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Abstract: Due to increasing capacity of storage devices and speed of computer networks during last years, it is still 

more required to sort and search data effectively. A query result containing thousands of rows from a 

relational database is usually useless and unreadable. In that situation, users may prefer to define constraints 

and sorting priorities in the query, and see only several top rows from the result. This paper deals with top-k 

queries problems, extension of relational algebra by new operators and their implementation in a database 

system. It focuses on optimization of operations join and sort. The work also includes implementation and 

comparison of some algorithms in standalone .NET library NRank. 

1 INTRODUCTION 

Results of relational queries containing more than 

hundreds of tuples are often not clearly arranged and 

hence not usable for a user. Therefore, it is suitable 

to sort these results according to a criterion and to 

offer to users only the best ones. This reminds the 

behaviour of search engines, where a user usually 

defines neither a way of sorting results (this is, after 

all, fairly heavy task), nor restriction on the result 

size. The paper is focused on such queries, whose 

criteria of sorting as well as the required result size 

are defined by a user. Such queries are overall 

denoted by top-k queries (we define them formally 

in Section 2).  

Top-k queries need not be restricted only to 

relational databases. They can concern also an 

aggregation of several web services; each of them 

provides some data, whereas central application 

performs joins on the data, their filtering and sorting 

(Horničák et al., 2011). Principles of optimization 

are the same and, moreover, they can take into 

account speeds of particular services or the fact that 

data can be loaded in parallel (Abid and 

Tagliasacchi, 2011). 

A good introduction to top-k queries and basic 

algorithms for their processing is in the works 

(Bruno et al., 2002), (Fagin et al., 2003). Solutions 

in context of relational databases can be found in 

(Ilias et  al., 2003) and later in the survey (Ilias et al., 

2008).  

In principle, two approaches can occur in 

practice:  

 plug-in – in which a top-k functionality is 

built on top of the database engine, and 

 native – which directly manipulate the 

database engine by injecting new preference 

operators 

We follow the former in this paper. We focus on 

so called top-k join queries (or shortly rank joins) in 

our work, i.e. queries doing join of two or more 

(ranked) relations with output ordered by values of a 

scoring function calculated from tuple scores of 

input relations. We use some algorithms described in 

(Ilias et al., 2004), (Ilias et al., 2008). There are 

other attempts to top-k joins, based on modification 

of so called “no random accesses” (NRA) algorithms 

(Mamoulis et al., 2007).  

We developed a .NET library NRank enabling a 

simple formulation and effective evaluation of top-k 

queries. The library is primarily intended for 

querying over a relational database, but it can be 

used also for querying over other data structures. 

Section 2 concerns a definition and properties of 

top-k queries. Section 3 is devoted to description of 

four representative top-k algorithms used in the 

NRank. NRank is a unified platform independent 

system for top-k algorithms. Section 4 describes its 

implementation. In Section 5 we compare these 

algorithms  and in Section 6 we summarize achieved 
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results. 

2 TOP-K QUERIES 

A top-k query is the 4-tuple (S, c, f, k), where S = 

{Si} is a set data sources (a data source can be an 

arbitrary set of objects), c =  Si  {0, 1} is a 

scoring condition, f =  Si  R is a scoring function 

(R is the set of real numbers), and k  N is the 

maximum result size (the required number of 

returned objects). 

This is the most general form of top-k query that 

we can meet in most of top-k query models. It 

includes both top-k join queries and top-k selection. 

In top-k selection queries, the goal is to apply a 

scoring function on multiple attributes of the same 

relation to select tuples ranked on their combined 

score (Ilyas et al., 2003).  

The result of a top-k query over sources’ 

instances S
*
 is then an ordered set O   Si

*
 such 

that: 

t  O: c(t) =1, 

ti, tj  O:  i < j  f(ti)    f(tj), 

t O, s   Si
*
 – O: c(s) =1 f(t)  f(s)  

O = k . 

