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Abstract: This paper presents an extension of a particular type of observer called the Set-valued Observer; this kind of 
observer is very well suited for uncertain fault detection. But some limitations restrict its use. Indeed, all the 
sensors are needed to observe the state and as a consequence this method does not allow fault detection 
when some sensor information is not available. Other work has focused on the well-known Luenberger 
Observer applied to uncertain systems; but once again, this option is limited. Indeed, it is difficult to 
converge the algorithm because of the wrapping effect induced by recursivity. Here a new approach is 
proposed combining the power of the two algorithms. The Luenberger Observer coupled with the Set-
Valued Observer allows us to reconstruct the states without divergence. This combination is a substantial 
contribution for fault detection within uncertain systems. 

1 INTRODUCTION 

Industrial processes appeared many years ago. They 
facilitated the improvement of the quality and 
quantity of production. However, these processes are 
not infallible. Failures can damage the functional 
units of the system such as measurement, action and 
control systems which results in a decrease of 
productivity.  

In order to overcome this problem, monitoring 
methods have emerged to detect, isolate and identify 
the faults. These methods are known under the 
generic name FDI (Fault Detection & Isolation). The 
functioning depends on sensor feedback 
information. Accompanied with a model, this 
information makes it possible to recreate the state 
and by extension detect the appearance of faults. 
This state reconstruction is of major importance as it 
allows us to create virtual sensors which decrease 
the system’s cost or the space requirement. 
Furthermore, sometimes some of the sensors cannot 
be implemented because of measurement 
accessibility. 

For decades, these systems have brought 
substantial advances by estimating the state values 
and comparing them to the reference values, making 
it possible to obtain residuals and fault indicators. 
Many diagnosis methods, such as observers, have 
been inspired by this approach. Indeed, a traditional 

way to estimate the state relies on observers such as 
the Luenberger observer (Luenberger, 1964). An 
extension of this method—called the Kalman filter 
(Kalman, 1960)—has been developed to deal with 
measurement noises. When the latter are white and 
Gaussian, the Kalman filter provides the state’s 
optimal filter in the sense of minimum variance. 
Another approach called “parity space” is based on 
the analytical redundancy of state equations (Chow 
and Willsky, 1984). The principle is to choose an 
orthonormal solution cancelling the observability 
matrix in order to obtain fault-sensitive residuals. 
Finally, less common methods such as direct filter 
synthesis exist. They can be found in two forms: 
those based on H∞ robust estimators (Mangoubi, 
1998) and those based on the common synthesis of a 
dynamic filter and two structure matrices (Henry and 
Zolghadri, 2005). 

In a general manner all these methods are called 
“model-based” or “analytical”. The major problem 
of models is they do not represent reality accurately. 
Indeed, for instance, it is well known that resistances 
in electrical circuits change according to the 
surrounding temperature. A fault detection method 
relying on such a model will provide false alarms. 

 From this observation, conventional methods of 
diagnosis have been redefined to accommodate the 
uncertain framework. Different approaches have 
been used to address this problem. 

111Clément L., Houcine C. and Ghaleb H..
Reconstruction-based Set-valued Observer - A New Perspective for Fault Detection within Uncertain Systems.
DOI: 10.5220/0003972301110117
In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2012), pages 111-117
ISBN: 978-989-8565-21-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



 

First, the active approach attempts to cancel the 
uncertainties to overcome their effect at the fault 
detection step. Residuals are calculated to be 
insensitive to uncertainties while being sensitive to 
faults. Several approaches have been developed in 
this direction in recent years: the unknown input 
observer, the eigenstructure assignment (Chen and 
Patton, 1999) and structured parity equations 
(Gertler, 1998). 

Secondly, the passive approach  (Puig et al., 
2002)  is based on the propagation of uncertainties in 
the estimated values to obtain the enclosures in 
which all possible trajectories are included. A fault 
is detected when the measurement goes beyond the 
enclosure. 

Uncertainty modeling is not straightforward. The 
primary idea was to model uncertainties in a 
statistical manner using confidence intervals. Later, 
interval analysis allowed a natural modeling of 
uncertainties (Jaulin et al., 2001). In the literature, 
interval analysis can be found under the names “set-
membership approach” or “bounding approach”. 

Taking the uncertainties into account brings a 
new dimension to the diagnosis but is not without 
drawbacks.  

