered by the mOSAIC framework
as a standalone component. SLAgw component of-
fers an incredibly simple way to interact with final
users in a SLA-based manner: they will negotiate the
agreement. The SLAgw sends out a message to the
mOSAIC Application each time a new agreement re-
quests take place. At the state of art, we support the
asynchronous WS-Agreement negotiation (i:e:, the
users agreement requests always receive a wait reply,
then it is up to the user to query for the agreement
status and obtain an accept or a refuse). In future
work, we will support even the synchronous negoti-
ations and more evolved protocols.

The SLAgw component does not assume deci-
sions about the submitted SLA, it just forward them
internally to a mOSAIC Application and store the
SLA in a shared KV store.

6 SLA-BASED CLOUD
APPLICATION FOR IT
MANAGEMENT

In our case study, the Provider aims at developing
a Cloud application that offers SLA negotiation fea-
tures, following the SLA model proposed in mO-
SAIC, in order to offer enriched services to Cloud
users. The negotiation has the effect of enabling the
IT techniques adopted.

The application we aims at offering offers mainly
two different use cases:
� SLA Negotiation: that enables an Final User to ne-

gotiate a SLA identifying the security of the ser-
vices offered. Trough the negotiation process, it
is possible to enforce the security mechanisms de-
scribed in Section 4.

� VM Delivery: that just delivers a virtual machine
to the Final User. In this case, the application just
forwards the request to the underlying IaaS infras-
tructure in order to offer the service to the Final
User. Note that, depending on the SLA negoti-
ated, the application may start different number
of VMs for the same request done from the Final
User.
The SLA negotiation follows the SLA model pro-

posed in mOSAIC, briefly described in Section 5 and
based on SLAgw, while the VM delivery is done sim-
ply forwarding the requests to the underlying IaaS

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

380



Figure 5: Overal architecture of the IT SLA-based services.

Provider in the case of non-protected requests, instead
performing a set of operation when an IT system is re-
quired.

Figure 5 describes the global architecture of the
proposed solution. As shown, the IaaS offers its ser-
vices as usual to its own Final Users (the upper re-
quests), but it is possible to offer the same services
even trough the newly developed mOSAIC Applica-
tion. In the latter case, the requests may have or not
the same format of the underlying provider. In the ex-
ample, the requests are done with a very simple Rest-
ful interfaces trough a JSON request attached to an
HTTP POST invocation. When the request arrives, it
is interpreted by the mOSAIC Application that per-
forms the local requests in order to start all the VMs
needed (i:e:, the standard Web Server or the solution
presented in Section 4, which includes both the Web
Server and the IT Proxy connected trough a dedicated
virtual network).

The mOSAIC Application is fully described in
Figure 6, where all the components involved in the
SLA negotiation and SLA enforcement are proposed.
Figure 6 shows the main components of the mOSAIC
Application, following the architecture proposed in
(Massimiliano Rak, 2011). Our mOSAIC Applica-
tion consists of four components:

� SLAgw that receives the WS-Agreement, stores it
in the local storage (signing it in state pending),
and forwards it to the decision Cloudlet;

� SecDecision that evaluates if the SLA is accept-
able (i:e:, if the user can assume that role and ac-
cess that container). The Cloudlet has the role of
updating the SLA status (as an example, signing it

Figure 6: SLA-based mOSAIC Application.

as accepted or refused) and in case it is accepted,
it forwards a request to SecConfigurer;

� SecConfigurer receives the requests from SecDe-
cision and update a KV store in which there is
signed the security level agreed for each user. In
this paper, we just assume hat we offer two secu-
rity level for a Web Server: unprotected and pro-
tected. However, it is possible to enrich the offer
with a lot of different solutions

� Request Interpreter receives the user requests,
evaluate the requests, extracting the service re-
quested, checks the KV store in order to identify
the SLA agreed, and then performs the request to
the local IaaS Provider. In case of unprotected re-
quest, just start the Application VM, while in case
of protected Web Servers, it start both the Appli-
cation VM and then the ITmOS VM, writing in
the proxy configuration file the right configura-
tion informations. In both cases returns an array
of IP and port pairs, but in the first case the array
contains just one value, in the second case two of
them.

