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Abstract: Homomorphic cryptography has been one of the most interesting topics of mathematics and computer security
since Gentry presented the first construction of a fully homomorphic encryption (FHE) scheme in 2009. Since
then, a number of different schemes have been found, that follow the approach of bootstrapping a fully homo-
morphic scheme from a somewhat homomorphic foundation. All existing implementations of these systems
clearly proved, that fully homomorphic encryption is not yet practical, due to significant performance limita-
tions. However, there are many applications in the area of secure methods for cloud computing, distributed
computing and delegation of computation in general, that can be implemented with homomorphic encryption
schemes of limited depth. We discuss a simple algebraically homomorphic scheme over the integers that is
based on the factorization of an approximate semiprime integer. We analyze the properties of the scheme and
provide a couple of known protocols that can be implemented with it. We also provide a detailed discussion on
searching with encrypted search terms and present implementations and performance figures for the solutions
discussed in this paper.

1 INTRODUCTION discuss an algebraically homomorphic scheme and
show for a couple of problems of practical relevance,
Fully homomorphic encryption fired many people’s how these can be solved by a surprisingly small num-
imagination in the field of distributed computing se- ber of operations on encrypted values. We exem-
curity. Architectures have been proposed and many plarily discuss solutions to the Millionaires’ Problem,
application scenarios have been identified that canone-round Oblivious Transfer and oblivious memory
benefit from FHE. Encrypted online storage, secure access based on the homomorphic scheme. We also
delegation of confidential computation and even pri- discuss searching over encrypted data with encrypted
vacy for searching the web: the Cloud was about to search terms. Since this is a very important opera-
turn secure. Unfortunately, all implementations of tion in distributed environments, we present our so-
fully homomorphic encryption schemes showed, that lution to this in more detail in a separate section. We
this technique is still much too slow for practical ap- show a delegation scheme, where the remote party op-
plications. erates with encrypted arguments on public data and
The most important property of FHE is un- generates encrypted results.This is useful when pos-
limited chaining of algebraic operations in the ci- ing search requests to a public database while main-
pherspace, which means that an arbitrary number oftaining confidentiality of request and response.
additions and multiplications can be applied to en- The paper is structured as follows: Section 2 gives
crypted operands. To achieve this, an FHE schemea summary of the current status of homomorphic
must provide a mechanism to reduce tioese of ci- cryptography. Section 3 outlines a somewhat homo-
pher values, because these schemes are based onraorphic encryption scheme and analyses its proper-
slightly inaccurate representation of the plaintext val- ties in detail. Section 4 introduces a selection of algo-
ues. Every single operation on a ciphertext causesrithmic primitives that can be secured using our ho-
even lower accuracy and eventually, the ciphertext canmomorphic scheme. Section 5 introduces a constant-
no longer be properly decrypted. depth approach to encrypted searching. In Section 6
This paper focuses on somewhat homomorphic we present details and performance figures of our im-
encryption, where no re-encryption is required but plementation. Section 7 concludes the paper.
only a limited number of operations is possible. We
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2 RELATED WORK e the bit lengthp of the message space, defined as
A—n.

Since the breakthrough work of (Gentry, 2009), a

number of similar approaches to fully homomorphic 3.1 The Basic Construction

encryption appeared, like (Smart and Vercauteren,

2010) or slightly different approaches like (Braker- Qur scheme is defined as a tupléP,C,K,E,D, &, ®}

ski and Vaikuntanathan, 2011). Performance figures where the elements denote the following:

of actual implementations (Brenner et al., 2011) and P is the plaintext space and contains elements

applications of FHE show that these systems can befrom N* limited by the prime integep of order 2!

used for small problems only. Due to the computa- sych that for two plaintext operands € N a-b < p

tional overhead of current FHE schemes, the ques-andnP := {xx < 21}.

tion arises, if the underlying SHE schemes can alsobe ¢ is the ciphertext space and contains elements
used for more practical homomorphic encryption. Re- from N+.
cent proposals, like (Naehrig et al., 2011) follow this K is the key generator. The secret key is a large

approach. However, the fully homomorphic encryp- prime integem, the auxiliary compression argument
tion is still subject to progress in terms of new consid- s 4 with d « 2s+rpwith r € N+ ands e NC with Wx e

erations of hardness assumptions (Stehl and Steinfeld \C vy « NP 2x < y (seecompactness).