Based on a recursive computation, observers face 
the recurrent phenomenon with uncertain systems 
called the wrapping effect. To prevent this 
phenomenon— causing the exponential expansion of 
the bounds of the state—several methods have been 
developed. Some methods are more suitable than 
others. Among them, there is the parity space 
approach using the bounding approach (Ploix and 
Adrot, 2006). Other methods based on interval 
observers for fault detection have been presented by 
Gouzé et al. (Gouzé et al., 2000) and more recently 
by Raïssi et al. (Raïssi et al., 2010). The idea of this 
method within uncertain systems is to use two 
Luenberger-like observers. In this manner, the 
bounds of the states are computed separately: one 
observer for the upper value and the other one for 
the lower value. On the other hand, another 
approach based on LPV and qLPV models have 
been developed (Darengosse and Chevrel, 2002). 
Finally, the last approach is a particular type of 
observer developed for set-membership systems. 
This prediction–correction-based observer has been 
introduced by Shamma et al. (Shamma and Tu, 
1995) and more recently, used by Haimovich et al. 
and Benothman et al. (Haimovich et al., 2004; 
Benothman et al., 2007). Called “Set-Valued 
Observer”, this observer overlaps two pieces of 
information: one coming from the model and the 
other one from the sensor (Letellier et al., 2011). 

In this paper, an extension of this observer will 
be presented in order to bypass some limitations by 
reconstructing the sensor value when the 
measurement is not available. 

The paper is organized in the following manner. 
Section 2 introduces the problem statement. Section 
3 presents the background material used in the 
proposed algorithm. The main contribution of the 
paper is presented in section 4. Section 5 provides a 
numerical example and the simulation results. 
Finally, section VI draws the conclusion. 

2 PROBLEM STATEMENT 

Let us consider an uncertain linear system described 
by the following discrete-time dynamic equations: 
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where ∈ ⊆D xnx is the state vector of the 

system, w is the measurement noise, ∈ unu is the 
input vector of the system and ∈ yny   is the output 
vector of the system. A, B, C are respectively the 
state, the input and the output matrices and are 
considered uncertain. They are modeled by intervals: 
[ ] θ⇔ ( )Z Z   with { }|θθ θ θ θ θ= ∈ ≤ ≤n . 

In this paper, the Set-Valued Observer is 
extended in order to reconstruct the state when the 
measurement is not available.  

The conventional Set-Valued Observer is defined 
as follows:  
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where p
kX , e

kX  and kX are respectively the 
predicted state set, the estimated state set and the 
corrected state set. The matrices A, B, C are bounded 
within intervals. The w measurement noise is 
bounded within intervals and added to the y
measurement. 

This observer has numerous advantages for 
estimating the state within uncertain systems; the 
correction step avoids the wrapping effect. The 
major limitation of this observer is the estimation 
step where the state is deduced from the sensor. 
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Indeed, the observation matrix inversion is not 
always achievable. Moreover, when measurements 
are not available, the states cannot be deduced from 
the sensor. 

From this observation, we propose an 
improvement on the conventional Set-Valued 
Observer. The limitations are bypassed by 
reconstructing the state from measurements instead 
of deducing it directly. Section 4 will introduce the 
proposed method. 

3 BACKGROUND MATERIAL  

3.1 Interval Tools 

The central idea of the interval analysis is to replace 
real numbers by intervals [ ] { }|= ≤ ≤x x x x xε ; 
in this manner, calculation algorithms can be used to 
obtain guaranteed numerical results (Jaulin et al., 
2001). 

An interval is defined as a connected subset of
noted I . For instance:  [ ]1,3 and [ ], 2−∞ − are 
intervals even though the use of bounded intervals is 
recommended.  

An interval can be defined in two ways: directly 
by the bounds [ ]i nf, sup  or by the couple (Midpoint, 
Radius). 

The operations are redefined: let us consider an 
operator { }; ; ; /∈ + − ∗  and [ ] [ ],a b  two intervals, 

then [ ] [ ] [ ] [ ]{ }| ,= ∈ ∈a b x y x a y b . 

The width of an interval [ ]x is defined by
[ ]w x x x= − , its midpoint by [ ] ( ) / 2mid x x x= +  and its 

radius by [ ] ( ) / 2rad x x x= − . 

3.2 Inclusion Functions 

Consider →f : xn m . The range of the function f 
over an interval vector [ ]x  is given by: 

 [ ]( ) ( ) [ ]{ }= ∈f f |x x x x  (3) 

An interval function [ ] →f : I Ixn m is an 
inclusion function of  f  if: 
 [ ] [ ]( ) [ ] [ ]( )∀ ⊆∈ ,f fI xn xx x  (4) 

where [ ]( )f x denotes the set-theoretical image of 

[ ]x by f. 