INTRUSION�TOLERANCE�AS�A�SERVICE�-�A�SLA-based�Solution

381



7 OFFERING INTRUSION
TOLERANCE TROUGH SLA

The above proposed application enables to negoti-
ate with application users a SLA, described in WS-
Agreement, in order to adapt the requests for deliver-
ing VMs from the underlying IaaS Provider. In this
section, we focus on how such requests can be de-
scribed in Ws-Agreement and how to enforce the SLA
in a VM request invocation.

It is important to point out that a SLA implies that
the offering are granted, and if not respected some
penalties are applied to the peer of the agreement.
Following the above approach, we need to understand
what the proposed IT system is able to grant. More-
over, the solution agreed should be verifiable from
the Final User, in order to check the effective respect
of the SLA. An additional consideration is important
now, the adoption of SLA in offering services as the
side effect of imposing to Cloud Provider to clear
identify the advantages offered in a measured way.

Identifying the real grants offered in the context
of security is a very hard task, being at the state of
art very few available solutions able to quantitatively
measure the security level of a system in an incon-
testable way.

The approach we propose to such a problem is
pretty simple and can be easily moved to many dif-
ferent contexts: we identify the set of security threats
we are able to face and try to model with quantita-
tive parameters such threats. As an example, we can
model a flood attack as a possible threat and model it
in terms of the number of flooding messages received
by the system. Our SLA will be built starting from
the list of all the threats we are able to face and the
level will be based on the quantitative parameters we
have identified to model the security threat. Such an
approach can be adopted in each case, in which secu-
rity threats can be modeled in terms of an attack, and
it is possible to build up a quantitative model of such
an attack.

For simplicity’s sake, in the following we will fo-
cus on a single attack against which our IT system
work, in order to clarify the approach with a simple
example. Being our proxy able to face a larger set of
attacks, the real SLA is much more complex than the
one proposed here.

The attack we focus, as described in Section 4 is
an XDoS attack based on tag nesting. This attack
founds on the simple idea that XML validators will
be heavily CPU intensive when they have to check a
(valid) XML file with a very high number of nested
tags.

When an attack takes place the CPU consump-

tion increases even if only few malicious messages
are processed by the Web Server. Our solution de-
tects the attack using the following set of information:
(< MeanNumbero f tags >;< MeanCPUUsage >;<
TimeRange >). The detection takes place on inter-
val of time of duration < TimeRange >, in such time
interval we evaluate if both mean CPU consumption
and mean number of tags are over fixed thresholds.

Such a model to detect the attack, that we call Sim-
pleThreshold, can be model by using the following
simple parameters:

� CPU Threshold

� TAG Threshold

� Time Range

Our IT model is able to grant that the Web
Server is protected against an Deeply-Nested XML
DoS attacks, detectable with a SimpleThreshold
technique with parameters <CPU Threshold>, <TAG
Threshold>, <Time Range>. Our solution grants
that if such an attack takes place, there will be no
additional CPU usage on the Web Server. The user
knows exactly the conditions under which its own
Web Server is protected and he is able to adapt the
IT Proxy parameters.

It is important to point out that, such an SLA is
correct, but very hard to manage for final users, on
the other side target users are Web Server adminis-
trator with great experience. In future work, we will
offer tools that helps in managing such information in
a more easy way, using semantic technologies.

In order to offer the SLA in a formal way, we
translate such informations in a WS-Agreement tem-
plate, that can be filled by users in order to negotiate
the parameters. We defined a simple schema for man-
agement of our security tags, which enable to list the
attacks against which the system is protected. The
code listed in 1 shown the example of guarantee term
for the Web Server’s service (that is described in an
OCCI compliant way).

Listing 1: XMLDos Attack WS-Agreement.
<ws:ServiceDescriptionTerm ws:Name

="WEB SERVER REQUEST"
ws:ServiceName="SET VARIABLE">

<Compute>
<architecture>x86</

architecture>
<cpuCores>4</cpuCores>

[...]
<title>WebServer</

title>
</Compute>

</ws:ServiceDescriptionTerm>
[...]