2010) or conceptual simplicity (Coron et al., 2011). E is the encryption function. We encrypt a bit
There are different paradigms for secure delega- yajueb by picking an integea with a= b mod 2 and
tion of computation likesecure function evaluation adding a random even or odd multiple of the prime

(SFE) mostly based ovgo's Garbled Circuits (Yao,  modulus, such that = a-+ (rp). If r is composite, it
1982) and extensions by (Malkhi et al., 2004) or muyst contain at least one large prime factor of order
(Kolesnikov et al., 2009b). Garbled circuits have 21 |t js mandatory that € N+, i.e. the encryption
also been combined with homomorphic encryption by myst addhoise (see below).

(Gentry etal., 2010) and (Kolesnikov et al., 2009a) 10 p js the decryption function. The decrypted result
overcome their inherent disadvantage of of being lim- g the remainder of a ciphertext modulo the prime key
ited to static one-pass boolean circuits. D a=a mod p.

Atheoretical approach to achieve privacy of mem- ¢, s the addition in ciphertext space. Due to the
ory access patterns and algorithm execution in a spe-cipher structure, the addition is performed as an ordi-
cial type of Turing Machinesiis the Oblivious Random  nary arithmetic addition. The scheme is mixed addi-
Access Machine (ORAM) by (Goldreich, 1987) (Gol- tjye.
dreich and Ostrovsky, 1996). There are recent propos- g is the multiplication in ciphertext space. Like
als to reduce the complexity of ORAMSs by Pinkas et the addition, the multiplication is performed as an

al. (Pinkas and Reinman, 2010) and further devel- grginary arithmetic multiplication. The scheme is
opments towards practical applications by (Damgrd mixed multiplicative.

etal., 2011) and (Goodrich and Mitzenmacher, 2011).
Section 4 outlines how to achieve oblivious memory

i In this scheme, the positive plaintext value is also
access with our scheme.

the noise for the ciphertext because it additively in-
terferes with the product of the prime factors that en-
crypt it. In order to obtain @robabilistic encryption

3 A SOMEWHAT scheme, we perform paritynfd 2) arithmetics, i.e.
HOMOMORPHIC a plaintext bit is encoded in a random integer of the
same parity. Notice that the encryption does not re-
ENCRYPTION SCHEME veal the parity of the plaintext integer, because the

encryption function E picks at random even or odd
This section describes the encryption scheme and itsmultiplesr of the keyp. This effectively allows us to
properties correctness, security and compactness. Ouhide the parity of the plaintext and to encode binary

somewhat homomorphic encryption schemede- information.
pends on the following parameters:
e the security parametar, 3.2 Correctness

o the bit lengtm of a cipher's initial noise, We show the correctness of the encryption and de-

o the modulusp which is a large prime integer of cryption, as well as the homomaorphic operations in
order 2, the following lemmas, assuming thatc N* be a



large prime integer as a secret key arahdb be two
arbitrary positive integers with b < pe N*.

Lemma 1. Theencryption scheme ¢ ismixed additive
and the additioniscorrect if a+ b < p.

Proof. We perform the encrypted addition @
b') which extends tda’ &b') = (a+r1p) + (b+r2p) =
a+b+ (ri+r2)p and decryptednod p yields (a+b).
The mixed additive operation is defined alspb =
(a+rp)+b=a+rp+bmod p=a+h. O

Lemma 2. The encryption scheme & is mixed multi-
plicative and the multiplication is correct if axb < p.

Proof. We perform an encrypted multiplication
asa @b’ = (a+rip)(b+rzp) = ab+a(rap) +-b(r1p) +
(r1r2)p? mod p = (ab). The mixed multiplicative oper-
ation is defined a8’ @b = (a+rp)b=ab+brpmod p=
ab. O

Lemma 3. The encryption scheme ¢ is capable of
computing a sequence of at least log,p — logon arith-
metic operations.