4 OBSERVER DESIGN 

In this section, an observer architecture, to some 
extent analogous to that of the Set-Valued Observer, 
will be proposed. Actually, this extension combines 
the power of both the SVO and the well-known 
Luenberger observer. 

The idea here is to use the SVO architecture but 
instead of deducing the state directly from the 
sensor, we propose reconstructing the state from the 
sensor. In this manner, we can implement virtual 
sensors and we do not have the limitation of the 
observation matrix inversion. To do this, the 
Luenberger-like estimation equation is used under 
observability conditions. As the SVO has a 
correction step, the estimation equation will not 
suffer from the wrapping effect due to recursivity. 

This method involves three steps as for the 
conventional SVO: 

 
1) The Prediction of the state set according to the 

model and its uncertainties. 
2) The Estimation of the state set according to the 

uncertain measurements available and the 
model. 

3) The Correction of the state set by computing 
the intersection of both previous sets 
 

In the rest of this paper we will call the proposed 
architecture Set-Valued Luenberger Observer 
(SVLO) to distinguish it from the conventional 
SVO. 

4.1 Observer’s Architecture & 
Methodology 

The architecture of the observer is nearly the same 
as that of the SVO except for the estimation step. In 
order to make a correlation with the SVO 
architecture, the equations will be written in the 
form of prediction/update as in the Kalman filter. 
Figure 1 represents the architecture of this observer 
and equation (5) represents the strategy based on the 
two observers allowing the estimation of the state in 
presence of model and sensor uncertainties.  

Considering the above description, the Set-
Valued Luenberger Observer is defined as follows:  
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Figure 1: Diagram of the proposed observer architecture. 

 where p
kX , e

kX  and kX are respectively the 
predicted state set, the estimated state set and the 
corrected state set. The matrices A, B, C are 
considered uncertain and consequently are bounded 
within intervals and once again the w measurement 
noise is bounded within intervals and is added to the 
y measurement. Finally L is the Luenberger gain 

which is defined as usual with certain systems. 
The key point of this observer is the separation 

of the model uncertainties and the measurement 
uncertainty as in the conventional SVO; the major 
difference is the Luenberger-like reconstruction of 
the state from the sensor. 

In order to do this, the optimal value—that is to 
say the middle value—of the predicted state set is 
considered in the estimation step. In this manner we 
obtain, as it is the case in the SVO, a state set 
considering model uncertainties and a state set 
considering the sensor uncertainty. The intersection 
of the two sets of data gives the correct state set. 

In order to explain how this observer operates, 
let us consider a model uncertainty ranging between
δ±  on all parameters of the state matrix, inducing a 
±Δ  enclosure on the predicted state. Figure 2 gives 
a discrete-time   representation of the method; this 
diagram shows different cases.  

At iteration n, the prediction and the estimation 
are perfectly consistent and the n+1 prediction and 
estimation are computed.  

At iteration n+1, the prediction and the 
estimation are again totally consistent; the 
observation of the state is perfect. The prediction 
and the estimation continue to iteration n+2. 

At iteration n+2, the set of admissible 
trajectories—the predicted state set—equals the n+1 
predicted state set. The estimated state set should 
equal the n+1 estimated state set. But, the estimated 
state set deviates as it is no longer centered on the 
prediction state set. This phenomenon occurs when 
the parameters of the real system deviate. Indeed, as 
the system is influenced by its environment, the 
measurement varies and so does the state estimation.  

 
Figure 2:  Set representation of the proposed observer. 

Fortunately, this case was predicted by taking 
into account the uncertainties on parameters in the 
prediction step. As a consequence, both the 
predicted and estimated state sets are still consistent. 
The next state is predicted and estimated to iteration 
n+3. 

At iteration n+3, the estimation deviates totally 
from the prediction. The prediction and the 
estimation are not consistent. This case appears 
when the measurement deviates abnormally, that is 
to say, out of the range admitted by the prediction—
defined according to the model uncertainties. This 
simulated case corresponds to a fault. Finally, the 
observation of the state continues on this manner. 

To sum up, the prediction propagates model 
uncertainties on the state and the estimation 
computes the trajectory of the state from the sensor 
measurement. If the estimation is consistent with the 
prediction, the state observation continues. If the 
estimation deviates beyond the frontiers predicted by 
model uncertainties, a fault has appeared. This 
property will be used to set up the fault detection 
procedure. 

