
NRank: A Unified Platform Independent Approach

for Top-K Algorithms

Martin Čech
1
 and Jaroslav Pokorný

2

1Lekis s.r.o., Pražská 126, 256 01 Benešov, Czech Republic
2Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, Prague, Czech Republic

Keywords: Top-K Query, Relational Database, Rank Join.

Abstract: Due to increasing capacity of storage devices and speed of computer networks during last years, it is still

more required to sort and search data effectively. A query result containing thousands of rows from a

relational database is usually useless and unreadable. In that situation, users may prefer to define constraints

and sorting priorities in the query, and see only several top rows from the result. This paper deals with top-k

queries problems, extension of relational algebra by new operators and their implementation in a database

system. It focuses on optimization of operations join and sort. The work also includes implementation and

comparison of some algorithms in standalone .NET library NRank.

1 INTRODUCTION

Results of relational queries containing more than

hundreds of tuples are often not clearly arranged and

hence not usable for a user. Therefore, it is suitable

to sort these results according to a criterion and to

offer to users only the best ones. This reminds the

behaviour of search engines, where a user usually

defines neither a way of sorting results (this is, after

all, fairly heavy task), nor restriction on the result

size. The paper is focused on such queries, whose

criteria of sorting as well as the required result size

are defined by a user. Such queries are overall

denoted by top-k queries (we define them formally

in Section 2).

Top-k queries need not be restricted only to

relational databases. They can concern also an

aggregation of several web services; each of them

provides some data, whereas central application

performs joins on the data, their filtering and sorting

(Horničák et al., 2011). Principles of optimization

are the same and, moreover, they can take into

account speeds of particular services or the fact that

data can be loaded in parallel (Abid and

Tagliasacchi, 2011).

A good introduction to top-k queries and basic

algorithms for their processing is in the works

(Bruno et al., 2002), (Fagin et al., 2003). Solutions

in context of relational databases can be found in

(Ilias et al., 2003) and later in the survey (Ilias et al.,

2008).

In principle, two approaches can occur in

practice:

 plug-in – in which a top-k functionality is

built on top of the database engine, and

 native – which directly manipulate the

database engine by injecting new preference

operators

We follow the former in this paper. We focus on

so called top-k join queries (or shortly rank joins) in

our work, i.e. queries doing join of two or more

(ranked) relations with output ordered by values of a

scoring function calculated from tuple scores of

input relations. We use some algorithms described in

(Ilias et al., 2004), (Ilias et al., 2008). There are

other attempts to top-k joins, based on modification

of so called “no random accesses” (NRA) algorithms

(Mamoulis et al., 2007).

We developed a .NET library NRank enabling a

simple formulation and effective evaluation of top-k

queries. The library is primarily intended for

querying over a relational database, but it can be

used also for querying over other data structures.

Section 2 concerns a definition and properties of

top-k queries. Section 3 is devoted to description of

four representative top-k algorithms used in the

NRank. NRank is a unified platform independent

system for top-k algorithms. Section 4 describes its

implementation. In Section 5 we compare these

algorithms and in Section 6 we summarize achieved

111Čech M. and Pokorný J..
NRank: A Unified Platform Independent Approach for Top-K Algorithms.
DOI: 10.5220/0003966901110116
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 111-116
ISBN: 978-989-8565-18-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

mailto:pokorny@ksi.mff.cuni.cz

results.

2 TOP-K QUERIES

A top-k query is the 4-tuple (S, c, f, k), where S =

{Si} is a set data sources (a data source can be an

arbitrary set of objects), c =  Si  {0, 1} is a

scoring condition, f =  Si  R is a scoring function

(R is the set of real numbers), and k  N is the

maximum result size (the required number of

returned objects).

This is the most general form of top-k query that

we can meet in most of top-k query models. It

includes both top-k join queries and top-k selection.

In top-k selection queries, the goal is to apply a

scoring function on multiple attributes of the same

relation to select tuples ranked on their combined

score (Ilyas et al., 2003).

The result of a top-k query over sources’

instances S
*
 is then an ordered set O   Si

*
 such

that:

t  O: c(t) =1,

ti, tj  O: i < j  f(ti)  f(tj),

t O, s   Si
*
 – O: c(s) =1 f(t)  f(s)

O = k .

The first condition only restricts the condition on

tuples in the result (that is equivalent to SQL clause

JOIN ON c and/or WHERE c’). The second

condition defines a set ordering according to the

scoring function f. The third condition says that the

result contains tuples with the highest possible score.

The last condition restricts the result size to k tuples.