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

382



<wsag:GuaranteeTerm wsag:Name="ITS
" wsag:ServiceScope="WEB
SERVER REQUEST" Obligated:"
Provider">

<wsag:ServiceLevelObjectives>
<wsag:KPITarget>

<wsag:KPIName>XML DoS</
wsag:KPIName>

<wsag:Target>
<itsag:Attack name="Nested

TAG" />
<itasg:Detection name="

SimpleThreshold">
<itsag:Parameter name="

CPUThreshold" value="
90" unit="percentage"
/>

<itsag:Parameter name="
TAGThreshold" value="
20" unit="number"/>

<itsag:Parameter name="
TimeRange" value="5"
unit="minutes"/>

</itasg:Detection>
<itsag:Reaction time="120"

unit="minutes"/>
<itsag:Description link="

http://www.mosaic -cloud
.eu/ITS/Attacks/
NestedTag" />

</wsag:Target>
</wsag:KPITarget>
</wsag:ServiceLevelObjectives>

</wsag:GuaranteeTerm>

Our solution enables description of attacks, fol-
lowing the proposed approach just in terms of few pa-
rameters:

� Attack just contains the name of the attack.

� Description has several attributes, including a link
to a full, the used language, the description of the
attack and of the possible (supported) detection
systems.

� Detection has an attribute that identifies the sup-
ported detection method and contains the list
of parameters needed to evaluate the detection
model.

� Reaction has an attribute, the time needed to react,
which means that the system may have some side
effects of the attacks for that interval of time.

Such a guarantee term grants the user that each at-
tack listed as KPITarget and detectable with the listed
detection methods will not affect the performances of
the target system. It is up to the IaaS Provider iden-
tify the penalties to be paid in the case in which the
condition is not respected.

8 RELATED WORK

To the best of our knowledge not much work has been
done in the area of configuring security requirements
specified through WS-Agreement documents. Kar-
joth et al: (Karjoth et al., 2006) introduce the con-
cept of Service-Oriented Assurance (SOAS). SOAS
is a new paradigm defining security as an integral
part of service-oriented architectures. It provides a
framework in which services articulate their offered
security assurances as well as assess the security of
their sub-services. Products and services with well-
specified and verifiable assurances provide guarantees
about their security properties. SOAS enables dis-
covery of sub-services with the right level of secu-
rity. SOAS adds security providing assurances (an
assurance is a statement about the properties of a
component or service) as part of the SLA negotia-
tion process. Smith et al: (Smith et al., 2007) present
a WS-Agreement approach for a fine grained secu-
rity configuration mechanism to allow an optimiza-
tion of application performance based on specific se-
curity requirements. They present an approach to op-
timize Grid application performance by tuning ser-
vice and job security settings based on user supplied
WS-Agreement specification. WS-Agreement de-
scribes security requirements and capabilities in addi-
tion to the traditional WS-Negotiation attributes such
as computational needs, quality-of-service (QoS) and
pricing. Brandic et al: (Brandic et al., 2008) present
advanced QoS methods for meta-negotiations and
SLA-mappings in Grid workflows. They approach the
gap between existing QoS methods and Grid work-
flows by proposing an architecture for Grid workflow
management with components for meta-negotiations
and SLA-mappings. Meta-negotiations are defined
by means of a document, where each participant
may express, for example, the pre-requisites to be
satisfied for a negotiation, the supported negotiation
protocols and document languages for the specifi-
cation of SLAs. In the pre-requisites there is the
element ¡security¿ that specifies the authentication
and authorization mechanisms that the party wants
to apply before starting the negotiation. With SLA-
mappings, they eliminate semantic inconsistencies
between consumer’s and provider’s SLA template.
They present an architecture for the management of
meta-negotiation documents and SLA-mappings and
incorporate that architecture into a Grid workflow
management tool.

INTRUSION�TOLERANCE�AS�A�SERVICE�-�A�SLA-based�Solution

383



9 CONCLUSIONS AND FUTURE
WORKS

In this paper, we have shown how it is possible, us-
ing a Cloud-oriented API derived from the mOSAIC
project, to build up a SLA-oriented Cloud applica-
tion, which enables the management of security fea-
tures related to Intrusion Tolerance against XMl De-
nial of Services attacks to an Infrastructure as a Ser-
vice (IaaS) Cloud Provider. The application that en-
ables SLA management is built in order to receive a
WS-Agreement file containing a description of the se-
curity features. We proposed a simple schema for de-
scription of the guarantees offered by the system to
the users against DoS attacks. Once the user has ob-
tained an agreement with the SLA management sys-
tem, his requests will be fulfilled following the re-
quired SLA and the services will be transparently en-
riched with security features. In our case study, we
enrich a Web Server with an Intrusion Tolerance sys-
tem that grants against a well defined set of attacks.
This work is one of the steps we are doing in the direc-
tion of offering security features in terms of Service
Level Agreement, trough the adoption of the mO-
SAIC SLA architecture. In future steps, we will en-
rich the set of attacks our solutions will be able to face
and try to offer tools to help users to automatically
setup a detailed SLA filled for his own needs.

