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Abstract: Problems of rigorous mathematical analysis of Costas Loop are considered. The analytical method for phase
detector characteristics computation is proposed and new classes of phase detector characteristics are com-
puted for the first time. Effective methods for nonlinear analysis of Costas Loop are discussed.

1 INTRODUCTION

The Costas loop was invented in 1950s by American
electrical engineer John P. Costas (Costas, 1956). It is
one of a few schemes of carrier recovery loop and it is
widely used in practice for binary phase-shift keying
(BPSK) demodulation technique.

Various methods for analysis of PLL, and partic-
ularly Costas loop, are well developed by engineers
(Gardner, 1966; Lindsey, 1972; Kroupa, 2003) but the
problems of construction of adequate nonlinear mod-
els and nonlinear analysis of such models are still far
from being resolved. As noted by D. Abramovitch
in his keynote talk at American Control Conference
(Abramovitch, 2002), the main tendency in a mod-
ern literature on analysis of stability and design of
PLL is the use of simplified linearized models, ap-
plication of the methods of linear analysis, a rule of
thumb, and simulation. However it is known that
the application of linearization methods and linear
analysis for control systems can lead to untrue re-
sults (e.g. the counterexamples to conjectures on ab-
solute stability and on harmonic linearization and to
filter hypothesis (Leonov et al., 2010a; Leonov and
Kuznetsov, 2011; Bragin et al., 2011)) and requires
special justifications. Also simple numerical analy-
sis can not reveal nontrivial regimes (e.g., semi-stable
or nested limit cycles, hidden oscillations and attrac-
tors (Gubar’, 1961; Leonov et al., 2008; Leonov et al.,
2010c; Leonov et al., 2011a)).

In this paper, following works (Leonov et al.,
2011b; Kuznetsov et al., 2011a; Kuznetsov et al.,
2011b; Leonov et al., 2010b; Kuznetsov et al., 2009a;
Kuznetsov et al., 2009b; Kuznetsov et al., 2008),
rigorous mathematical approach to investigation of
Costas loop is described. Mathematical model of high

frequency signals is considered and nonlinear model
of Costas loop is constructed. Investigation of Costas
loop behavior is reduced to investigation of PLL with
specific phase detector characteristic.

2 THE DESCRIPTION OF
COSTAS LOOP IN SIGNAL
SPACE

Consider Costas loop at the level of electronic real-
ization (Fig. 1).

Figure 1: Block diagram of Costas loop at the level of elec-
tronic realization.

Here OSCmaster is a master oscillator, OSCslave is
a slave (tunable voltage-controlled) oscillator, which
generates oscillationsf 1,2(t) with high-frequencies
θ̇1,2(t). Block −90o shifts phase of input signal by
− π

2.
Block

⊗
is a multiplier of inputs. The relation be-

tween the inputξ(t) and the outputσ(t) of linear fil-

ter has the formσ(t) = α0(t)+
t∫

0
γ(t−τ)ξ(τ)dτ. Here

γ(t) is an impulse transient function of filter,α0(t) is
an exponentially damped function, depending on the
initial state of filter at momentt = 0.
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3 COMPUTATION OF PHASE
DETECTOR
CHARACTERISTIC

Suppose, the phasesθ1(t),θ2(t) of the considered sig-
nals are smooth functions with the frequenciesθ̇1,2(t)
satisfying the following high-frequency conditions

θ̇p(τ) ≥ ωmin > 0, p= 1,2 (1)

on the fixed time interval[0,T]. Also it is assumed
that the frequency difference is uniformly bounded

∣

∣θ̇1(τ)− θ̇2(τ)
∣

∣ ≤ ∆ω, ∀τ ∈ [0,T], (2)

where∆ω is a certain constant.
Divide the interval[0,T] into small intervals

δ = (ωmin)
−1/2. (3)

By assumption,

|θ̇p(τ)− θ̇p(t)| ≤ ∆Ω, p= 1,2,

|t − τ| ≤ δ, ∀τ, t ∈ [0,T],
(4)

where constant∆Ω is independent oft, τ.
The functionγ(t) is smooth and there exists a con-

stantC such that

|γ(τ)− γ(t)| ≤Cδ,
∀τ, t ∈ [0,T], |t − τ| ≤ δ.

(5)

The latter means that on small intervals[τ,τ+ δ]
the functionsγ(t) and θ̇1,2(t) are “almost constant”
and the functionsf 1,2(t) are rapidly oscillating. Ob-
viously, such a condition occurs in the case of high-
frequency oscillations.

Consider now harmonic oscillations

f 1(θ1(t)) = b1
1cos(θ1(t)), f 2(θ2(t)) = b2

1sin(θ2(t))

and two block diagrams shown in Fig. 2 and Fig. 3.

Figure 2: Two inputs and filter output.

Figure 3: Phase detector and filter.

In Fig. 3 θ1,2(t) are phases of oscillations
f 1,2

(

θ1,2(t)
)

, PD is a nonlinear block with the char-
acteristicϕ(θ) (being called a phase detector or dis-
criminator). The phasesθ1,2(t) are the inputs of PD
block and the output is the functionϕ(θ1(t)−θ2(t)).
It should be noted, that the shape of phase detector
characteristic depends on shapes of input signals.

In both diagrams the filters are the same with the
same impulse transient functionγ(t) and the same ini-
tial states. The filters outputs are the functionsg(t)
andG(t), respectively.

A classical Costas loop synthesis for harmonic
signals is based on the following result:For high-
frequency harmonic oscillation functionϕ(θ) has the
form ϕ(θ) = 1

8b1
1b2

1sin(2θ) and for the same initial
data of filter, the following relation G(t)−g(t)≈ 0 is
satisfied.