The first condition only restricts the condition on 

tuples in the result (that is equivalent to SQL clause 

JOIN ON c and/or WHERE c’). The second 

condition defines a set ordering according to the 

scoring function f. The third condition says that the 

result contains tuples with the highest possible score. 

The last condition restricts the result size to k tuples. 

Of course, the number of tuples in result can be less 

than k. Then it is possible to modify the definition to 

ensure the result set was as large as possible. 

Top-k algorithms solve the top-k query without 

reading all of the input. Their optimality is often 

measured in the number of input objects from 

particular sources, denoted as a depth. In fact, it is 

the minimal depth into which the algorithm must 

access its inputs to report the result. Other criterion 

of optimality is a space complexity; the algorithms 

distinguish significantly mutually in the amount of 

data they need to be hold in memory. 

Determining time complexity of these algorithms 

is more complicated. Asymptotic time complexity of 

these algorithms is usually the same. Because of the 

sort-based approach these algorithms have no other 

possibility than reading inputs in linear time. 

Algorithms then distinguish only in processing data 

in buffers, but from the view of asymptotic 

complexity they are mostly „equally fast“. 

Asymptotic complexity is therefore too weak tool 

for comparing the effectiveness of top-k algorithms. 

The recent approaches to rank join problem 

focus mostly on instance optimal algorithms in terms 

of I/O cost. Then this cost is a quantity proportional 

to the overall number of fetched tuples. The notion 

of an instance optimal algorithm (originally 

introduced in (Fagin et al., 2003) expresses a relative 

optimality of an algorithm with respect to a class of 

algorithms A and a class of instances D. An 

algorithm b is instance optimal over A and D if for 

every a  A and every d  D we have t(b, d) = 

O(t(a, d)) (where t(b, d) is the number of algorithm 

steps), in other words, there are two constants c1 and 

c2 such that t(b, d) ≤ c1*t(a)+c2  for every aA and 

every dD. c1 is denoted as the optimality ratio. 

When the algorithm complexity is determined, 

usually the worst or average case is studied only. 

However, while an algorithm is instance optimal, it 

is guaranteed, that it will be „reasonably fast“ in all 

defined cases. While the sets A and D are well 

defined, the instance optimality is a very strong 

criterion. For example, the Hash Rank Join 

algorithm (see Section 3) is an instance optimal 

algorithm. 

An interesting finding is that most of instance 

optimal algorithms are in practice slower than other 

algorithms. Although they have a good asymptotic 

complexity, their speed is really low, more precisely 

lower, than the speed of some algorithms, which are 

not instance optimal. During determination of the 

algorithms complexity we often meet cases, where 

the algorithm has a good asymptotic complexity, but 

its real speed is low; top-k algorithms, which are 

instance optimal, have often the same asymptotic 

complexity, but their real speed is often higher. 

Therefore we are often driven by a quest to find a 

reasonable compromise between instance optimality, 

which guarantees a robustness, and real algorithm 

effectiveness. Some works, e.g. (Finger and 

Polyzotis, 2009), endeavour to find compromises 

between these extremes. 

In the case of rank joins we use functions f 

aggregating (or combining) ranked inputs. We will 

consider only monotone aggregation functions to 

ensure some properties of algorithms followed. The 

main idea of the algorithms is sorting the inputs in 

descending order according to ranking and quest to 

provide the result as soon as possible. 

3 TOP-K JOIN ALGORITHMS 

We  will  consider  four algorithms based on hashing 
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and nested loops. 

3.1 Hash Rank Join 

The algorithm Hash Rank Join (Ilyas et al., 2003), 

(Ilyas et al., 2004) requires ranked data (in a 

descending order according to f) in both inputs L and 

R and join condition only of form L.X = R.Y. The 

scoring function for calculating the combined score 

is L.score + R.score.  