ACKNOWLEDGEMENTS

This research is partially supported by FP7-ICT-2009-
5-256910 (mOSAIC) and by MIUR funded project
“Cloud@Home: A new enahnced paradigm”

REFERENCES

Ganglia, a scalable distributed monitoring system for high-
performance computing systems.

Squid: an open source fully-featured http/1.0 proxy.
Tpc benchmark w (tpc-w), a transactional web benchmark.
A. K. Caglayan, P. R. L. and Eckhardt, D. E. (1989). A the-

oretical investigation of generalized voters for redun-
dant system. In The Nineteenth International Sympo-
sium on Fault-Tolerant Computing, pages 444–451.

Brandic, I., Music, D., Dustdar, S., Venugopal, S., and
Buyya, R. (2008). Advanced qos methods for
grid workflows based on meta-negotiations and sla-
mappings. 2008 Third Workshop on Workflows in Sup-
port of LargeScale Science.

D. Heimbigner., J. K. and Wolf, A. (2002). The willow
architecture: Comprehensive survivability for large-

scale distributed applications. In The Intrusion Toler-
ant System Workshop, pages 71–78.

Ficco, M. (2010). Achieving security by intrusion-tolerance
based on event correlation. International Journal of
Network Protocols and Algorithms, 2, num. 3:70–84.

Ficco, M. and Rak, M. (2011). Intrusion tolerant approach
for denial of service attacks to web services. In The
1st International Conference on Data Compression,
Communications and Processing (CCP 2011), pages
285–292.

Karjoth, G., Pfitzmann, B., Schunter, M., and Waidner, M.
(2006). Service-oriented assurance, comprehensive
security by explicit assurances. In Gollmann, D., Mas-
sacci, F., and Yautsiukhin, A., editors, Quality of Pro-
tection, volume 23 of Advances in Information Secu-
rity, pages 13–24. Springer US.

Marsh, M. A. and Schneider, F. B. (2004). Codex: A ro-
bust and secure secret distribution system. In IEEE
Trans. on Dependable and Secure Computing, vol-
ume 1, pages 34–47.

Massimiliano Rak, Salvatore Venticinque, R. A. B. D. M.
(2011). User centric service level management in mo-
saic application. In Press, I., editor, Europar 2011
Workshop.

mOSAIC Project (2010). mosaic: Open source api and
platform for multiple clouds. http://www.mosaic-
cloud.eu.

N. F. Neves, P. S. and Verissimo, P. (2006). Proactive re-
silience through architectural hybridization. In The
ACM Symp. on AppliedComputing (SAC’06).

P. Kouznetsov, A. H. and Druschel, P. (2006). The case for
byzantine fault detection. In The 2nd Workshop on
Hot Topics in System Dependability.

R. Mista, D. Bakken C., D. A. and Medidi, M. (2002). Mr-
fusion: A programmable data fusion middleware sub-
system with a tunable statistical profiling service. In
The Int. Conference on Dependable Systems and Net-
work (DSN-2002), pages 273–278.

Rak, M., Liccardo, L., and Aversa, R. (2011). A sla-based
interface for security management in cloud and grid
integrations. In Abraham, A. et al., editors, Proceed-
ings of the 2011 7th International Conference on In-
formation Assurance and Security (IAS). IEEE Press.

Smith, M., Schmidt, M., Fallenbeck, N., Schridde, C., and
Freisleben, B. (2007). Optimising Security Configura-
tions with Service Level Agreements. In Proceedings
of the 7th International Conference on Optimization:
Techniques and Applications (ICOTA 2007), pages
367–381. IEEE Press.

van Sinderen F. Leymann, I. I. M., – Science, B. S. S., and
Publications, T., editors (2011). Towards a cross plat-
form Cloud API. Components for Cloud Federation.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

384


