
Roles as Modular Units of Composition

Fernando Barbosa1 and Ademar Aguiar2
1Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, Av. do Empresário, Castelo Branco, Portugal

2Departamento Informática, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, Porto, Portugal

Keywords: Modularity, Inheritance, Roles, Composition, Reuse.

Abstract: Object oriented decomposition is the most successful decomposition strategy used nowadays. But a single
decomposition strategy cannot capture all aspects of a concept. Roles have been successfully used to model
the different views a concept may provide but, despite this, roles have not been used as building blocks.
Roles are mostly used to extend objects at runtime. In this paper we propose roles as a way to compose
classes that provides a modular way of capturing and reusing those aspects that fall outside a concept’s main
purpose, while being close to the OO approach. We present how roles can be made modular and reusable.
We also show how we can use roles to compose classes using JavaStage, a java extension that support roles
To validate our approach we developed generic and reusable roles for the Gang of Four patterns. We were
able to develop reusable roles for 10 out of 23 patterns, which is a good outcome.

1 INTRODUCTION

To deal with the complexities of any problem we
normally use abstractions. In Object-Oriented (OO)
languages classes are the usual abstraction
mechanism. Each class represents a specific concept.
A single decomposition technique however cannot
capture all possible views of the system (Tarr, 1999)
and each concept may be viewed differently
depending on the viewer: a river may be a food
resource to a fisherman, a living place to a fish, etc.
Roles can accommodate these different views.

Roles were introduced by Bachman and Daya
(Bachman, 1977) but several role models have since
been proposed. But the definitions, modeling ways,
examples and targets are often different (Graversen,
2006) (Steimann, 2000). The research on roles has
focused largely on its dynamic nature (Herrmann,
2005) (Baldoni, 2007) (Tamai, 2007), modelling
with roles (Riehle, 1998) and relationships (Pradel,
2008).

Role modelling, by decomposing the system into
smaller units than a class, has proved to be effective,
with benefits like improved comprehension,
documentation, etc (Riehle, 2000). However, no
language supports such use of roles. To overcome
this fact we’ll focus our role approach in class
composition and code reuse.

We propose roles as a basic unit we can compose

classes with. A role defines state and behaviour that
are added to the player class. Roles provide the basic
behaviour for concerns that are not the class’s main
concern, leading to a better modularization. A class
can then be seen either as being composed from
several roles or as an undivided entity.

To maximize role reuse we’ll use modularity
principles as guidelines. We intend to develop roles
as modular units, making them reusable. We argue
that developing roles independently their players
will make them much more reusable. To express our
ideas we created JavaStage, an extension to Java.
We will use JavaStage in the examples so we will
give a brief introduction so examples are clear.

To show that roles can be reusable modules we
show that it is possible to build a role library. We
started our role library with the analysis of the Gang
of Four (GoF) design patterns (Gamma, 1995). We
were able to develop generic roles for 10 patterns.

We can summarize our paper contributions as: a
way of composing classes using roles as modular
units; a java extension that supports roles; a role
library based on the GoF patterns.

This paper is organized as follows: Section 2
gives a brief description of decomposition problems.
Section 3 discusses how to enhance role reuse.
Section 4 shows how to use roles to compose classes
using JavaStage. Our roles for the GoF patterns are
debated in Section 5. Related work is presented in
Section 6, and Section 7 concludes the paper.

13Barbosa F. and Aguiar A..
Roles as Modular Units of Composition.
DOI: 10.5220/0003972600130022
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 13-22
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 DECOMPOSITION PROBLEMS

How do we decompose a system? There still isn’t a
definitive answer and there are many decomposition
techniques. The most used today is Object Oriented
Decomposition, but some argue that a single
decomposition strategy cannot adequately capture all
the system’s details (Tarr, 1999).

Consequences of using a single decomposition
strategy are crosscutting concerns. They appear
when several modules deal with the same problem,
which is outside their main concern, because one
cannot find a single module responsible for it. This
leads to scattered, replicated code.

Because a module must deal with a problem that
is spread by several others, changes to that code will,
quite probably, affect other modules. Independent
development is thus compromised, evolution and
maintenance are a nightmare because changes to a
crosscutting concern need to be done in all modules.

We will tackle this problem by using roles as a
building block for classes. We put the crosscutting
concern in a role and the classes play the role. Any
changes to the concern are limited to the role, impro-
ving maintenance and reducing change propagation.
The crosscutting concerns become more modular.

2.1 Multiple Inheritance

To overcome decomposition restrictions some
languages use multiple inheritance. But multiple
inheritance also has multiple problems, caused
mostly by name collisions when a class inherits from
two or more superclasses that have methods with the
same signature or fields with the same name. It can
even occur when a class inherits twice from the
same superclass – the diamond problem. Different
languages provide different solutions (virtual classes
in C++) and others simply forbid it like Java.