Of course, the number of tuples in result can be less

than k. Then it is possible to modify the definition to

ensure the result set was as large as possible.

Top-k algorithms solve the top-k query without

reading all of the input. Their optimality is often

measured in the number of input objects from

particular sources, denoted as a depth. In fact, it is

the minimal depth into which the algorithm must

access its inputs to report the result. Other criterion

of optimality is a space complexity; the algorithms

distinguish significantly mutually in the amount of

data they need to be hold in memory.

Determining time complexity of these algorithms

is more complicated. Asymptotic time complexity of

these algorithms is usually the same. Because of the

sort-based approach these algorithms have no other

possibility than reading inputs in linear time.

Algorithms then distinguish only in processing data

in buffers, but from the view of asymptotic

complexity they are mostly „equally fast“.

Asymptotic complexity is therefore too weak tool

for comparing the effectiveness of top-k algorithms.

The recent approaches to rank join problem

focus mostly on instance optimal algorithms in terms

of I/O cost. Then this cost is a quantity proportional

to the overall number of fetched tuples. The notion

of an instance optimal algorithm (originally

introduced in (Fagin et al., 2003) expresses a relative

optimality of an algorithm with respect to a class of

algorithms A and a class of instances D. An

algorithm b is instance optimal over A and D if for

every a  A and every d  D we have t(b, d) =

O(t(a, d)) (where t(b, d) is the number of algorithm

steps), in other words, there are two constants c1 and

c2 such that t(b, d) ≤ c1*t(a)+c2 for every aA and

every dD. c1 is denoted as the optimality ratio.

When the algorithm complexity is determined,

usually the worst or average case is studied only.

However, while an algorithm is instance optimal, it

is guaranteed, that it will be „reasonably fast“ in all

defined cases. While the sets A and D are well

defined, the instance optimality is a very strong

criterion. For example, the Hash Rank Join

algorithm (see Section 3) is an instance optimal

algorithm.

An interesting finding is that most of instance

optimal algorithms are in practice slower than other

algorithms. Although they have a good asymptotic

complexity, their speed is really low, more precisely

lower, than the speed of some algorithms, which are

not instance optimal. During determination of the

algorithms complexity we often meet cases, where

the algorithm has a good asymptotic complexity, but

its real speed is low; top-k algorithms, which are

instance optimal, have often the same asymptotic

complexity, but their real speed is often higher.

Therefore we are often driven by a quest to find a

reasonable compromise between instance optimality,

which guarantees a robustness, and real algorithm

effectiveness. Some works, e.g. (Finger and

Polyzotis, 2009), endeavour to find compromises

between these extremes.

In the case of rank joins we use functions f

aggregating (or combining) ranked inputs. We will

consider only monotone aggregation functions to

ensure some properties of algorithms followed. The

main idea of the algorithms is sorting the inputs in

descending order according to ranking and quest to

provide the result as soon as possible.

3 TOP-K JOIN ALGORITHMS

We will consider four algorithms based on hashing

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

and nested loops.

3.1 Hash Rank Join

The algorithm Hash Rank Join (Ilyas et al., 2003),

(Ilyas et al., 2004) requires ranked data (in a

descending order according to f) in both inputs L and

R and join condition only of form L.X = R.Y. The

scoring function for calculating the combined score

is L.score + R.score.

The algorithm alternately reads both inputs and

stores them into hash tables HL and HR, where the

hash value is calculated from the value of attribute,

which occurs in equality condition. After reading

new values from an input, in the hash table of the

second input there are looked up the tuples, which

are joinable. The join results are inserted into the

priority queue, where they are ordered by their

combined score. Furthermore, the algorithm

maintains the top and bottom scores of retrieved

inputs Lmax, Lmin, Rmax, Rmin, respectively, from which

it calculates so called score threshold

t = max(f(Lmax, Rmin), f(Lmin, Rmax))

This is an upper-bound on the score of all join

combinations not yet seen. The soundness of the

estimation is trivial and follows from the

monotonicity of f. Values Lmax and Rmax are

initialized during reading the first tuple of L and R,

respectively, values Lmax and Rmax change

continuously with new tuples from L and R being

fetched. All results, which have score greater than t,

can be immediately reported. Obviously, the value

of t is also computed from couples, which do not

fulfil the join condition.

Algorithm Hash Rank Join:

Input: data sources L and R,

 aggregation function f:(L×R)->R,

 join condition c:(L×R) -> {0, 1} of

form L.X = R.Y,

 result size k

Output: the first k tuples from L*cR,

 ordered in descending order

 according to ranking f.