Proof. The choice of the factonsandp also de-

fines the message space, such that the bit length of

the message spageis A —n. The noise of a cipher
grows by at most one bit per addition (the carry), so
the minimum number of additions & The mini-
mum number of subsequent multiplications is defined
aslogyp — logzn, assuming that ciphers with the max-
imum noise are multiplied, since this can produce at
mostn2" bits of noise aften multiplications. O

3.3 Security

As shown above, our simple encryption scheme is al-
gebraically correct. This subsection discusses con-
fidentiality of the encrypted data and the security of
the encryption scheme. The results of this subsection
lead to the choice of appropriate parameters. The at-
tack model focuses an attacker who is in possession
of a ciphertext. Since we apply symmetric encryption
only, the attacker has no public key. By reduction to
integer factorization we show the security of the en-
cryption scheme against the computation of the secre
key from a ciphertext.

t

Lemma 4. Let the parameters (p,q) € N* be of or-
der 2*. Any Attack 4 running in time polynomial in A
against the encryption scheme can be converted into
an algorithm B for solving the integer factorization
of any compositeinteger number (pg) runningin time
polynomial in A.

Proof. Consider a poly) time function e
P Aex(d)
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that efficiently computeg from any cipherd'.
That means, thate is able to extracp from any inte-
ger computed by a term of the form- pq for arbitrary
a, p,q and thus can be applied in a function

Brac(i) : P4 Aex(0+1)

to factorize arbitrary composite integéers) that
can be trivially expressed as- pg. O

Now we show the security of the encryption
scheme against an attempt@to compute the plain-
text value of a cipher. We achieve this by showing in
addition to Lemma 4 an IND-CPA equivalent prop-
erty of the scheme, which means that any two cipher-
texts are computationally indistinguishable ay

Lemma 5. The security of the encryption scheme
is IND-CPA equivalent and the success probability
|Pr[EXPind—cpa = 1] — 3| iS negligible in A for any 2
from PPT (probabilistic polynomial time) function.

Proof. Since4 has no public key for encryption,
we provide a probabilistic encryption oraade,. that
takes a plaintext as input and generates a ciphertext
under the secret key. Consider the following experi-
mentin the message spaté

EXp{‘nd»cpa:{
{mo,m} « M

i &

c — Ognc(M;)

iz ¢ Aind—cpalC,{mo,m})
return Loifi=ig

0 otherwise

}

The encryption function equivalent oradlg is
defined as follows:

A
OEnr::(m):{

a &2

r &2

¢ <+ (mmod2)+a+rp
return c

}

The parity of the output of the oract®n.(m) has a
discrete uniform distribution, such tht[Ognc(m) =5
0] = Pr[Ognc(m) =2 1] = 1 for any integeme N+, i.e.
the encryption function does not leak any parity infor-

mation. It is sufficient to show th&t [Ognc(m) =2 1] =
1

Pr{Ognc(m) =2 1] = Pr[(a+r-p=21]
Prla=21]-Prr-p=20]+Prja=,0]-Pr[r-p=21]
—_—— —

—05 =0 =05

1 1

> (Prla=21]) = >
———

=1
This leads to the conclusion that ciphertexts are in-
distinguishable byz, even if he is allowed to provide
known plaintext to the encryption function. O
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3.4 Compactness 4.1 One-round k-Bit Oblivious Transfer

The length of a ciphertext grows exponential in the Bob has two arguments and wants to share one of
number of multiplications applied to it. In order to them with Alice. Alice is allowed to pick one ar-
obtaincompact ciphertexts, i.e. the length of a cipher- gument but doesn’t want to reveal to Bob which one
text is independent from the number of operations, we she chooses. On the other hand, Bob wants to keep
suggest generating an encryption of 0 as an auxiliary the other argument secret. Using our homomorphic
compression argumedtthat can be used in a reduc- scheme, we can solve this problem for arbitrary k-bit
tion procedure to limit the size of a ciphertext. The Strings in a single request-reply interaction. This is
security of this delimiter is subject to Lemma 4. the protocol:

Lemma 6. The operation @’ < & mod (2s+rp) re- 1. Alice hasae {0,1} and the secret kesk

pluc&the bit length of the ci pher_ted a. The r.eductlon 2. Bob hasmy; € {0,1}¥, two k-bit strings

is correct for any 2s€ N* < a, i.e. the parity of the i o o

original plaintext a encrypted in & is preserved in &’ 3. Alice picks at random g-bit integert € N* such

The length of a reduced cipher is [2s+rp| = 2. thatt = amod 2 and encryptsl « E(t)x

4. Bob picks at random-bit integersn{ € N* such
thatm{, =m;, mod 2fori € {0,1} and0< j < (k—1).
He computes the (selected) output Isjts- ((m, -
(@ +1))+(my, -&)) foro < j < (k-1

5. Alice decrypts the selected bit string by comput-
ing sj - D(s))s mod 2for 0.< j < (k= 1)
mod p=0 &€ mod p=0

. N , The multiplicative depth of this protocol is 1. Bob
a ] determines the result value by applying a binary se-

lector over the two bit strings, addressed by Alice’s

binary selection argument. He computes- (mp A

-a) @ (my A a) by evaluating logic AND-operations af-

ter transferring them into an arithmetic representation.

Proof. @’ «a modd < &’ «a — | & |.d, d=2s+rp
= d =a - |5 28] (2s+12p); | 1 a+11p < 25+ 12p
=a' =d;llta+rp>2s+rp=n= &8 | n>1;

S+r2p
0=n-(2s+ryp) = 2ns+nryp

=ad' <a+ rp —2ns— nrpop mod p=ra
~~ S~~~ ~—~—

The reduced result’ decryptedmod p has the same
parity asa. O

3.5 Choice of Parameters

As we showed above, the security of our scheme is 4.2 Oblivious Memory Access

essentially based on the common assumption, that the . .

factorization of a large integer is hard. So the product In this scenario, we have a larger number of mes-

of the prime keyp and the factor must be sufficiently sages to choose fro_m, SO th.|s problem can be solved

large. Taking the results of the former RSA-challenge 2Y @PPlying dogzn-bit demultiplexer fom messages.

into account, we suggest factors with a size ¢512 bits.The algon_thm_ for this purpose Is quite similar to a

A reasonable configuration with a factor sizerof memory circuit: the swm_:hlng function of the demux

1024bits and an initial noise of = 8 bits would allow that selects a memory item < {”b.’ ml’.mz’m3} ad-

for a sequence dbg,\ —logyn = 7 multiplications. dressed by € {(00),(01),(10),(11)} is given asm =
Small factors. The encryption function must not (80 \—ag AMmp) V (80 A =@y /Ay V (~80 A ag A r-ng) v

issue a ciphertext with — 0 in order to avoid small  (2/\ai/Ams). Consider the following protocol:

factors: if it generated two different representations 1. Bob has 4 itemsy..ms € {0,1}

of 0 with & =0+rip anda, =0+ rop, the adver- 5 pjice has an argumente {0,1}2 and the secret

sary could easily generate a positive composite inte- key SK

gerb' = |(a} —a,)| = |(r1 —r2)|p, With |(r1 —r2)] likely

containing a small factor, assumed thagandr, are

in a similar range.

3. Alice picks at random-bit integers; € N* such
thatt; = ay mod 2 for 0 <i < 2 and encrypts each

&« E(t)x
4. Bob picks at random-bit integersm € N* such
4 SIMPLE APPLICATIONS thatm! =m mod 2 for 0<i < 3. He computes’ +

((aéfl)-(a’lﬁl) ~/"6)+(66~(a’1+1)~nﬁ)+((66+
This section describes a selection of algorithms that 1)-8)-mp) + (8 8y - 1mh)
can be encrypted by applying the schegne 5. Alice decrypts the selected valsie- D(s') .



This protocol has a multiplicative depth of 2 for a
range of 4 items. The number of selectable items
(i.e. the memory size) can be extended by a wider
address range which leads to a higher multiplicative
depth given atogyn. It can be extended to select k-bit
items by arranging k instances in parallel.

4.3 The Millionaires’ Problem

Alice and Bob want to know who is richer but don’t
want to reveal the amounts of their respective capi-
tals. This paragraph depicts a solution to this problem
using homomorphically encrypted binary adders. The
protocol is as follows:

1. Alice hasa e {0,1}, containing a (k-1)-bit little-
endian binary representation of her capital in
ag..a—2, a_1 + 0 and the secret kesk.

2. Bobhase {0,1}K, likea, b_1 + 0

3. Alice picks at random-bit integers; € N* such
thattj = & mod 2 and encrypts] « E(tj)s for 0 <
i< (k=1)

. Bob picks at random-bit integersh| € N* such
thathf = b; mod 2 for 0<i < (k—1). He computes
bi < b{ +1for 0<i < (k—1), picks at random an
n-bit integert’ € N* with t' = 1 mod 2, computes
U < by +t" andcy « by -t and furtheru, « bf +
¢_4,¢ « b-c_q for1<i<(k—1). Now he has
the two’s complement off in . He computes
S < 8y +Ug andcy +— aj - ug. Finally, he computes
§ o+ +d_; ande (& u)+(c_; - (g +U))
for1<i<(k-1).

. Alice decryptss « D(s,_;)« and concludes for

both parties thah < b if s=1mod 2 anda>b
otherwise.

Bob first computes the two’s complement of his argu-
ment and adds Alice’a. The most significant bit of
the solution (the sign) indicates the relation betwaen
andb: if the solution is negative, i.e. the sign bitis 1,
then obvioushbis greater thea. As stated in Section
3.2, Bob injects his data unencryptedly. However, af-

ter an operation with an encrypted operand, the result ¢

contains the implicitly encrypted plaintext argument.
The multiplicative depth of the protocol is 2.

5 SEARCH USING
CONSTANT-DEPTH CIRCUITS

Practical Applications of Homomorphic Encryption

of homomorphic encryption is described in more de-
tail than the simple use cases in Section 4, because
remote encrypted search is one the basic operations
in a distributed setting with a wide range of possible
applications. Therefore we split the search scenario
in the subtypesxact search andfuzzy search.

5.1 General Approach

The following components are part of the system: The
Input This can be a list of words or a stream of data.
TheEncrypted circuit For each word in the input data,
an encrypted homomorphic circuit is executed, which
calculates one element in the output vector, based on
the encrypted search term. A&mcrypted search term
The search term is encrypted and used by the homo-
morphic circuit. TheOutput indicator vector In the
case of an exact search, the output vector is a bit-
vector containing a 1 if the search term matches and
a 0 else. Yet, it is also possible to do an inexact fuzzy
search with this approach. In this case, the output vec-
tor would contain the rank of the match. Formally,
one cell of the output vector can be written as the
value of a function
_ x> ¢t
¢: (word, searchterm) — C(word, searchterm)

1)
Since the definition o is independent of the other
words in the database, the output can efficiently be
computed in parallel. Another advantage is that the
circuit C depends only on the encrypted search term.
Especially, the depth is constant with respect to the
size of a database entry. See 5.2.3 for a reduction of
the output size.

5.2 Exact-match Search

Building on the general approach for searching intro-
duced above, one can easily generate a circuit which
executes an exact-match search. The circuit should
have the following property:

1 word == searchterm

word, searchterm) = {0 clse

(@)

which translates to a character-level comparison

|searchterm|—1

A

i=0

¢ (word, searchterm) = (word; =¢ searchtermy)

(3)

The two things that need further specification are

This section introduces an approach to encrypted a) the concrete implementation of the character-level
searching using circuits of constant depth that oper- cOmparison=¢ and b) the (common) case when
ate on encrypted queries and data. This application [searchterm| # [word|.
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5.2.1 Character-level Comparison only modifications made add a constant oand
|searchterm| in Equation 6.

Let Z be the finite alphabet for the word database as

well as the search term. Then there exists a strict total 5.2.3 Reducing the Output Size

order< onZ. Incase oz = {a,...,ZA,...,Z} this

may for example be the dictionary order. The bijec- The output vector of the exact search has a linear de-

tive funcitonbin(o) then returns the binary value of pendency in the size if the database that is operated

the positon ob and is defined as on. Under the assumption of a total strict order of
the databaselements, we have that the search yields
s {0 1}“0922] at most one positive indicator (or none, if no entry
_ ’ in the databases matches the search term). Following
bin: 0if a=min(X) the technique, outlined in the description of the obliv-
(ma)%/<o_{bin(0'/)}+ 1)2 else. ious memory access in 4.2, the reduced output vec-
(4) tor for the indicatordy..I, can be computed g5’ ;.
Finally, the relation= is defined as This redgces the output space complexny)tm), i.e.
to one single element which contains an encrypted
flogpZ]-1 _ 1, if the search term was found and an encrypted O
=ci {{01,02}| /\ bin(01)i ©bin(a2)iG1} . otherwise. To indicate the position of the match in
1=0 ) the database, the return value can be computed as

Sioli*i. The result can be returned asogyn bit el-

ement with an encrypted binary representation of the

match index. The reduction cost of the binary index

generation is a multiplicative depth which is increased
depth{¢(word, search)) = ©) by 1.

2+ [log, X] + [log, |search|] € O(log, n)

Note that the computation afn is just used to trans- 9-3 Fuzzy Search

form a character to its binary representation and there-

fore is not part of the circuit itself. Rather than com- While Section 5.2 provided some fundamental con-
puting the implicit function given in Equation 4 one struction of a search using a homomorphic circuit, this
would use a code table likasci for an efficient section uses that principle to its full extent by allow-

The depth of the resulting circuit from Equation 5.2
combined with the circuit of=¢ from Equation 5 is

transformation. ing more than just a boolean comparisen)(of the
_ characters. This results in the ability to also compute
5.2.2 Padding inexact matches. The main part that differs from the

exact search scheme is the construction. of
In Equation 5.2 the implicit requirement wagrd| >
|searchterm| introduced. In a general search, however, 5.3.1 Counting Mismatches
the lengths of the search term and the words may very
well be different. The first step towards a circuit evaluating a fuzzy

Definition 5.1. For analphabet = and apadding char- ~ search is done by counting the number of mismatches
acterd) with =N 0 = 0 let the alphabet with padding  between the search string and a given word in a

be s =su{0O}. O"isa shorthand for O---0J, an n- database or a substring in a character stream. To ac-
Tgn’; complish this the multiplicativeAND) combination

character padding. of all the character-level comparisons like in Equa-

Additionally, some random padding may be re- tonS.2isreplaced by asum, yielding

quired for the searchterm, because the length of 5* % ¢S _y ¢[10g;5]

the searchterm is a public information, even if the

searchterm itself is encrypted. Also, the length of b: ISt : (7)

the searchterm is revealed in the depth of the cir- (W,s) = iZﬁ (Wi =cs)

cuit. In order to hide the actual length the client

appends a random number of padding characters to  Since the sum can be expressed as a hamming
the searchterm prior to encrypting it. The server weight of a bit vector, the application &ymmet-
only evaluates the search function for database itemsric polynomials leads to a very shallow circuit, used
shorter than the searchterm. Despite this modifi- for example in (Smart and Vercauteren, 2010, page
cations, the depth ob is still in O(logn), as the 15). Thek-th bit of the hamming weight of a vector

10
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mial G A c T
G 0 1 3 2
A 1 0 1 3
. . . 1 2
ex-1(b1,...,bn) == Z le'”bJZk—l $ 3 L g 2
1<ji<jejk-1<n
The evaluation of the polynomial translates directly
to the circuit bing,
ezk—l(bl,...,bn) = @ b]‘l'”/\'”bjzk—l " 0
1<ji<jzrjk-1=n 00 01 11 10
In the case that the maximum number of errors 00 00 01 11 10
o 01 01 00 01 11
€'Tmax iS given beforehand, the advantage of symmet- 11 11 o1 00 10
ric polynomials is that one can directly limit the num- 10 10 11 10 00

ber of evaluated polynomials to the first ldgrrmax)
digits of the output vector.

5.3.2 *“Softer” Mismatches

e e
Some applications of fuzzy search, for example the Biemis Sl At il
mapping of short reac_js in genomes ('I.'ra.pnell and 8(1) 8 8 é i 8(1) g é 1 2
Salzberg, 2009), require more differentiation when 11 1 0 0 1 1 1 1 0 0
calculating the match between two characters. In this NrEwd g0 =1
example, a sequence where only one character (= acid
in the DNA) changed to one chemically related acid § 3
still stron_gly indica_t(_es a match ir_1 the genome. _Conse— ® o — (v il O -(mvh)
quently, if the position of the mismatch would intro- 1TV S A (80 V by V/by)
duce a change to a completely unrelated acid, a match A Eyh) A (boV a0V ay)
of the sequence would be less likely. A (8 Va: Vb, vbl) A (@ va VB V)

For the rest of this subsection, let the alphabet _ . , o ,
s = {AC,G,T} consist of the four acids that build F;gure 1'ItC°tnf;tlr”ft'°” of thgaen_funct:gn. tran?]formanon
the DNA. The top table in Figure 1 lists the quan- ofa penally table 1o a cireult Using & Rarnaugh map.
tified differences (penalities) between these DNA-
bases which reflect a computational metric forgee
netic distances between a searchterm and a processe
genome sequence.

In the circuit, a functiorpen: = x = — ¢* is needed
that maps two given characters to the penalty of con-
verting one character into the other. Since this func-
tion needs to be evaluated inside the circuit, it needs
to be written as a boolean circuit itself. The necessary
steps (also see Figure 1) are:

and AND-gates are available in the homomorphic cir-
OIcuit, each binary disjunctioav b must be written as

compound operatiofia® b) & (aAb), resulting in a

factor two compared to the depth of a circuit using

log,(2|Z]). The total depth of the resulting circuit for
pen is log,(|Z]) + log,(2|Z|) € O(log|Z]), which is the
same depth as fet: in Section 5.2.1.
By replacing the character comparison with a
, penalty function, it is also necessary to sum up the
1. For each characterin the row and column head-  jygividual penalties from the character-level compar-
ers, writebin(c). Additionally, write the penaltyin - jsons for a total penalty of the word match as shown
binary. in Section 5.3.1. This results in the circuit
2. For each digit of the binary value of the penalty,
write one table containing only that digit.

. . - o: s|-1 . (8)
3. For each table in the previous step, create a mini (W,S) Z) pen(wi,s)
i=

5 x ¢85 — 1]

mal circuit evaluating this table using a Karnaugh

map.

Depth analysis of pen. Without loss of generality, 9.4 Results
assume the resulting circuit be in conjunctive normal
form (CNF). The conjunction at the top level results In this section we introduced an approach to mark the
in AND-gates of depthog,(|Z|). Since only XOR- position of a definitive or probable match with respect

11

OR gates. Each disjunctive term therefore has depth
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to exact or fuzzy search. The circuitthat needs Table 2: Protocol timings.
to be evaluated in the homomorphic cipherspace was
shown to have a depth bounda@gog, |Z|) in all cases.

Protocol | A=512 | A=1024 ] A =2048 |

This means that the depth of the circuit is known be- 8%88 lér?: ié”r:; lsénr:;
fs(i)zr(;hoa}r:ﬁéadnadtaessse:ally that it daedepend on the OTI00K | 190ms T 290ms 126ms
: YMP4 ilms ilms ilms
YMP40 2ms 9ms 37ms
YMP80 10ms 34ms 132ms
6 IMPLEMENTATION & OMATE | “jlms | Tms | ams
ms ms ms
PERFORMANCE OMAG4 3ms 12ms 43ms

This section gives a brief summary of our implemen-
tation'. The platform for the prototype is Java 6 SE
on a 2.4 GHz Core 2 Duo with 3 MB L2 cache and 4
GB RAM. We present performance figures for differ-
ent key and problem sizes.

6.3 Parameter Sizes

For the key parameters, factor sizes af¢c
{5121024 2048 andn =8 bits have been chosen.
There are measurements of every described protocol
for three different problem sizes. Table 3 shows the
return sizes for théblivious Transfer (OT) proto-

col implementation with 100, 10000 and 100000 bits
long plaintext arguments. The timing figures show the
runtime required for the determination of the result
by Bob. The output sizes of the single return argu-

6.1 Basic Operation Timings

Due to the structure of the homomorphic schefe
the algorithms for addition, multiplication and de-
cryption are almost atomic arithmetic operations of
the underlying library for large integer handling. The
most time consuming operations are K (Keygen) and

o " Table 3: Oblivious t f ter si Bits).
E (Encrypt). The timing for these and the other basic ave blivious transfer parameter sizes (Bits)

operations is depicted in Table 1. The reason for the [ Protocol [ A=512 [ A= 1024 [ A = 2048 ]
OT100 103k 205k 410k
Table 1: Timings for basic operations. OT10Kk 10.3M 20.5M 41M
OT100k 103M 205M 410M
[Op.  [A=512] A=1024[ A —2048 | YMPZ 3K Bk 2K
Keygen [ 35ms 270ms 4242ms YMP40 40k 80k 160k
Encrypt | 35ms 301ms 3218ms YMP80 80k 161k 323k
Decrypt | jlms ilms ilms OMA16 4k 8k 16k
Add ilms ilms ilms OMA32 5k 10k 20k
Mult ilms ilms ilms OMAG4 6k 12k 24k

relatively long runtime of Keygen and Encrypt is the ments ofYao's Millionaires' Problem (YMP) shown
determination of a prime number during these opera- in Table 3 are in the range from 4 to 80 plaintext bits

tions. and therefore require between 3k and 323k bits of en-
crypted space. The runtime figures in Table 2 only
6.2 Protocol Timings contain the computational part of Bob. T@blivious

Memory Access (OMA) is the selection of exactly one

Our implementation comprises the protocols outlined Of 16, 32 or 64 elements (memory bits). So the re-
in Section 4. The algorithms have been transformed tUrn sizes are the number of bits required by a single
into native Java code which invokes the API of our €ncrypted return bit. The calculation of the memory
encryption scheme. The resulting performance is de- Circuit by Bob is shown in the runtime figures.

picted in Table 2, which contains the time consump-

tion figures and Table 3, showing the sizes of the out- 6.4  Search Results

put arguments. . .
We have implemented the exact search as described

in Section 5.2 with different key sizes and database

sizes, as well as two different output set reductions.

1The software can be downloaded at The default reduction yields a one-bit indicator con-
http://www.hcrypt.com taining an encrypted 1 if the search term matches a

12



Practical Applications of Homomorphic Encryption

database entry and 0 otherwise. The second reductiorcorrectness. We gave a security analysis for different
type generates an encrypted binary representation ofattack models and stated, under what circumstances
the matching entry’s database index. The word size the scheme is secure. Proof-of-concept implementa-
for all experiments is 5 bits. Table 4 summarizes the tions of the discussed protocols outlined the charac-
result figures. The upper section of Table 4 depicts teristics of homomorphically encrypted real-life ap-
plications. A detailed formal analysis of exact-match

Table 4: Exact-match search results. searching with extensions to fuzzy searching on en-
crypted data with encrypted search terms showed,
| DBsize | A=512 [ A=1024 | A=2048 | how the algorithmic primitives of the simple proto-
search cols can be combined to solve a problem of higher
1024 31 ms 115 ms 442 ms complexity.
256 k 86s 30.1s 119s
512k 174s 61.1s 241's
Y 36.9s 124 s 487 s
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