Java uses interfaces when a class must be seen as
conforming to another type. Interfaces only declare
constants and methods signatures so they have no
state or method implementations. This may result in
the code duplication in classes implementing the
same interface but with different superclasses.

It is usual to start an inheritance hierarchy with
an interface and then a superclass providing the
default behaviour for that hierarchy. We argue that
the default implementation should be provided by a
role and the superclass plays that role. This way we
can reuse the basic behaviour whenever we need to,
thus preventing the use of multiple inheritance. This
is depicted in Figure 1. The example shows a Figure
hierarchy with an interface and a role at the top. The

DefaultFigure class implements the interface and
plays the role. All its subclasses inherit this default
behaviour. The ImageFigure, a subclass from
another hierarchy, also becomes part of the Figure
hierarchy by implementing the Figure interface. It
also plays the BasicFigure role so it has the same
default behaviour every DefaultFigure subclass has.

DefaultFigure

+draw()
+setBoudingBox()

LineFigure

+draw()
+setBoudingBox()

TextFigure

+draw()
+setBoundingBox()
+setLineColor()
+setFilColor()

«interface»
Figure

+setLineColor()
+setFilColor()

‐lineColor : Integer
‐fillColor : Integer

«role»
BasicFigure

+draw()
+setBoundingBox()

ImageFigure

+complexMethod()

Image

Figure 1: Example of a Figure hierarchy with both an
interface and a role as top elements.

2.2 Aspect Oriented Programming

There are other attempts to remove crosscutting
concerns, like Aspect Oriented Programming (AOP)
(Kickzales, 2001). However AOP is not close to OO
and requires learning many new concepts. And
while the modularization of crosscutting concerns is
the flagship of AOP several authors disagree
(Steimann, 2006) (Przybyłek, 2011).

Concepts like pointcuts and advices are not easy
to grasp, and their effects are more unpredictable
than any OO concept. A particular one is the fragile
pointcut (Koppen, 2004): simple changes in a
method can make a pointcut either miss or
incorrectly capture a joint point thus incorrectly
introducing or failing to introduce the required
advice.

AOP obliviousness (Filman, 2000) means that
the class is unaware of aspects and these can be
plugged or unplugged as needed. This explains why
some dynamic role languages use AOP. But it also
brings comprehensibility problems (Griswold,
2006). To fully understand the system we must
know the classes and the aspects that may affect
them. This is a major drawback when maintaining a
system, since the dependencies aren’t always
explicit and there isn’t an explicit contract between
both parts.

With roles all dependencies are explicit and the

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

14

system comprehensibility is increased compared to
the OO version (Rielhe, 1998). Roles do not have
AOP obliviousness because the class is aware of the
roles it plays. Any changes to the class do not affect
the role, if the contract between them stays the same.

Our approach does not replace AOP. They are
different and approach different problems. We
believe that for modelling static concerns our
approach is more suitable while AOP is better suited
for pluggable and unpplugable concerns.

2.3 Traits

Classes’ composition using alternatives to multiple
inheritance have been proposed such as mixins
(Bracha, 1990) (Bracha, 1992) and traits (Scharli,
2003) (Ducasse, 2004)(Black, 2004). Traits have one
advantage over mixins and single inheritance: the
order of composition is irrelevant. Traits have first
appeared in smalltalk but some attempts have been
made into bringing traits in to java-like languages
(Quitslund, 2004) (Smith, 2005).

Traits can be seen as a set of methods that
provide common behaviour. Traits are stateless, the
state is supplied by the class that uses it and
accessed by the trait through required methods,
usually accessors. Trait’s methods are added to the
class that uses them. The class also provides glue
code to compose the several traits it uses.

Traits don’t have visibility control, meaning that
a trait cannot specify an interface and all trait
methods are public, even auxiliary ones. Since traits
cannot have state then this is a minor problem, but it
does limit a class-trait interface.

Traits have a flattening property: a class can be
seen indifferently as a collection of methods or as
composed by traits, and that a trait method can be
seen as a trait method or as a class method.

In our approach a class can be seen as being
composed from several roles or as an undivided
entity. This is not to be confused with the flattening
property of traits. A super reference in a trait refers
to the super of the class that uses the trait, while a
super reference in the role refers to the super role.

Our roles can have state, visibility control and
their own inheritance hierarchy while traits cannot.
In our approach the order of role playing is also
irrelevant except for a specific conflict resolution,
but it is so to facilitate development and can be
overridden by the developer or by the compiler.

3 REUSING ROLES

This section is dedicated to what we believe are the

factors that will enhance role reuse: independent
evolution of roles and players, role configuration,
and roles being used as components for classes.

3.1 Roles as Modules

Modularization (Parnas, 1972) is one of the most
important notion in software development. Breaking
a system into modules allows each module to be
independently developed, shortening development
time. Other advantages are better comprehensibility,
enhanced error tracing, etc, but the one developers
treasure most is the modules’ high reusability. It
allows library development and libraries reduce the
amount of code one must write to build a system.

A key concept is encapsulation. When a module
is encapsulated changes in the module, even drastic
ones, do not affect other modules. A module has an
interface and an implementation. The interface
defines how clients interact with the module, and it
shouldn’t change much along the module life-cycle
as clients must be aware of the changes and change
their own implementation accordingly.

Modules interact with each other but intra-
modules interactions are more intense than inter-
modules interactions. Intra-modules interactions
may require a specialized interface. To cope with
this, most languages declare different levels of
access, usually private, protected and public.

To maximize role reuse we have to enable the
independent evolution between roles and players. If
we treat a role as a module and the player as another
module then we can strive for a greater
independence between them. Thus roles must
provide an interface and ensure encapsulation.

Providing an interface is simple if we use roles
as first class entities. Encapsulation and independent
development raises a few issues. We must consider
that roles only make sense when played by a class.
But classes cannot have access to role members and
vice-versa. If they did roles and classes could not be
developed independently, because any change to the
role structure could cause changes in the class and
vice-versa. Therefore roles and classes must rely
solely on interfaces.

3.2 Dropping the Playedby Clause

Many role approaches focus on the dynamic use of
roles: extending objects by attaching roles. Roles are
usually bounded to a player by a playedBy clause
that states who can play the role. In dynamic
situations where roles are developed for extending
existing objects this is acceptable, even if it restricts

Roles�as�Modular�Units�of�Composition

15

role reuse, but not in static situations.
Using an example derived from (Ingesman,

2011) we show, in Figure 2, a Point class
representing a 2D cartesian coordinate and a
Location role that provides a view of Point as a
physical location on a map. We also present a
PolarPoint class that represents a coordinate in polar
coordinates. The role could apply to both classes but
the playedBy forbids it as these classes are not
related. Making one a subclasse of the other would
violate the “is a” rule of inheritance. We could use a
Coordinate interface with getX and getY methods
with both classes implementing that interface. This
cannot be done in a dynamic context where both
classes are already developed and cannot be
modified.

Our purpose is to use roles as building blocks
and not for extending objects. This is a totally
different way of viewing role-class relationships.
Our roles are meant to be used to compose classes so
roles are developed without knowledge of all classes
that can play them. Thus using the playedBy clause
would limit role reusability. In the example, if we
develop a role for both classes the role must state
that it needs the player to have getX and getY
methods. Some form of declaring these requirements
must be used but not by using a playedBy clause.
class Point {
 int x, y;
 Point(int x, int y){this.x= x; this.y= y;}
 int getX() { return x; }
 int getY() { return y; }
}
class PolarPoint {
 int r; double beta;
 PolarPoint(int r, double b) {
 this.r = r; beta = b; }
 int getX(){return (int)(r*Math.cos(beta));}
 int getY(){return (int)(r*Math.sin(beta));}
}
role Location playedBy Point {
 string getCountry() {
 int x = performer.getX();
 int y = performer.getY();
 // converting point to a country name
 String country = "PT";
 return country;
 }
}

Figure 2: A Point class, a Location role playable by it and
a PolarPoint class that could also play the Location role.

3.3 The Need to Rename Methods

Methods names are specific to an interaction. For
example, Observer (Gamma, 1995) describes an
interaction between subjects and observers. It is used
in many systems with minor changes, usually the

methods used to register an observer with a subject
and the update methods used by the subject to notify
its observers. A Subject role for a MouseListener
instance of the pattern would define methods like
addMouseListener, or removeMouseListener. That
role could not be reused for a KeyListener instance
which uses methods like addKeyListener or
removeKeyListener.

A method’s name must indicate its purpose, so a
name like addListener reduces comprehensibility,
and can limit the class to play only one subject role.
Thus, renaming methods expands role reusability. A
class that plays a role must ensure a specific
interface, but that interface should be configurable,
at least in what respects to method names.

Some languages (Tamai, 2007) use a “rename”
clause that allow classes to rename a role method. If
the role interface is big this task is tedious and error
prone. We need a more expedite way of doing this.

Roles also interact with other objects. Again
method names are important. For example, each
subject has a method that calls the observer’s update
method. In the Java AWT implementation of the
pattern there are several methods like mousePressed,
mouseReleased, etc. The rename clause is not usable
here because it applies only to the role methods.

We need a mechanism that allows fast renaming
for role methods and methods called by the role.

3.4 Summary

For roles to be fully reusable then they must provide
an interface; ensure encapsulation; be developed
independently from its players; state requirements
player must fulfil; provide a method renaming
mechanism that enables the role to be configured by
the player.

4 COMPOSING CLASSES USING
ROLES

To support roles we developed JavaStage, an
extension to Java. Examples in this paper have been
compiled with our JavaStage compiler. We will not
discuss JavaStage’s syntax in detail but it will be
perceptible from the examples and we will explain it
briefly so that examples are understandable.

4.1 Declaring Roles

A role may define fields, methods and access levels.
A class can play any number of roles, and can even
play the same role more than once. We refer to a

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

16

class playing a role as the player of that role.
When a class plays a role all the non private

methods of the role are added to the class. To play a
role the class uses a plays directive and gives the
role an identity, as shown in Figure 3. To refer to the
role the class uses its identity.

As an example we will use the Subject role from
the Observer pattern. Consider a Figure in a drawing
application. Whenever the Figure changes, the
drawing must be updated so the figure plays the role
of an observer’s subject. Being a subject is not the
Figure main concern so it’s wise to develop a subject
role, shown in Figure 3, to capture that concern and
let figures play it. In the code we omitted access
modifiers for simplicity, but they should be used.

4.2 Stating Role Requirements

A role does not know who will be its players but
may need to exchange information with them so it
must require the player to have a particular interface.
We do that using a requirements list. The list can
include required methods from the player but also
required methods from objects the role interacts
with. The list states the method owner and the
method signature. To indicate that the owner is the
player we use the Performer keyword. Performer is
used within a role as a place-holder for the player’s
type. This enables roles to declare fields and
parameters of the type of the player. This is shown
in Figure 4 which shows a singleton role.

4.3 Method Renaming

We developed a renaming mechanism, to enhance
role reuse and facilitate role configuration, which
allows method names to be easily configured. Each
name may have three parts: one configurable and
two fixed. Both fixed parts are optional so the name
can be fully configurable by the player. The
configurable part is bounded by # as shown next.

fixed#configurable#fixed

The name configuration is done by the player in
the plays clause as depicted in Figure 5. To play the
role the class must define all configurable methods.

We can take our figure subject role and make it
more generic with this renaming mechanism. In
Figure 5 we show how we can use method renaming
to make our subject role more generic. It also shows
a class playing that role as a FigureObserver subject
and as a FigureHandlerObserver subject.

role FigureSubject {

 Vector<FigureObserver> observers =
 new Vector<FigureObserver>();
 void addFigureObserver(FigureObserver o){

 observers.add(o);
 }
void removeFigureObserver(FigureObserver o){
 observers.remove(o);
 }
 protected void fireFigureChanged(){
 for(FigureObserver o : observers)
 o.update();
 }
}
class DefaultFigure implements Figure {
 plays FigureSubject figureSbj;

 void moveBy(int dx, int dy) {
 // code for moving the figure
 // firing change, using role identity
 figureSbj.fireFigureChanged();
 }
}

Figure 3: A Figure subject role for an instance of the
observer pattern and a class playing it.

public role Singleton {
 requires Performer implements Performer();
 private static Performer single = null;
 public static Performer getInstance(){
 if(single == null)
 single = new Performer();
 return single;
 }
}

Figure 4: A Singleton role requiring its player to have a
default constructor.

public role GenericSubject<ObserverType> {
 requires ObserverType implements
 void #Fire.update#();
 public void add#Observer#(ObserverType o){
 observers.add(o);
 }
 protected void fire#Fire#(){
 for(ObserverType o : observers)
 o.#Fire.update#();
 }
}
class DefaultFigure implements Figure {
 plays GenericSubject<FigureObserver>
 (Observer = FigureObserver,
 Fire = FigureChanged,
 Fire.update = figureChanged
) figureSbj;
 plays GenericSubject<FigureHandleObserver>
 (Observer = FigureHandleObserver,
 Fire = FigureHandleChanged,
 Fire.update = figureHandleChanged
) figHandleSbj;

public void moveBy(int dx, int dy) {
 figureSbj.fireFigureChanged();
}

}

Figure 5: The generic subject role now with configurable
methods (in bold) and a class playing that role twice.

Roles�as�Modular�Units�of�Composition

17

4.4 Multiple Versions of a Method

It’s possible to declare several versions of a method
using multiple definitions of the configurable name.
Methods with the same structure are defined once.

We can expand FigureObserver to include more
update methods to specify which change occurred,
like figureMoved. Such plays clause would be:
 plays GenericSubject<FigureObserver>

(Fire = FigureChanged,
 Fire.update = figureChanged,
 Fire = FigureMoved,
 Fire.update = figureMoved,
 Observer = FigureObserver) figureSbj;

4.5 Making Use of Name Conventions

Another feature of our renaming strategy is the class
directive. When class is used as a configurable part
it will be replaced by the name of the player class.
This is useful in inheritance hierarchies because we
just need to place the plays clause in the superclass
and each subclass gets a renamed method. It does
imply that calls will rely on name conventions.

One such case is the Visitor pattern. This pattern
defines two roles: the Element and the Visitor. The
Visitor declares a visit method for each Element.
Each Element has an accept method with a Visitor as
an argument that calls the corresponding method of
the Visitor. Visitor’s methods usually follow a name
convention in the form of visitElementType. We
used this property in our VisitorElement role, as
shown in Figure 6. The example shows it being used
in a Figure hierarchy with figures as Elements. It
also shows that Figure subclasses don’t have any
pattern code, because they will get an acceptVisitor
method that calls the correct visit method.

4.6 Roles Playing Roles or Inheriting
from Roles

Roles can play roles but can also inherit from roles.
When a role inherits from a role that has
configurable methods it cannot define them. When a
role plays another role it must define all its
configurable methods.

For example managing observers is a part of a
more general purpose concern that is to deal with
collections. We can say that the subject role is an
observer container and develop a generic container
role and make the subject inherit from the container.

If the FigureSubject role can be played by
several classes then we’ll create a FigureSubject
based on GenericSubject. Because we need to
rename the role methods the FigureSubject role must

play the generic Subject role and define all its
methods. DefaultFigure would then use
FigureSubject without any configuration.

Both situations are depicted in Figure .

role VisitorElement<VisitorType> {
 requires VisitorType implements
 void visit#visitor.class#(Performer t);

 void accept#visitor#(VisitorType v){
 v.visit#visitor.class#(performer);
 }
}
class DefaultFigure {

plays VisitorElement<FigureVisitor>
 (visitor = Visitor) visit;

 // … rest of class code
}
class LineFigure extends DefaultFigure {
 // no Visitor pattern code
}
interface FigureVisitor {
 void visitLineFigure(LineFigure f);
 void visitTextFigure(TextFigure f);
 //…
}

Figure 6: The VisitorElement role, a class Figure that
plays the role, a subclass from the Figure hierarchy and
the Visitor interface.

role GenericContainer<ThingType> {
Vector<ThingType> ins =
 new Vector<ThingType>();
void add#Thing#(ThingType t) {
 ins.add(t);
}

 void insert#Thing#At(ThingType t,int idx){
 ins.insertElementAt(t, idx);
 }

protected Vector<ThingType> get#Thing#s(){
 return ins;
}

}
role GenericSubject<ObserverType>
 extends GenericContainer<ObserverType>{

requires ObserverType implements
 void #Fire.update#();

 protected void fire#Fire#(){
 for(ObserverType o : get#Thing#s())
 o.#Fire.update#();
 }
}
role FigureSubject {
 plays GenericSubject<FigureObserver>
 (Fire = FigureChanged,
 Fire.update = figureChanged,
 Fire = FigureMoved,
 Fire.update = figureMoved,
 Thing = FigureObserver) figureSbj;
}
class DefaultFigure implements Figure {
 plays FigureSubject figureSbj;
}

Figure 7: Role inheritance and role playing roles.

4.7 Conflict Resolution

Class methods have precedence over role methods.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

18

Conflicts may arise when a class plays roles that
have methods with the same signature or when an
inherited method has the same signature of a role
method. When conflicts arise the compiler issues a
warning. The conflict can be resolved by redefining
the method and calling the intended method. This is
not mandatory because the compiler uses, by default,
the method of the first role in the plays order and
role methods override inherited methods. This may
seem a fragile rule, but we believe it will be enough
for most cases. Even if a conflicting method is later
added to a role the compiler does issue a warning so
the class developer is aware of the situation. He can
solve the situation as he wishes and not as imposed
by the role or superclass’ developers.

5 TOWARDS A LIBRARY OF
ROLES

To start our role library we analysed the 23 GoF
patterns (Gamma, 1995). They are a good starting
point because of its wide use. If we create roles for
these patterns then our approach will have impact on
many of today frameworks and applications.

Each pattern defines a number of collaborating
participants. Some participants can be seen as roles
while others cannot. This distinction is made in
(Hannemann, 2002) by considering the roles
defining or superimposed. For each pattern we took
the roles of each participant and focused on similar
code between pattern instances to find reusable
code. We present our results by groups of patterns.
They were grouped by similarities between
implementation or problems. We’ve built a sample
scenario for each pattern but will not discuss them,
due to space constraints.

5.1.1 Singleton, Composite, Observer,
Visitor

Singleton, Observer and Visitor were already
discussed. Composite uses the Container role. Each
composite maintain a collection of child components
and implements the operations defined by the
component hierarchy. Children management is
common between instances, so we reused the
Container role. Component operations are instance
dependent and not suitable for generalization, even
if they mostly consist in iterating through the
children and performing the operation on each child.

5.1.2 Factory Method, Prototype

With these patterns we developed roles that provide

a greater modularity and dynamicity not present in
traditional implementations. The use of the class
directive for renaming is common to these roles.

Factory Method defines an interface for creating
an object, but let subclasses decide which class to
instantiate. Implementation of this pattern is instance
dependent. There is, however, a variation whose
purpose is to connect parallel class hierarchies: each
class from a hierarchy delegates some tasks to a
corresponding class of another hierarchy. Each class
has a method that creates the corresponding class
object (product). We moved the creation of the
product to a creator class, which provides methods
to create all products, one method each. Classes just
call the right method in the creator. One advantage is
the modularization of the pattern as the association
between classes is made in a single class not on a
class by class basis. Future changes are made to the
creator class only. Because the creation process is in
a single class we can dynamically change the
creator. We developed a role that allows the
specification of the factory method that creates the
object of the parallel class. The method uses the
class directive so the plays clause is used only in the
top class. It implies the use of naming conventions,
but that is a small price to pay for the extra
modularity. We also developed a role with a fixed
creator, when dynamic creators aren’t needed.

The Prototype pattern specifies the kind of
objects to create using a prototypical instance, and
creates new objects by cloning this prototype. The
prototype class has a clone method that produces a
copy of the object. Every class has its own cloning
method but it may not be sufficient because the
clone method may do a shallow copy where a deep
copy is needed, or vice-versa. The client should
choose how the copy is made. We developed a role
that moves the creation of the copy to another class,
as we did for FactoryMethod. That class is now
responsible for creating the copies of all classes used
as prototypes and thus may choose how to make the
copy. Because it uses the class directive Prototype
subclasses don’t need to declare the clone method.

5.1.3 Flyweight, Proxy, State, Chain of
Responsibility

Roles developed for these patterns are basically
management methods. They are useful as they
provide the basic pattern behaviour and developers
need to focus only on the specifics of their instance.

Flyweight depends on small sharable objects that
clients manipulate and on a factory of flyweights
that creates, manages and assures the sharing of the

Roles�as�Modular�Units�of�Composition

19

flyweights. The concrete flyweights are distinct but
many flyweight factories have a common behaviour:
verify if a flyweight exists and, if so, return it or, if
not, create, store and then return it. Our flyweight
factory role manages the flyweights. Players supply
the flyweight creation method.

In Proxy a subject is placed inside one object,
the proxy, which controls access to it. Some
operations are dealt by the proxy, while others are
forwarded to the subject. Which methods are
forwarded or handled are instance dependent as is
the creation of the subject. Forwarding and checking
if the subject is created or accessible is fairly similar
between instances. Our proxy role stores the subject
reference and provides the method that checks if the
subject exists and triggers its creation otherwise.

The State pattern allows an object to alter its
behaviour when its internal state changes. There are
almost no similarities in this pattern because each
instance is unique. Our role is responsible for
keeping the current state and for state transitions.
The state change method terminates the actual state
before changing to, and starting, the new state.

Chain of Responsibility avoids coupling the
sender of a request to its receiver. Each object is
chained to another and the request is passed along
the chain until one handles it. Implementations of
this pattern often use a reference to the successor
and methods to handle or pass the request. Each
instance differs in how the request is handled and
how each handler determines if it can handle the
request. Some implementations use no request
information, others require some context
information and in others the request method returns
a value. We developed a role for each variation.

5.1.4 Abstract Factory, Adapter, Bridge,
Decorator, Command, Strategy

The code for these patterns is very similar between
instances but we could not write a role for any. For
example, many abstract factories have methods with
a return statement and the creation of an object.
However the object’s type and how it is created are
unique. Adapter instances are similar in the way the
Adapter forwards calls to the adaptee, but the call
parameters and return types vary for each method.

5.1.5 Builder, Façade, Interpreter, Iterator,
Mediator, Memento,Template Method

These patterns showed no common code between
instances, because they are highly dependent on the
nature of the problem. For example, an iterator is

developed for a concrete aggregate and every
aggregate has a unique way to traverse.

5.2 Summary

We developed roles for a total of 10 patterns out of
23, which is a good outcome, especially because
every developed role is reusable in several scenarios.
We believe that our Subject role, for example, will
be useful for a large number of Observer instances.
There are also additional advantages in some roles,
like a better modularity in Factory Method and
Prototype. Some roles are limited in their actions,
like State but are highly reusable, nevertheless.

From our study there are a few patterns that do
not gain from the use of roles. These roles are quite
instance specific and the classes built for their
implementation are dedicated and are not reusable
outside the pattern. There are a few patterns that
could benefit from using roles to emulate multiple
inheritance and provide a default implementation to
operations done in a class inheritance hierarchy, like
Abstract Factory and Decorator. We also found
similar code between instances that we could not put
into a role. This was the case of patterns that
forwarded method calls, like Adapter, Decorator and
Proxy. However the variations were not supported
by roles because they were in the methods return
type and parameters types and number.

5.3 Testing Role-Player Independency

In order to asses if our roles are independent of their
players we took the sample scenarios that illustrated
its use and built a dependency structure matrix
(DSM) for each. We use our sample of the Observer
role and its DSM as an example of that work.

For an Observer sample we developed a Flower
class that notifies its observers when it opens, as
shown in Figure 8. Flower plays the FlowerSubject
role, which is the Subject role configured to this
particular scenario. As an observer we developed a
Bee class that when notified prints a message saying
it is seeing an open flower. The code for the bee,
observer interface and the flower event are not
shown for simplicity. The FlowerSubject role is not
really necessary as the Flower could configure the
Subject role directly but it is good practice to do so.

From that sample we obtained the DSM of
Figure 9. Here we can find that there is no
dependency between the Subject role and the Flower
class and that the FlowerSubject depends only on the
Subject role and not vice-versa. If we group the
classes into modules as shown in the figure we can

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

20

see that the module where the role is included does
not depend on any other module. It shows that the
flower module is dependent from the role module
via the role. It also shows that the Flower module
does not depend on its concrete observers, as
expected from the observer pattern. The Subject role
is therefore independent of its players as could be
inferred from the use of the subject role in a total of
3 examples in this paper alone. We may also add
that we also used that same role in the JHotDraw
Framework.

public role FlowerSubject {
 plays Subject<FlowerObserver,FlowerEvent>(

Thing=FlowerObserver,
 Fire=Open,Fire.update=flowerOpened) sbj;
 }
}
public class Flower {
 plays FlowerSubject flwrSubject;
 private boolean opened = false;

 public void open(){
 opened = true;
 fireOpen(new FlowerEvent(this));
 }
}

Figure 8: The FlowerSubject role and the Flower class
from our subject role sample.

Name 1 2 3 4 5 6 7 8
EventType 1
ObserverType 2 1
Subject 3 1 1
FlowerEvent 4 1
FlowerObserver 5 1
FlowerSubject 6 1 1 1
Flower 7 1 1
Bee 8 1 1 1

Figure 9: DSM of the Observer role sample.

6 RELATED WORK

To our knowledge there’s never been an attempt to
implement roles as static types and as components of
classes. Riehle (Riehle, 2000) lays the foundations
for role modeling using static roles. He proved role
usefulness in the various challenges frameworks are
faced with, like documentation, comprehensibility,
etc. He does not propose a role language, but simply
explains how roles could be used in some languages.

Chernuchin and Dittrich (Chernuchin, 2005B)
use the notion of natural types and role types that we
followed. They also described ways to deal with role
dependencies which we didn’t consider as it would
introduce extra complexity to the role language.

They suggest programming constructs to support
their approach but no role language has emerged.

Chernuchin and Dittrich (Chernuchin, 2005)
compared five approaches for role support in OO
languages. They were multiple inheritance, interface
inheritance, the role object pattern, object teams and
roles as components of classes. They used criteria
such as encapsulation, dependency, dynamicity,
identity sharing and the ability to play the same role
multiple times. Roles as components of classes
compared fairly well and the only drawback, aside
dynamicity, was the absence of tools that supported
it. With JavaStage that drawback is eliminated.

Object Teams (Herrmann, 2005) is an extension
to Java that uses roles as first class entities. They
introduce the notion of team. A team represents a
context in which several classes collaborate. Even
though roles are first class entities they are
implemented as inner classes of a team and are not
reusable outside that team. Roles are also limited to
be played by a specific class.

EpsilonJ (Tamai, 2007) is another java extension
that, like Object Teams, uses aspect technology. In
EpsilonJ roles are also defined as inner classes of a
context. Roles are as-signed to an object via a bind
directive. EpsilonJ uses a requires directive similar
to ours. It also offers a replacing directive to rename
methods names but that is done on an object by
object basis when binding the role to the object.

PowerJava (Baldoni, 2007) is yet another java
extension that supports roles. In PowerJava roles
always belong to a so called institution. When an
object wants to interact with that institution it must
assume one of the roles the institution offers. To
access specific roles of an object castings are
needed. Roles are written for a particular institution,
therefore we cannot reuse roles between institutions.

7 CONCLUSIONS

We presented a way of composing classes using
roles. With roles we are able to capture the concerns
that are not the class main concern and modularize
them. We presented an, hitherto missing, language
that supports roles as components of classes and
showed how we can use it to compose classes.
Moreover we showed that roles can be made
reusable to a great extent. The result was the
development of generic roles for 10 GoF patterns.

REFERENCES

Bachman, C. W., Daya, M., (1977): The role concept in

Roles�as�Modular�Units�of�Composition

21

data models, in Proceedings of the 3rd International
Conference on Very Large Databases 464–476.

Baldoni, M., Boella, G. van der Torre, L., (2007):
Interaction between Objects in powerJava, journal of
Object Technologies 6, 7 - 12.

Black, A. and Scharli, N. (2004) Programming with traits.
In Proceedings of the International Conference on
Software Engineering 2004, May 2004.

Bracha, G. and Cook, W. (1990): Mixin-Based
Inheritance. In Proceedings of the OOPSLA/ECOOP,
pages 303–311, Ottawa, Canada. ACM Press.

Bracha, G. (1992): The programming language jigsaw:
mixins, modularity and multiple inheritance. PhD
thesis, University of Utah.

Chernuchin, D., and Dittrich, G. 2005. Role Types and
their Dependencies as Components of Natural Types.
In 2005 AAAI Fall Symposium: Roles, an
interdisciplinary perspective.

Chernuchin, D., Lazar, O. S., and Dittrich, G., (2005)
Comparison of Object-Oriented Approaches for Roles
in Programming Languages, Papers from the 2005
Fall Symposium, ed.

Devanbu, P.; Batory, B.; Kiczales, G.; Launchbury, J.;
Parnas, D.; Tarr, P. (2003); "Modularity in the new
millennium: a panel summary", Proc. of the 25th
International Conference on Software Engineering

Ducasse, S., Schaerli, N., Nierstrasz, O., Wuyts, R. and
Black, A. (2004): Traits: A mechanism for fine-
grained reuse. In Transactions on Programming
Languages and Systems.

Filman, R. E., Friedman, D. P.: Aspect-oriented
programming is quantification and obliviousness. In:
Workshop on Advanced Separation of Concerns at
OOPSLA (2000)

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
(1995): Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

Griswold, W.G., Sullivan, K., Song, Y., Shonle, M.,
Tewari, N., Cai, Y., Rajan, H., 2006: Modular
Software Design with Crosscutting Interfaces. IEEE
Software 23(1), 51–60 (2006)

Graversen, K. B., (2006): The nature of roles - A
taxonomic analysis of roles as a language construct,
Ph. D. Thesis, IT University of Copenhagen, Denmark

Hannemann J., Kiczales G. 2002. Design Pattern Imple-
mentation in Java and AspectJ. Proceedings of the
17th Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Seattle, USA.

Herrmann, S., (2005): Programming with Roles in
ObjectTeams/Java. AAAI Fall Symposium: "Roles, An
Interdisciplinary Perspective".

Ingesman, M. D., Ernst, E. 2011. Lifted Java: A Minimal
Calculus for Translation Polymorphism, in Proceeding
of the International Conference on Objects, Models,
Components and Patterns, Zurich, Switzerland

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold. W. G., (2001): An overview of AspectJ.
In proceedings of ECOOP 2001, Budapest, Hungary,
(LNCS, vol. 2072), Springer; 327–335, 200

Koppen, C., Störzer, M.: PCDiff, 2004: Attacking the

fragile pointcut problem. In: European Interactive
Workshop on Aspects in Software, Berlin, Germany

Parnas, D. L., (1972): On the criteria to be used in
decomposing systems into modules. Commun. ACM
15, 12, Dec. 1972, 1053-1058

Pradel, M., (2008): Explicit Relations with Roles - A
Library Approach. Workshop on Relationships and
Associations in Object-Oriented Languages (RAOOL)

Przybyłek, A. Systems Evolution and Software Reuse in
Object-Oriented Programming and Aspect-Oriented
Programming, J. Bishop and A. Vallecillo (Eds.):
TOOLS 2011, LNCS 6705, pp. 163–178, 2011.

Quitslund, P. and Black, A. (2004): Java with traits -
improving opportunities for reuse. In Proceedings of
the 3rd International Workshop on Mechanisms for
Specialization, Generalization and inheritance

Riehle, D. and Gross, T. 1998. Role Model Based
Framework Design and Integration.” In Proceedings of
the 1998 Conference on Object-Oriented
Programming Systems, Languages, and Applications

Riehle, D. 2000. Framework Design: A Role Modeling
Approach, Ph. D. Thesis, Swiss Federal Institute of
technology, Zurich.

Scharli, N., Ducasse, S., Nierstrasz, O. and Black, A.
(2003): Traits: Composable units of behavior. In
Proceedings of ECOOP 2003, volume 2743 of Lecture
Notes in Computer Science. Springer.

Smith, C. and Drossopoulou, S. (2005): Chai: Traits for
Java-like languages. In Proceedings of ECOOP 2005.

Steimann, F., (2000): On the representation of roles in
object-oriented and conceptual modeling. Data &
Knowledge Engineering 35(1):83–106.

Steimann, F., 2006, The paradoxical success of aspect-
oriented programming“, in OOPSLA '06, Proceedings
of the 21st Annual Conference on Object-Oriented
Programming Languages, Systems, and Applications

Tamai, T., Ubayashi, N., and Ichiyama, R., (2007):
Objects as Actors Assuming Roles in the
Environment, in Software Engineering For Multi-
Agent Systems V: Research Issues and Practical
Applications, Lecture Notes In Computer Science, vol.
4408. Springer-Verlag, Berlin, Heidelberg, 185-203

Tarr, P. L., Ossher, H., Harrison, W. H., and S. M. S. Jr.
1999. N degrees of separation: Multi-dimensional
separation of concerns. In International Conference on
Software Engineering.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

22