As illustrated above, this observer tends to 
enlarge the SVO strategy (Shamma and Tu, 1995) to 
systems with missing sensors. Rather than deduce 
the state directly from the sensor—supposing the 
observation matrix to be invertible—the sensor is 
estimated with the Luenberger approach. The 
convergence of the SVLO is supported by the 
correction step. 

4.2 Interval Observer Convergence 

Even though the correction step allows the observer 
to avoid the wrapping effect, the Luenberger gain L 
needs to fulfill requirements in order to ensure the 
convergence of the state. As the system is uncertain, 
the convergence will be studied around a box and 
not around a point.  

The convergence of the interval observer is 
studied by considering the total error (Raïssi et al., 
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2010), that is to say the error between the lower and 
the upper bounds of the state: 

 
( ) ( ) ( ) ( )⎡ ⎤⎣ ⎦We t = e t   = x t  - x t  (6) 

If ( )We t  converges exponentially toward zero, 
then the lower and the upper trajectories converge 
toward the current state of the system. The dynamic 
equation of the total error ( )We t is described by: 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

We t = A - LC x t  + B - LD u t  + L y t  + e

- A - LC x t  - B - LD u t  - L y t  + e
 

(7) 

Considering ( )x̂ t the midpoint of the set ( )x t⎡ ⎤⎣ ⎦ : 

 
( ) ( ) ( ) ( )( ) 2⎡ ⎤= = +⎣ ⎦ˆ /x t mid x t x t x t  (8) 

The dynamic equation (7) can be expressed as: 

 
( ) [ ] [ ]( ) λ= − +( ) ( )eWe t mid A Lmid C We t t  (9) 

with  

 
( ) [ ] [ ]( ) [ ]e t w A Lw C x t w B u tλ = − +ˆ( ) ( )  (10) 

If the gain L is chosen such that 
[ ] [ ]( )−mid A Lmid C  is asymptotically stable and 

that ( )λe t is a positive vector Λe then the total error 
converges asymptotically toward: 

 
[ ] [ ]( ) 1−

= − − Λ
maxe eW mid A Lmid C  (11) 

Consequently, the enclosure converges toward a 
box

maxeW . But in order to meet this requirement, 

[ ] [ ]( )mid A Lmid C− needs to be stable. Therefore, 
the Luenberger gain L is determined as follows: 
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x yn n

e i

mid A Lmid C st e
L

t

abl
L
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⎧ ⎫−⎪ ⎪= ∈⎨ ⎬
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4.3 Fault Detection Algorithm 

The SVLO strategy has been defined and it has been 
demonstrated how the state observation can be 
implemented with missing sensors.  

Here, we will present this observer for a fault 
detection purpose. Table 1 shows the fault detection 
algorithm associated with the proposed observer. 

The algorithm starts by initializing the state set 
kX to enable the beginning of the recursive 

algorithm. Once the initialization has been done, a 
loop is generated to compute every state set and 

detect the presence of faults throughout the 
simulation time.  

Table 1: SVLO Algorithm. 

0. 0kX X⇐  
 For 1k =  to N  
1.       Compute m

kY  
2.       Compute p

kX  
3.       Compute e

kX  
    If  p e

k kX X∩ ≠ ∅  then 
4.             p e

k k kX X X⇐ ∩  
           Else 

( )mid p
k kX X⇐  

    End if 
5.        Compute p p

k kY CX=  
           If p m

k kY Y∩ =∅   then 
6.         Fault detected 
    End if 
 End for 

For every loop, the following steps are repeated: 
1) The measurement set is computed according to 
the measurement itself and the w measurement 
uncertainty. 2) The predicted state set is computed in 
function of model uncertainties and the previous 
corrected state set. 3) The estimated state set is 
computed in function of measurement uncertainty. 
4) If the intersection between the predicted state set 
and the estimated state set is not empty then the set 
is considered as valid. The set is assigned to the 
corrected state set in order to be used at the next 
iteration. Otherwise, the measurement is not 
considered and is ignored. The midpoint of the 
predicted state set is assigned to the corrected state 
set; this prevents the algorithm from stopping when 
the intersection is empty. 5) The predicted output set 
is computed; it represents the image of the predicted 
state set through the observation matrix. 6) If the 
intersection between the predicted output set and the 
measurement set is empty, a fault is detected. 
Finally, the loop is finished and the next loop can be 
performed.  