The algorithm alternately reads both inputs and 

stores them into hash tables HL and HR, where the 

hash value is calculated from the value of attribute, 

which occurs in equality condition. After reading 

new values from an input, in the hash table of the 

second input there are looked up the tuples, which 

are joinable. The join results are inserted into the 

priority queue, where they are ordered by their 

combined score. Furthermore, the algorithm 

maintains the top and bottom scores of retrieved 

inputs Lmax, Lmin, Rmax, Rmin, respectively, from which 

it calculates so called score threshold    

t = max(f(Lmax, Rmin), f(Lmin, Rmax)) 

This is an upper-bound on the score of all join 

combinations not yet seen. The soundness of the 

estimation is trivial and follows from the 

monotonicity of f. Values Lmax and Rmax are 

initialized during reading the first tuple of L and R, 

respectively, values Lmax and Rmax change 

continuously with new tuples from L and R being 

fetched. All results, which have score greater than t, 

can be immediately reported. Obviously, the value 

of t is also computed from couples, which do not 

fulfil the join condition. 

Algorithm Hash Rank Join: 

Input: data sources L and R,  

 aggregation function f:(L×R)->R, 

 join condition c:(L×R) -> {0, 1}  of 

form L.X = R.Y, 

 result size k 

Output: the first k tuples from L*cR, 

 ordered in descending order 

 according to ranking f. 

Variables: hash tables HL and HR, the 

 hash key (L.X or R.Y), L_min, 

 L_max, R_min, R_max calculated 

 from retrieved tuples, score 

 threshold t, priority queue T 

1. HL = HR = Ø; 

2. L_min = R_min = ∞; 

3. L_max = R_max = -∞; 

4. while (L≠Ø nebo R≠Ø) 

5. { 

   I := one of inputs L, R  

(inputs are selected alternately. 

 The second input is denoted J,   

 its hash table HJ); 

6.    read the next i  I; 

7.    foreach j  HJ[i]:  
            T.Insert(join(i, j)); 

8.    I_min = i.Score; 

9.    I_max = max(I_max, i.Score); 

10.   update t value; 

11.   while(T≠Ø and T[0].Score>=t)  

12. {report T[0] as output and  

   remove it from T; 

13. if k tuples are reported  

   then stop;   

14.   } 

15. } 

// emptying out the queue 

16. while(T≠Ø) 

17. { 

    report T[0] as output and  

     remove it from T; 

18.    if k tuples are reported    

       then stop; 

19. } 

The algorithm must hold in memory all no 

reported results (in priority queue) and all retrieved 

data from both inputs (in the hash table). While the 

number of resulted tuples k is not known, the queue 

can grow without restrictions. Otherwise, while k is 

known, the queue can hold only k  of best tuples. A 

compromise is possible – the queue can be restricted 

on a value greater than k (e.g., for k = 10 we restrict 

the queue to 100 objects). The user then gains top k 

tuples, but he/she can require additional tuples, up to 

maximal queue size. This ensures that the queue 

does not exceed the given size. 

The basic variant of Hash Rank Join can be 

optimized by the input choice in particular steps of 

the algorithm. Since the basic variant alternates the 

both inputs mechanically, it becomes easily, that 

after reading the next object the score threshold t 

does not decrease. Minimization of t essentially 

influences a speed of reporting the results, i.e. the 

overall algorithm speed. During calculating t the 

maximum from two virtual values t1 = f(Lmax, Rmin) 

and t2 = f(Lmin, Rmax) is chosen. The threshold 

decreases only in case that in the next step the 

greater from values t1 and t2 decreases (if t1>t2, then 

the right input is chosen, otherwise the left one) – in 

other words, it is not necessary to decrease the lesser 

from values t1, t2, the resulted t will be not changed. 

The optimization lies in strategy, in which the input 

is chosen from L and R in the way that the value t 

always decreases. This strategy is further denoted as 

adaptive. 

However, this strategy of minimizing t is not 

always better than classical alternating the inputs 

(round robin strategy). There are inputs, where 

NRank� A 8nified Platform ,ndependent Approach for 7op�. AlJorithms

���



 

alternating inputs is more suitable, as it is mentioned 

in (Finger and Polyzotis, 2009). 

3.2 General Rank Join 

The algorithm Hash Rank Join can be generalized in 

the way that the join condition need not be 

necessarily only equality condition, but arbitrary. In 

such case algorithm will not store output into hash 

tables (moreover, there is no key to be hashed), but 

simply into a buffer (each input has its buffer). 