Variables: hash tables HL and HR, the

 hash key (L.X or R.Y), L_min,

 L_max, R_min, R_max calculated

 from retrieved tuples, score

 threshold t, priority queue T

1. HL = HR = Ø;

2. L_min = R_min = ∞;

3. L_max = R_max = -∞;

4. while (L≠Ø nebo R≠Ø)

5. {

 I := one of inputs L, R

(inputs are selected alternately.

 The second input is denoted J,

 its hash table HJ);

6. read the next i  I;

7. foreach j  HJ[i]:
 T.Insert(join(i, j));

8. I_min = i.Score;

9. I_max = max(I_max, i.Score);

10. update t value;

11. while(T≠Ø and T[0].Score>=t)

12. {report T[0] as output and

 remove it from T;

13. if k tuples are reported

 then stop;

14. }

15. }

// emptying out the queue

16. while(T≠Ø)

17. {

 report T[0] as output and

 remove it from T;

18. if k tuples are reported

 then stop;

19. }

The algorithm must hold in memory all no

reported results (in priority queue) and all retrieved

data from both inputs (in the hash table). While the

number of resulted tuples k is not known, the queue

can grow without restrictions. Otherwise, while k is

known, the queue can hold only k of best tuples. A

compromise is possible – the queue can be restricted

on a value greater than k (e.g., for k = 10 we restrict

the queue to 100 objects). The user then gains top k

tuples, but he/she can require additional tuples, up to

maximal queue size. This ensures that the queue

does not exceed the given size.

The basic variant of Hash Rank Join can be

optimized by the input choice in particular steps of

the algorithm. Since the basic variant alternates the

both inputs mechanically, it becomes easily, that

after reading the next object the score threshold t

does not decrease. Minimization of t essentially

influences a speed of reporting the results, i.e. the

overall algorithm speed. During calculating t the

maximum from two virtual values t1 = f(Lmax, Rmin)

and t2 = f(Lmin, Rmax) is chosen. The threshold

decreases only in case that in the next step the

greater from values t1 and t2 decreases (if t1>t2, then

the right input is chosen, otherwise the left one) – in

other words, it is not necessary to decrease the lesser

from values t1, t2, the resulted t will be not changed.

The optimization lies in strategy, in which the input

is chosen from L and R in the way that the value t

always decreases. This strategy is further denoted as

adaptive.

However, this strategy of minimizing t is not

always better than classical alternating the inputs

(round robin strategy). There are inputs, where

NRank� A 8nified Platform ,ndependent Approach for 7op�. AlJorithms

���

alternating inputs is more suitable, as it is mentioned

in (Finger and Polyzotis, 2009).

3.2 General Rank Join

The algorithm Hash Rank Join can be generalized in

the way that the join condition need not be

necessarily only equality condition, but arbitrary. In

such case algorithm will not store output into hash

tables (moreover, there is no key to be hashed), but

simply into a buffer (each input has its buffer).

When a tuple is read from one input, all tuples in

second buffer must be iterated and join condition

must be checked at each step. This process is

obviously slower than the Hash Rank Join, which

does not check join condition at all (the hash table

provides just the right tuples to join). The General

Rank Join is more universal, but slower.

3.3 Nested Loop Rank Join

The algorithm (Ilyas et al., 2003), (Ilyas et al., 2004)

is a variant of the classical nested loop join. One

input (denote it L) is read consecutively. For each

tuple l  L, the algorithm iterates through all tuples

from the second input (R), tries to join them with l

and the results stores again into the priority queue.

Similarly as in the general rank join, the threshold

value t is maintained and updated with each reading

a tuple from L. Resulted tuples in the priority queue,

which have the resulted score greater than t, are

immediately outputted.

In fact, the Nested Loop Rank Join is a variant of

General Rank Join, but firstly all tuples from R are

read and stored into a buffer and after that the tuples

from L are read.

Input R does not have to be ordered, since all

tuples are loaded and stored in a buffer, and thus

Rmax and Rmin are known in advance and the

threshold score can be easily estimated; in addition,

the values Rmax and Rmin do not change during

reading L. Tuples from L do not have to be

maintained in memory; on the other hand, as all data

from R are held in memory, this algorithm is

suitable rather in case, where data from R are rather

sparse, or when it is possible to access them directly

(random access), so that it is not necessary to hold

data from R in memory.
There is one more interesting optimization. The

value Lmax can be decreased in each step to the value
Lmin. After reading a tuple l  L there are created all
result tuples, where l can occur (tuple l is even
forgotten in the next step, since it is not stored in the
buffer). Therefore the value Lmax can be decreased

on the score of tuple l. In each step of the algorithm,
Lmax = Lmin = f(l). Then the value of t decreases
faster, than using the Hash Rank Join. Consequently,
this algorithm can be faster in some situations.