5 NUMERICAL EXAMPLE 

In order to validate the proposed method, the 
following numerical example is studied.  

Let us consider the linear continuous-time state 
representation of a mass-spring-damper: 
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Figure 3: Observation and fault detection results for a mass-spring-damper system. 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 12 2

2 21 1 22 2

1

x t a x t

x t a x t a x t u t

y t x t w t

⎧ =
⎪⎪ = + +⎨
⎪ = +⎪⎩   

(13) 

where ( ) ( )T T
1 2x x p v= =x is the state vector 

representing respectively the position and the 
velocity of the damper; F=u  is the input value 
representing the force applied to the damper; 

( ){ }5= w t | w 0.0≤w  is the ±5% measurement 

noise. 12 21 22,a a and a  are parameters of the states, 
whose values are respectively 1, - 2 and - 3 . These 
parameters are considered uncertain in what follows. 

The model is discretized, the Set-Valued 
Luenberger Observer is implemented and finally the 
fault detection is performed. 

Considering an academic example, a model 
uncertainty of ±2%  is added to all the state 
parameters. The measurement uncertainty is 
supposed to be ±5% . 

In order to test the effectiveness of the proposed 
fault detection method, two offsets are added to the 
measurement to simulate faults. As presented in 
equation (13), only the position is measured by a 
sensor. Thus, the faults will be introduced on the 
position measurement. 

The  first  fault occurs between the 2-3s interval,  
whereas, the second fault occurs from 7-10s. The 
amplitude of the fault is around 2% of the maximum 

value for the first fault and around 10% for the 
second fault.  

Figure 3 depicts the results obtained from the 
simulations. At the top of the figure, the predicted 
and estimated state sets for both the position and the 
velocity states can be seen. It can be noted that the 
velocity is well estimated—as intended in 
Luenberger theory—even with missing sensors and 
model uncertainties.  

The fault detection is represented at the bottom 
of Figure 3. The predicted output set and the 
measurement set are computed. As previously 
shown in Table I, if the intersection of both sets is 
empty then a fault is detected.  

If we look closely at the fault detection result, we 
can report that the second fault is perfectly detected 
between the 7-10s interval. But the first fault is not 
detected from 2-3s. Indeed, the 2% bias fault is very 
low compared to the 5% uncertainty admitted on the 
sensor measurement. Therefore, the behavior of the 
fault detection is totally in accordance with what 
was expected. Indeed, a low bias fault is included 
within the uncertainty enclosures and thus not 
considered as a fault. This is why it is important at 
the design stage to take into account reasonable 
uncertainties to detect reasonable faults. 

The SVLO  gives  the  expected  results.  Its real  
benefits compared to the traditional SVO are the use 
of analytical redundancy to reconstruct the states. 
Another interest of this approach is, this observer 
does not require a matrix inversion,  what allows us 
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 to use it in a broader context than the mere SVO. 

6 CONCLUSIONS 

In this paper, the Set-Valued Observer has been 
studied. An extension of the Set-Valued Observer 
has been proposed in order to reconstruct the state 
when sensors are missing. The idea is to bring 
together two methods developed in different 
contexts in order to make them work in synergy. 
With uncertain systems, the implementation of 
observer is difficult because of the wrapping effect. 
This is where the Set-Valued Observer is interesting; 
it can avoid this phenomenon. But the SVO is not 
without drawbacks; the deduction principle of the 
state implies that all measurements are available 
which is not always true.  

From this observation, the use of a Luenberger-
like reconstruction of the state within the SVO 
seems to be a good solution. The computation of the 
predicted state with model uncertainties makes it 
possible to determine the set of all possible 
trajectories. Then, the computation of the estimated 
state with the measurement uncertainty allows the 
algorithm to determine trajectories consistent with 
the measurement. The intersection of the two sets 
corrects the state set throughout the simulation.  

Through the numerical example of the mass-
spring-damper, results have demonstrated that the 
state in presence of model uncertainties can easily be 
reconstructed. Moreover, the fault detection 
algorithm based on the proposed observer has 
demonstrated its efficacy; the observer yields the 
expected results.  

The Set-Valued Luenberger Observer gives 
encouraging results and brings new perspectives to 
the field of uncertain systems. A real-time 
implementation of the observer is planned. The 
Luenberger-like reconstruction of the state will 
permit future work to extend fault detection to fault 
isolation by implementing this observer in the form 
of benches.  
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