When a tuple is read from one input, all tuples in 

second buffer must be iterated and join condition 

must be checked at each step. This process is 

obviously slower than the Hash Rank Join, which 

does not check join condition at all (the hash table 

provides just the right tuples to join). The General 

Rank Join is more universal, but slower. 

3.3 Nested Loop Rank Join 

The algorithm (Ilyas et al., 2003), (Ilyas et al., 2004) 

is a variant of the classical nested loop join. One 

input (denote it L) is read consecutively. For each 

tuple l   L, the algorithm iterates through all tuples 

from the second input (R), tries to join them with l  

and the results stores again into the priority queue. 

Similarly as in the general rank join, the threshold 

value t is maintained and updated with each reading 

a tuple from L. Resulted tuples in the priority queue, 

which have the resulted score greater than t, are 

immediately outputted. 

In fact, the Nested Loop Rank Join is a variant of 

General Rank Join, but firstly all tuples from R are 

read and stored into a buffer and after that the tuples 

from L are read.  

Input R does not have to be ordered, since all 

tuples are loaded and stored in a buffer, and thus 

Rmax and Rmin are known in advance and the 

threshold score can be easily estimated; in addition, 

the values Rmax and Rmin do not change during 

reading L. Tuples from L do not have to be 

maintained in memory; on the other hand, as all data 

from  R are held in memory, this algorithm is 

suitable rather in case, where data from R are rather 

sparse, or when it is possible to access them directly 

(random access), so that it is not necessary to hold 

data from R in memory. 
There is one more interesting optimization. The 

value Lmax can be decreased in each step to the value 
Lmin. After reading a tuple l  L there are created all 
result tuples, where l can occur (tuple l is even 
forgotten in the next step, since it is not stored in the 
buffer). Therefore the value Lmax can be decreased 

on the score of tuple l. In each step of the algorithm, 
Lmax = Lmin = f(l). Then the value of t decreases 
faster, than using the Hash Rank Join. Consequently, 
this algorithm can be faster in some situations. 

3.4 Hash Nested Loop Rank Join  

The algorithm Nested Loop Rank Join can be 

optimized for such top-k queries, where the join 

condition is an equality condition. Similarly to the 

Hash Rank Join algorithm can store the retrieved 

data in hash tables. In this case a tedious throughput 

of the whole buffer drops out. The hash table of the 

input occurring in memory is created during 

initialization of the algorithm; the hash table of the 

second input is filled by sequel during reading 

particular tuples, in the same way as in Hash Rank 

Join. 

4 IMPLEMENTATION 

The library NRank is implemented in .NET/C# 4.0. 
Its main objective is to provide all the mentioned 
algorithms to users, while it stays independent on the 
data sources. Whereas most implementations focus 
on a specific algorithm and are closely linked to 
some DBMS, we have implemented generic versions 
of the algorithms, which accept any data collection 
as a data source.  

This approach opens up many new possibilities, 

i.e. performing the algorithms on two completely 

independent web sources, combining data from 

different databases, etc. Inspired by C# query 

language LINQ, we also stressed simple usage. 

When performing a join query in LINQ, a user 

typically specifies the collections to be joined, the 

join condition, and the result function. In NRank, the 

calling convention is very similar and is extended 

only by ranking functions, so that algorithms are 

able to count tuple’s rank. 

While we cannot achieve such fast algorithms as 

if they were integrated into a database, we still 

obtain very interesting results. A big difference in 

using traditional LINQ queries and NRank queries is 

that whereas LINQ queries are translated to SQL (if 

called on database objects), NRank queries are 

performed with no translation and optimization. That 

means, when LINQ query is called, user typically 

does not care about what algorithm is used. When 

NRank query is called, user must specify the 

algorithm; this step has crucial impact on evaluation 

speed.  