Further will be considered extension of this result
to non-harmonic signals. Consider a partially differ-
entiable odd functionf 1(θ1(t)) in the form of Fourier
series

f 1(θ) =
∞

∑
i=1

b1
i sin(iθ), f 2(θ) = b2

1sin(θ). (6)

Here coefficients satisfy the relationb1
i = O(i−1).

Then the following assertion can be proved.

Theorem 1. If conditions(1)–(5) are satisfied (high-
frequency property) and

ϕ(θ)=
(b2

1)
2

8

[

−(b1
1)

2sin(2θ)+2
∞

∑
q=1

b1
qb1

q+2sin(2θ)
]

,

then for the same initial state of filter relation

G(t)−g(t) = O(δ), ∀t ∈ [0,T] (7)

is valid.

This result can be extended to the case of full
Fourier series and allows one to compute a phase de-
tector characteristic for standard types of signals.

3.1 Proof of Theorem

Let t ∈ [0,T]. Consider the difference

g(t)−G(t) =
t∫

0
γ(t − s)×

×

[

f 1
(

θ1(s)
)

f 2
(

θ2(s)
)

f 1
(

θ1(s)
)

f 2
(

θ2(s)− π
2

)

−

−ϕ
(

θ1(s)−θ2(s)
)

]

ds.

Denote bym∈N∪{0} a natural number such thatt ∈
[mδ,(m+1)δ]. From (3) we havem< T/δ+1. Func-
tion γ(t) is continuous and, therefore, it is bounded
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on [0,T], f 1(θ), f 2(θ),ϕ
(

θ
)

are also bounded onR.
Then

(m+1)δ∫
t

γ(t − s) f 1
(

θ1(s)
)

f 2
(

θ2(s)
)

×

× f 1
(

θ1(s)
)

f 2
(

θ2(s)− π
2

)

ds= O(δ),
(m+1)δ∫

t
γ(t − s)ϕ

(

θ1(s)−θ2(s)
)

ds= O(δ)

andg(t)−G(t) can be rewritten as

g(t)−G(t) =
m
∑

k=0

∫
[kδ,(k+1)δ]

γ(t − s)×
[

× f 1
(

θ1(s)
)

f 2
(

θ2(s)
)

f 1
(

θ1(s)
)

f 2
(

θ2(s)− π
2

)

−

−ϕ
(

θ1(s)−θ2(s)
)

]

ds+O(δ).

(8)
Since (5), it follows that on any interval[kδ,(k+

1)δ] we have

γ(t − s) = γ(t − kδ)+O(δ),
t > s, s∈ [kδ,(k+1)δ].

(9)

whereO(δ) is independent ofk. Then by (8), (9) and
the boundedness off 1(θ), f 2(θ),ϕ

(

θ
)

we get

g(t)−G(t) =
m
∑

k=0
γ(t − kδ)

∫
[kδ,(k+1)δ]

[

f 1
(

θ1(s)
)

f 2
(

θ2(s)
)

f 1
(

θ1(s)
)

f 2
(

θ2(s)− π
2

)

−

−ϕ
(

θ1(s)−θ2(s)
)

]

ds+O(δ).

Denoteθp
k(s) = θp(kδ)+ θ̇p(kδ)(s− kδ), p∈ {1,2}.

By (4) with s ∈ [kδ,(k + 1)δ] we obtain θp(s) =
θp

k(s)+O(δ). Sinceϕ
(

θ
)

is bounded and continuous
onR, by (2) we have

∫

[kδ,(k+1)δ]

|ϕ
(

θ1(s)−θ2(s)
)

−ϕ
(

θ1
k(s)−θ2

k(s)
)

|ds=O(δ2).

The function f 2(θ) is smooth while the function
f 1(θ) is partially-differentiable and bounded. Iff 1(θ)
is continuous onR, then

∫
[kδ,(k+1)δ]

f 1(θ1(s)) f 2(θ2(s)) f 1
(

θ1(s)
)

×

× f 2
(

θ2(s)− π
2

)

ds=
=

∫
[kδ,(k+1)δ]

f 1
(

θ1
k(s)

)

f 2
(

θ2
k(s)

)

f 1
(

θ1
k(s)

)

×

× f 2
(

θ2
k(s)−

π
2

)

ds+O(δ2).

(10)

Considering sets (10) outside of small neighbour-
hoods of discontinuity points and using (1)–(5), the
proof of theorem is completed.�

3.2 Example

Consider a triangular signal (Fig. 4)

f 1(t) =
8
π2

∞

∑
l=1

(−1)l−1

(2l −1)2 sin
(

(2l −1)θ1(t)
)

.

Then

1

-1

t

f (t)
1

Figure 4: Triangular signal.

ϕ(θ1−θ2) = 8
π4

[

− sin(2θ1−2θ2)+

+2
∞
∑

l=1

1
(2l−1)2(2l+1)2

sin(2θ1−2θ2)
]

.

By 2
∞
∑

l=1

1
(2l−1)2(2l+1)2

= π2

8 −1 we finally get

ϕ(θ1−θ2) =
(

1
π2 −

16
π4

)

sin(2θ1−2θ2).

4 PHASE-FREQUENCY MODEL

From Theorem 1 it follows that the block-scheme of
Costas loop in signal space (Fig. 1) can be asymptot-
ically changed (for high-frequency generators) by the
block-scheme in frequency and phase space (Fig. 5).
Here PD is a phase detector with corresponding char-
acteristic computed above.

Figure 5: Phase-locked loop with phase detector.
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