3.4 Hash Nested Loop Rank Join

The algorithm Nested Loop Rank Join can be

optimized for such top-k queries, where the join

condition is an equality condition. Similarly to the

Hash Rank Join algorithm can store the retrieved

data in hash tables. In this case a tedious throughput

of the whole buffer drops out. The hash table of the

input occurring in memory is created during

initialization of the algorithm; the hash table of the

second input is filled by sequel during reading

particular tuples, in the same way as in Hash Rank

Join.

4 IMPLEMENTATION

The library NRank is implemented in .NET/C# 4.0.
Its main objective is to provide all the mentioned
algorithms to users, while it stays independent on the
data sources. Whereas most implementations focus
on a specific algorithm and are closely linked to
some DBMS, we have implemented generic versions
of the algorithms, which accept any data collection
as a data source.

This approach opens up many new possibilities,

i.e. performing the algorithms on two completely

independent web sources, combining data from

different databases, etc. Inspired by C# query

language LINQ, we also stressed simple usage.

When performing a join query in LINQ, a user

typically specifies the collections to be joined, the

join condition, and the result function. In NRank, the

calling convention is very similar and is extended

only by ranking functions, so that algorithms are

able to count tuple’s rank.

While we cannot achieve such fast algorithms as

if they were integrated into a database, we still

obtain very interesting results. A big difference in

using traditional LINQ queries and NRank queries is

that whereas LINQ queries are translated to SQL (if

called on database objects), NRank queries are

performed with no translation and optimization. That

means, when LINQ query is called, user typically

does not care about what algorithm is used. When

NRank query is called, user must specify the

algorithm; this step has crucial impact on evaluation

speed.

The library is accessible at address http://code.

google.com/p/nrank/.

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

5 COMPARISON OF

ALGORITHMS

The project includes a benchmark database

containing tables Town (50.000 tuples), Hotel

(1.000.000 tuples), Club (1.000.000 tuples), and

Room (20.000.000 tuples). Experiments have been

done on Microsoft SQL Server 2008 Express

Edition, OS Windows 7 64bit, Intel ®Core™ 2 Duo,

CPU 8400 2.26GHz, 4GB RAM. First, the

algorithms evaluated a top-k binary join that can be

expressed by the SQL query

SELECT T.IdTown, C.IdClub,

T.Score + C.Score

FROM Town T JOIN Club C ON

 T.IdTown = C.IdTown

ORDER BY DESC T.Score + C.Score

STOP AFTER k

Figure 1: Comparison of General Rank Join and Hash

Rank Join.

We varied the values of k in the sequence 1, 5, 10,

50, 100, 500, and 1000.

Experiments represented by Figures 1 and 2

show, that top-k algorithms exploiting hash tables

for cashing input data are much faster than top-k

algorithms exploiting only a simple buffer. The use

of buffer even for small values of k significantly

slows down the algorithm. The only difference

between general and hash algorithms is in the join

condition.

Our experiments also shown that concerning the

General Rank Join algorithm, the strategy of input

choice is crucial only for higher values of k. Time

saving is subtle for small values of k since both

algorithms read from their inputs only small amount

of data. The Hash Rank Join almost does not depend

on a strategy of input choice. The use of hashing

brings a significant saving while the strategy in itself

does. Due to the algorithms after reading an object

from input need not look through a huge amount of

data, both strategies of input choice are comparably

fast. Both algorithms read order of magnitude the

same amount of data independently on the strategy

used. Thus, in use of Hash Rank Join, the strategy of

input choice has a negligible influence.

Figure 2: Comparison of Nested Loop Rank Join and Hash

Nested Loop Rank Join.

We also tested the algorithms evaluating top-k

join of three tables (see Figure 3) with the query

SELECT T.IdTown, H.IdHotel, C.IdClub

FROM Town T JOIN Club C ON

 T.IdTown = C.IdTown

JOIN Hotel H ON T.IdTown = H.IdTown

ORDER BY DESC

 T.Score + C.Score + H.Score

STOP AFTER k

For small k values the algorithm Nested Loop

Rank Join is the fastest. Other algorithms are also

usable, nevertheless, e.g., Nested Loop Rank Join

has higher demands on the memory (keeps all data

from one input in memory). Algorithms General

Rank Join and Nested Loop Rank Join, i.e.

algorithms, which do not use hash tables, are for

larger values of k not usable.