The library is accessible at address http://code. 

google.com/p/nrank/.  
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5 COMPARISON OF 

ALGORITHMS 

The project includes a benchmark database 

containing tables Town (50.000 tuples), Hotel 

(1.000.000 tuples), Club (1.000.000 tuples), and 

Room (20.000.000 tuples). Experiments have been 

done on Microsoft SQL Server 2008 Express 

Edition, OS Windows 7 64bit, Intel ®Core™ 2 Duo, 

CPU 8400 2.26GHz, 4GB RAM. First, the 

algorithms evaluated a top-k binary join that can be 

expressed by the SQL query 

SELECT T.IdTown, C.IdClub, 

T.Score + C.Score 

FROM Town T JOIN Club C ON   

   T.IdTown = C.IdTown 

ORDER BY DESC T.Score + C.Score 

STOP AFTER k 

 
 

 

Figure 1: Comparison of General Rank Join and Hash 

Rank Join. 

We varied the values of k in the sequence 1, 5, 10, 

50, 100, 500, and 1000. 

Experiments represented by Figures 1 and 2 

show, that top-k algorithms exploiting hash tables 

for cashing input data are much faster than top-k 

algorithms exploiting only a simple buffer. The use 

of buffer even for small values of k significantly 

slows down the algorithm. The only difference 

between general and hash algorithms is in the join 

condition. 

Our experiments also shown that concerning the 

General Rank Join algorithm, the strategy of input 

choice is crucial only for higher values of k. Time 

saving is subtle for small values of k since both 

algorithms read from their inputs only small amount 

of data. The Hash Rank Join almost does not depend 

on a strategy of input choice. The use of hashing 

brings a significant saving while the strategy in itself 

does. Due to the algorithms after reading an object 

from input need not look through a huge amount of 

data, both strategies of input choice are comparably 

fast. Both algorithms read order of magnitude the 

same amount of data independently on the strategy 

used. Thus, in use of Hash Rank Join, the strategy of 

input choice has a negligible influence. 

 

 

Figure 2: Comparison of Nested Loop Rank Join and Hash 

Nested Loop Rank Join. 

We also tested the algorithms evaluating top-k 

join of three tables (see Figure 3) with the query 

SELECT T.IdTown, H.IdHotel, C.IdClub 

FROM Town T JOIN Club C ON  

      T.IdTown = C.IdTown 

JOIN Hotel H ON T.IdTown = H.IdTown 

ORDER BY DESC  

      T.Score + C.Score + H.Score 

STOP AFTER k 

For small k values the algorithm Nested Loop 

Rank Join is the fastest. Other algorithms are also 

usable, nevertheless, e.g., Nested Loop Rank Join 

has higher demands on the memory (keeps all data 

from one input in memory). Algorithms General 

Rank Join and Nested Loop Rank Join, i.e. 

algorithms, which do not use hash tables, are for 

larger values of k not usable. 

In general, the compared top-k algorithms are 

beneficial in situations with joins of more tables (or 

other data sources) and for smaller values of k. 

While  the  join  condition  is formulated as equality, 

hash algorithms are fast also for large values of k. 
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Figure 3: Comparison of all algorithms for joining three 

tables. 

6 CONCLUSIONS 

Including of top-k algorithms into a real relational 

environment is not usual by that time. For exclusion 

see, e.g., (Li, Chang, Ilyas, and Song, 2005) 

extending relational algebra and query optimization. 

Other examples are prototype implementations in 

PostgreSQL (Khalefa et al., 2011), (Kini and 

Naughton, 2007). 

We have made comparison of several algorithms 

implementing rank join operator. Our results 

confirmed that huge processing time can be saved 

using optimal algorithm and appropriate source-

choosing strategy. In simple join conditions it is 

possible to boost the algorithms with use of a hash 

table, which brings significant improvement, 

especially for higher values of k.  

We have developed the .NET library NRank, 

which implements these algorithms and is ready to 

be used in a real-world application. For a future 

work, a rank-aware optimization framework would 

be beneficial enabling to use data statistics stored in 

a usual RDBMS. The library can be used practically 

for processing arbitrary data.  
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