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Abstract: This paper presents an analysis about the performance of bang-bang controllers used on a static machine for 
energy conversion (inverter) showing their robustness with respect to some key parameters and to some 
operating conditions. In particular a quasi sliding mode solution is proposed supported by sensitivity 
analysis able to allow the choice of proper operative parameters set for in field testing. Moreover a 
comparison between two different sliding surfaces proposal is presented. 

1 INTRODUCTION 

The problem of designing robust control solutions is 
a well known and discussed topic present in the 
literature both considering continuous (Tan, Lai and 
Tse, 2012; Young, Utkin and Özgüner, 1999) as well 
as discrete formulations (Gao, Wang and Homaifa, 
1995; Jung, Dai and A. Keyhani, 2004; Marwali, 
2004). Actually there are several papers which dealt 
with the use of such controllers in the discrete time 
domain applied to static conversion machines as 
inverters (Jung et al., 2004; Marwali, 2004; Wong, 
Leung and Tam, 1999; Gao, 1990; Hung, Gao and 
Hung, 1993; Gao and Hung, 1993). Taking into 
account, for example, the work of Wong et al. 
(1999), such approach is limited to the application of 
a solution without showing its characteristics of 
robustness according to the requirements of market 
regulation. Usually typical inverter static and 
dynamic tests are not carried out, limiting the 
possibility to argue on the effectiveness of the 
control strategy on actual machine implementation. 
Moreover in several works as in (Gao et al., 1995) 
the behavior of the selected sliding surface is not 
addressed in terms of sensitivity performance nor its 
behavior for commercial employment is somehow 
discussed. Starting from this points, the authors tried 
to compare two control solutions based on quasi 
sliding mode controllers (QSMCs) according to 
some peculiar usage characteristics that are well 
known in the inverter market with the final aim of 

assessing some rule of thumb for the selection of the 
QSMCs parameters. Actually as declared by Tan et 
al. (2012) even if some works exist assessing the 
performance characteristics of non linear control 
systems applied to static machines, they are not 
focused on the design aspects and limited to some 
performance parameters. Such works of course are 
useful for the industrial side because provide a path 
which allow to exploit such proposal and control 
strategies in real life and not only from an academic 
standpoint even if some implementation aspects still 
are lacking. Some others among such papers as (Tan 
et al, 2012; Gao et al., 1995; Wong et al., 1999) 
stress instead the accent on the importance to keep 
constant, or set opportunely, the switching frequency 
of the controller to improve performance or try to set 
the roadmaps for correct controller switching. 
Nevertheless most of these works are focused on  the 
design of continuous time controllers which are 
likely not to be employed in everyday world. So, 
starting from the work of Gao et al. (1995) and from 
the one proposed by Wong et al. (1999) the authors 
compared the performance of a discrete time QSMC 
with an extended version proposed relying on a 
higher order state description of the system of 
interest which seems to better fit both the market and 
designers requirements. The performance taken into 
account are the ones usually considered in the 
inverter market. Comments have been also carried 
out considering the behaviour of a general sample 
static machine in terms of sensitivity analysis with 
respect to some key parameters as switching 
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frequency, sliding surface parameters, quasi sliding 
mode band and system cutoff frequency under 
nominal conditions and during static and dynamic 
load variation. 

2 INVERTER STRUCTURE 

In Figure 1 a typical half bridge PWM inverter 
topology is sketched (Gao et al., 1995). The circuit 
is composed by two constant voltage sources Vs, a 
LC group, a resistive load RL and a couple of IGBT 
acting as power switches. The two IGBT are 
controlled by a signal d(t) in counter phase, that is, 
when IGBT1 is closed IGBT2 is open and viceversa 
and the commanding signal determines the duty 
cycle of the PWM signal defined as follows: 

on off

on off

t t
d

t t
−

=
+

     (1) 

The switching period is set as the inverse of d/(ton-
toff). Such switching period should be smaller 
compared to the circuit time constant defined by the 
LC group (Gao et al., 1995). It can be easily shown 
that, in such a way, the output system voltage Vout is 
a function of d and Vs. 

The parameters value for an inverter of 20kVA 
are written in Table 1, where the switching 
frequency of the IGBT can range typically from a 
minimum value of 5kHz up to 15kHz.  

Table 1: Inverter circuit parameters. 

 
Values 

L [µH] C [µF] RL [Ω] Vs [V] 

Components 500 300 2.8 400 

IGBT1
Vs

Vs

L

C RL

Cg1

Cg2

PWMVout_in

IGBT2

Vout

 
Figure 1: Closed control loop of an half bridge inverter 
topology. 

The system state space, with d as control input 
and Vout as the output, can be written in the 

continuous time domain as a classical state variable 
system: 

yz yzx(t)= A x(t)+ B d(t)    (2) 

where x is an n-vector and Ayz and Byz are proper size 
matrices for the problem to be considered and y 
indicates whether the system is continuous or 
discrete, while z is the state order and d is a scalar.    

By choosing the state as 

.
c

c
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v
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     (3) 

where vc is the voltage across the capacitor, it is 
possible to have a single loop feedback exploiting 
the capacitor (C) voltage (vc) as output, assigning to 
A and B the following values: 
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 (4) 

Figures of merit of a commercial system as the 
one described should be within the limits of Table 2 
in order to have a  competitive features in the energy 
market. 

Table 2: Commercial performance benchmark parameters. 

Parameters 
for 20kVA 

Values 

THD(*) Power 
Factor 

Static 
load 

change 

dynamic (0-
100%) load 

change 

 <2% 0.99 ±1% 
±5% <10 ms 
recovery time 

(*) These figures are in accordance with IEC6204-1-3 and are 
expressed for linear load in voltage instead of current 

3 CONTROL THEORY AND 
DESIGN OF THE SWITCHING 
FUNCTION 

3.1 Control Basics 

The main concept of sliding mode control exploits 
the definition of a sliding surface and a proper set of 
parameters that enable such surface to become 
globally attractive for the system under 
consideration. Given the state–space representation 
(4), in order to derive a sliding mode control the 
sliding manifold: 

0S(x(t))=     (5) 
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should satisfy the following inequality 
.

0S(x(t))<                      (6)  

while a suitable control law of the form: 

d =  
0
0

+d    S(x(t)) >
d    S(x(t)) <−

⎧
⎨
⎩

 
(7) 

should guarantee each state trajectory to converge to 
(5) (Tan et al., 2012;Young et al., 1999; Gao et al., 
1995; Jung et al., 2004; Marwali, 2004; Wong et al., 
1999; Gao, 1990; Hung et al., 1993; Gao and Hung, 
1993).  

In other words, equations (5) to (7) and the right 
choice of d assure that the state vector, starting from 
any initial condition, will slide up to the null 
solution.  

A common choice for the reaching law, is given 
by Gao et al. (1995):  

sgnS(x(t))= qS(x(t)) ε (S(x(t)))− −  (8) 

where q and ε are positive quantities opportunely 
chosen in order to guarantee the system global 
stability.  

3.2 Digital Control for Static Machines 

The problem described in the previous section can 
be applied with suitable manipulations and 
assumptions to the discrete time case (DTC). 
Considering the discrete form of the system 
represented in (2), sampled at instant Tk (represented 
from now on as x(Tk)= x(k)) it is possible to write 
(4) as: 

1 dz dzx(k + )= A x(k)+ B d(k)            (9) 

where Adz and Bdz are the discrete forms according to 
classical system theory as argued by D’Azzo and 
Houpis (1995): 

0

 and 
Tk

A Acz k cz k
dz dz

T TA = e ; B = e Bdτ∫          (10)  

Together with the discrete time representation of 
the system the entire domain must be discrete. Some 
authors, among whom the first has been Hoft, 
suggested a discrete representation of the continuous 
time convergence law described by the following: 

[ ]1 0k+ k kS(x ) S(x ) S(x )<−             (11) 

Other formulations, which result in a better 
implementation of the previous concept for discrete 
time controllers (DTC), are presented in the 

literature (see, e.g., Gao et al. (1995) and references 
therein). A possible choice for the discrete-time 
form of (8) is:  

1 sgns sS(k + ) S(k) = qT S(k) εT (S(k)) = (k)φ− − −        (12) 

where Ts is the switching period and the quantity qTs 
must satisfy qTs<1 in order to guarantee that, 
starting from any initial condition, the trajectories 
will move to the sliding surface. 

3.3 System Switching Law 

Once the reaching law is defined as per (12), a 
switching function should be chosen in order to let 
(7) in its discrete formulation to be a valid statement. 

By selecting S(k) as a linear combination of the 
state variables: 

1 0 T
wS(k + )= S(k)= =Φ x(k) ,  (13) 

where Φw is a vector of scalars of dimension (w) it is 
possible to write (8) as: 

sgnT T
s w s w(k)= qTΦ x(k) εT (Φ x(k))φ − −   (14) 

and consequently (13) as: 

1 1T T
w w

T T T
w w w

S(k + ) S(k)=Φ x(k + ) Φ x(k)=

Φ Ax(k)+Φ Bd(k) Φ x(k)= (k)φ

− −

= −
     (15) 

which, in turns, provides an expression for the 

 switching law d(k): 

( ) ( )1T T T
w w wd(k)= Φ B Φ Ax(k) Φ x(k) (k)φ

−
− − −     (16) 

By replacing in (13) the state x(k) with the error 
e(k) among the state itself and a reference signal, it is 
possible to design a suitable sliding manifold for the 
systems as the one of Figure 1. Note that when the 
system moves on a sliding surface it behaves as a 
linear system approaching the null solution with time 
constants depending on the choice of the vector Φw. 

4 DIGITAL CIRCUIT CONTROL 

Aim of this section is the design of the control law 
and the sliding manifold for the circuit described in 
Section I, according to (13).  Using the output 
voltage error (with respect to a reference signal xr(t)) 
    , it can be easily verified that the 
evolution of  e2(t) i.e.  

.2

( )
( )

( )

e t
e t =

e t

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

           (17) 

[ ]x(t)(t)x=e(t) r −
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obeys to (2) and (4). It is therefore possible to extend 
the state representation of (2) by defining matrices 
Ac3 and Bc3 as follows: 
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(18) 

Since (2) and (18) admit their discrete-time 
counterpart, once they are replaced in (16), it is 
possible to design the control signal d(k).  

5 CIRCUIT PERFORMANCE: 
SENSITIVITY ANALYSIS 

The circuit in Figure 1 has been simulated using 
PSIM 9.0.4 software and the system characteristics 
in terms of commercial performance of the two 
parameter sliding manifold have been analyzed. The 
nominal system parameters for simulations are: 
switching frequency of fs=10kHz; sampling 
frequency fk=1MHz, qTs=0.25; εTs=0.1; sliding 
surface parameters for the 2D approach Φ2=( Φ1=1, 
Φ2=10-6); sliding surface parameters for the 3D 
approach Φ3=( Φ1=1, Φ2=1, Φ3=0,0625). In Figure 2, 
3 and 4 the system performance in terms of voltage 
THD% with respect to two dimensional manifold 
slope variation, system cutoff frequency (C only) 
variation and switching frequency variation have 
been reported, respectively. In Figure 5 it is shown 
how the system performance, during dynamic load 
variation (from 0-100% of the nominal load), can be 
slightly improved in terms of settling time changing 
the ε parameter which is justified by the change into 
the QSMC band.  According to Figure 6 the static 
behaviour of the two parameters controller is 
generally worse with respect to the choice of the 
three parameters sliding surface while the two 
sliding controllers have almost the same dynamical 
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TH
D
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]
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Figure 2: THD% variation with respect to the change in 
the slope of the QSMC in the 2D error state space. 

behaviour which is generally better with respect to 
traditional PID systems (Gao et al., 1995).     
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Figure 3: THD% variation with respect to the change into 
the system cutoff frequency. This is important from a 
design standpoint showing the possibility to reduce the 
weight and space occupation of such capacitor keeping the 
same performance. 
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Figure 4: THD % variation with respect to C and 
evaluated a three switching frequencies. 
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Figure 5: System dynamic response to load variation (0-
100% Vout-Vout AVL after load variation) with ε 
parameter 100 times greater than the design one . 

0 .04 0 .06 0 .08
Time  (s )

Vout_2_param manifo ld Vout_3_param_manifo ld

 

Figure 6: Comparison between systems performance (static 
behavior 0-100% load) with two parameters (red) and three 
parameters (blue) controllers. The phase shift has been 
magnified to make two picture easily comparable.  
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Figure 7: Dynamic behavior of the two parameter 
controller (left) with respect to the three parameters one 
(right). 

6 CONCLUSIONS 

In this work the authors, starting from an existing 
circuit model, have simulated the performance of 
two sliding manifolds applied to a commercial 
designed inverter of 20kVA. The authors identified 
that there are differences between control 
implementations that are evident upon static load 
variation and are less evident under dynamic ones.  

Simulations have been carried out in order to 
minimize the chattering due to finite switching 
frequency (coping with actual implementation on 
IGBTs) and taking into account the possibility to act 
on the ε parameter to control the admissible band. 
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