In general, the compared top-k algorithms are

beneficial in situations with joins of more tables (or

other data sources) and for smaller values of k.

While the join condition is formulated as equality,

hash algorithms are fast also for large values of k.

NRank� A 8nified Platform ,ndependent Approach for 7op�. AlJorithms

���

Figure 3: Comparison of all algorithms for joining three

tables.

6 CONCLUSIONS

Including of top-k algorithms into a real relational

environment is not usual by that time. For exclusion

see, e.g., (Li, Chang, Ilyas, and Song, 2005)

extending relational algebra and query optimization.

Other examples are prototype implementations in

PostgreSQL (Khalefa et al., 2011), (Kini and

Naughton, 2007).

We have made comparison of several algorithms

implementing rank join operator. Our results

confirmed that huge processing time can be saved

using optimal algorithm and appropriate source-

choosing strategy. In simple join conditions it is

possible to boost the algorithms with use of a hash

table, which brings significant improvement,

especially for higher values of k.

We have developed the .NET library NRank,

which implements these algorithms and is ready to

be used in a real-world application. For a future

work, a rank-aware optimization framework would

be beneficial enabling to use data statistics stored in

a usual RDBMS. The library can be used practically

for processing arbitrary data.

ACKNOWLEDGEMENTS

This research has been partially supported by the

grant GACR No. P202/10/0761.

REFERENCES

Abid, A. and Tagliasacchi, M. (2011). Parallel Data

Access for Multiway Rank Joins. In ICWE 2011, S.

Auer, O. Diaz, and G.A. Papadopoulos (Eds.), LNCS

6757, 44–58.

Bruno, N., Chaudhuri, S., and Gravano, L. (2002). Top-k

Scoring Queries over Databases: Mapping strategies

and Performance Evaluation. ACM Transactions on

Database Systems, Vol. 27, No. 2, 153-187.

Fagin, R., Lotem, A. and Naor, M. (2003). Optimal

aggregation algorithms for middleware. Journal of

Computer and System Sciences 66, 614–656.

Finger, J. and Polyzotis, N. (2009). Robust and Efficient

Algorithms for Rank Join Evaluation. In ACM

SIGMOD International Conference on Management of

Data, Providence, Rhode Island, USA, June 29 - July

2, 415-428.

Horničák, E., Ondreička, M., Pokorný, J., Vojtáš, P.

(2011). Multi-user Searching of Top-k Objects with

Data on Remote Servers. In: ADBIS 2011 – Research

Communications, J. Eder, M. Bielikova, and A Min

Thoa (Eds.), Oesterreichische Comp. Gesellschaft,

Vienna, Austria, Sep. 20-30, 200-211.

Ilyas, I. F., Aref, W. G. and Elmagarmid, A. K. (2004).

Supporting Top-k Join Queries in Databases. The

VLDB Journal (2004) 13: 207–221.

Ilyas, I. F., Shah, R., Aref, W. G., Vitter, J. S. and

Elmagarmid, A. K. (2004). Rank-aware query

optimization. In ACM SIGMOD International

Conference on Management of Data, Paris, France,

June 13-18, 203-214.

Ilyas, I. F., Beskales, G. and Soliman, M. A. (2008). A

Survey of Top-k Query Processing Techniques in

Relational Database Systems. ACM Computing

Surveys, Vol. 40, No. 4, Article 11, 58 p.

Khalefa, M. E., Mokbel, M. F. and Levandoski, J. J.

(2011). PrefJoin: An Efficient Preference-aware Join

Operator. In 27th International Conference on Data

Engineering (ICDE), IEEE, 995-1006.

Kini, A. and Naughton, J. F. (2007). Database Support for

Weighted Match Joins. In: Proceedings of 19th

International Conference on Scientific and Statistical

Database Management (SSDBM 2007), IEEE, 10 p.

Li, Ch., Chang, K. Ch., Ilyas, I. F. and Song, S. (2005).

RankSQL: Query Algebra and Optimization for Top-k

Queries. In ACM SIGMOD International Conference

on Management of Data, Baltimore, Maryland, USA,

June 14-16, 131-142.

Mamoulis, N., Yiu, M. L., Cheng, K. H., Cheung, D. W.

(2007). Efficient Top-k Aggregation of Ranked Inputs.

ACM Transactions on Database Systems, Vol. 32,

August, Article 19.

'A7A ���� � ,nternational &onference on 'ata 7echnoloJies and Applications

���

