
Flexible Group Key Exchange with On-demand Computation of
Subgroup Keys Supporting Subgroup Key Randomization

Keita Emura1 and Takashi Sato2
1Network Security Research Institute, Security Architecture Laboratory,

National Institute of Information and Communications Technology (NICT), Koganei, Japan
2School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan

Keywords: Group Key Exchange, On-demand Computation of Subgroup Keys.

Abstract: In AFRICACRYPT2010, Abdalla, Chevalier, Manulis, and Pointcheval proposed an improvement of group
key exchange (GKE), denoted by GKE+S, which enables on-demand derivation of independent secret sub-
group key for all potential subsets. On-demand derivation is efficient (actually, it requires only one round)
compared with GKE for subgroup (which requires two or more rounds, usually) by re-using values which was
used for the initial GKE session for superior group. In this paper, we improve the Abdalla et al. GKE+S
protocol to support key randomization. In our GKE+S protocol, the subgroup key derivation algorithm is
probabilistic, whereas it is deterministic in the original Abdalla et al. GKE+S protocol. All subgroup member
can compute the new subgroup key (e.g., for countermeasure of subgroup key leakage) with just one-round
additional complexity. Our subgroup key establishment methodology is inspired by the “essential idea” of
the NAXOS technique. Our GKE+S protocol is authenticated key exchange (AKE) secure under the Gap
Diffie-Hellman assumption in the random oracle model.

1 INTRODUCTION

In AFRICACRYPT2010 (Abdalla et al., 2010), Ab-
dalla, Chevalier, Manulis, and Pointcheval proposed
an improvement of group key exchange (GKE), de-
noted by GKE+S1, which enables on-demand deriva-
tion of independent secret subgroup key for all poten-
tial subsets. It is particularly worth noting that the re-
quired round of the subgroup key computation phase
is just one by re-using the values{y1, . . . ,ym}. So,
the Abdalla et al. GKE+S protocol reduces the round
complexity (from two to one) compared with the case
that the BD protocol (Burmester and Desmedt, 1994)
is directly executed for a subgroup(U1,U2, . . . ,Um). It
is notable that their on-demand subgroup key deriva-

1First, the Burmester-Desmedt (BD) proto-
col (Burmester and Desmedt, 1994) (with certain
modification to enable the subgroup key derivation) is
executed with a group(U1,U2, . . . ,Un)). In this group key
computation phase, a user (sayUi) publishes the value (say
yi) for establishing the group key. The end of this phase,
all user (U1,U2, . . . ,Un) shares the common group key.
Next, in the subgroup key computation phase, a member
of subgroup (w.l.o.g.,(U1,U2, . . . ,Um) ⊂ (U1,U2, . . . ,Un))
can establish the subgroup key, which is independent of the
group key.

tion algorithm is deterministic, that is, the subgroup
key is uniquely determined by(y1,y2, . . . ,ym).

Here, we considered the case that the subgroup
(U1,U2, . . . ,Um) would like to establish the “new”
subgroup key2 (e.g., for countermeasure of subgroup
key leakage). To establish the new group key, GKE+S
protocol for (U1,U2, . . . ,Un) needs to be executed
again, and then the new subgroup key is established
by executing the on-demand derivation algorithm for
(U1,U2, . . . ,Um). That is, it spoils the significant
achievement of the GKE+S concept.

Our Contribution. In this paper, we improve the
Abdalla et al. GKE+S protocol to support key ran-
domization. In our GKE+S protocol, the subgroup
key derivation algorithm (sayP .SKE) is probabilis-
tic, and therefore all subgroup member can estab-
lish the new subgroup key with just one-round addi-
tional complexity. Our subgroup key establishment
methodology is inspired by the “essential idea” of the
NAXOS technique (LaMacchia et al., 2007)3 (not di-

2We explicitly exculde the case that a GKE protocol is
directly executed for(U1,U2, . . . ,Um).

3The NAXOS technique is for achieving the ephemeral
key leakage resilience. An ephemeral public key is com-

353Emura K. and Sato T..
Flexible Group Key Exchange with On-demand Computation of Subgroup Keys Supporting Subgroup Key Randomization.
DOI: 10.5220/0003986003530357
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 353-357
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

rect use).

The previous one-round GKE schemes
(e.g., (Boyd and Nieto, 2003; Gorantla et al.,
2009)) assume that each userUi has a long-lived
secret keyLLi which is generated in the initial phase,
and the initial phase is not included in the round
complexity. So, according to the GKE fashion, our
GKE+S protocol (of subgroup key phase) also can be
regarded as a one-round GKE protocol. One-round
GKE has a benefit point from the viewpoint of
robustness4. If a GKE has two or more rounds,
robustness is important, since it is impractical the
case that the remaining nodes must run GKE of
the first round again. On the contrary, one-round
GKE does not have to consider robustness from the
protocol termination’s point of view.

Remark. Note that Cheng and Ma pointed out that
the Abdalla et al. GKE+S protocol is vulnerable
to malicious insiders attack (Cheng and Ma, 2010).
They also give a countermeasure of such attack by
adding the key confirmation phase. However, adding
a signature-based key confirmation round is a stan-
dard approach (which has been introduced in (Katz
and Shin, 2005)) for insider security. We make it clear
that our proposed scheme can be modified to be se-
cure against insider attack by adding the key confir-
mation phase.

We should notice that a recent paper (Wu et al.,
2011) allows to compute group encryption keys for
any subgroups without any extra round of communi-
cations. This functionally achieves the same goal of
this paper. We would like to thank a reviewer who
pointed out this fact.

2 SECURITY MODELS

First, we define the syntax of GKE+S protocol by
following (Abdalla et al., 2010). LetU be a set
of at mostn users in the universe. We assume that
their identities are unique. Any subset ofm users
(2 ≤ m≤ n) invokes a single session of a GKE+S
protocolP . EachUi ∈ U holds a long-lived keyLLi .
The participation ofUi is expressed by an instanceΠs

i
for somes∈ N (i stands for the identity ofUi , ands

puted by using the hashed value of the static long-lived
secret key and the ephemeral secret key. Even if the
ephemeral secret key is revealed, the exponent of the
ephemeral public key is not revealed as long as the static
long-lived secret key is not revealed. We apply this essen-
tial idea of the NAXOS technique.

4GKE is called robust (Hatano et al., 2011; Jarecki et al.,
2007) even if a node is down, the protocol can be success-
fully terminated by the remaining nodes.

stands for the number of participations of the GKE+S
protocol). An execution of a GKE+S protocol is split
in two stages, denoted asgroup stageandsubgroup
stage. An instanceΠs

i is invoked for one GKE+S ses-
sion with some partner idpids

i ⊆U which includes the
identities of all (i.e., includingUi also) intended par-
ticipants in a group stage. Similarly, subgroup partner
id spids

i ⊂ pids
i is also defined. Moreover,Πs

i holds
a session idsids

i which uniquely identifies the cur-
rent protocol session of a group stage. Similarly, sub-
group session idssids

i (which uniquely identifies the
current protocol session of a subgroup stage). More-
over, each subgroup contains different group mem-
bers. So, in this paper, whenUi executes theP .SKE
algorithm inℓ times, we assume thatΠs

i holdspids
i ,

sids
i , and{(ssids,ℓ

i ,spid
s,ℓ
i)}. In addition, we assume

that (ssids,ℓ+1
i ,spid

s,ℓ+1
i) are added intoΠs

i whenUi
executesP .SKE again. We say thatΠs

i and Πt
j is

partnered ifsids
i = sidt

j andpids
i = pidt

j . We callΠs
i

is acceptedif Πs
i can compute the session group key

ks
i successfully.

Definition 1 (Syntax of GKE+S Protocols).
[P .GKE(U1, . . . ,Un)]: This protocol defines the
group stage. For each Ui, a new instanceΠs

i with
pids

i = (U1, . . . ,Un) is created, and a probabilistic
interactive protocol between these instances is exe-
cuted. Then, every instanceΠs

i computes the session
group key ksi .

[P .SKE(Πs
i ,spid

s,ℓ
i)]: This protocol defines the sub-

group stage. For an accepted instanceΠs
i and a sub-

group partner idspids,ℓ
i ⊂ pids

i , a probabilistic (pos-
sibly interactive) algorithm is executed, and outputs
the session subgroup key ks

i,Jℓ
, where Jℓ is the set of

indices of users inspids,ℓ
i .

The correctness is defined as follows. A GKE+S
protocol P is said to be correct if all instances
(invoked by the group stage ofP .GKE) accept
with identical group keys. In addition, for all in-
stancesΠt

j (partnered withΠs
i), P .SKE(Πs

i ,spid
s,ℓ
i) =

P .SKE(Πt
j ,spid

t,u
j) holds if spids,ℓ

i = spid
t,u
j .

Next, we define adversarial models and the au-
thenticated key exchange (AKE) security for both
group key and subgroup key. As mentioned by Ab-
dalla et al., the security of GKE+S protocol must en-
sure independence of the group key and any subgroup
key, i.e., both (1) even if any subgroup key is leaked
to the adversary, the secrecy of the group key must
hold, and (2) the leakage of group key must guaran-
tee the secrecy of any subgroup key. LetA be a PPT
adversary who can issue the following queries:

• Execute(U1, . . . ,Un): A can obtain the execution

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

354

transcript of the group stage between the group
member(U1, . . . ,Un).

• Send(Πs
i ,M): Through this query,A can deliver a

messageM to Πs
i . ThenA can obtain the protocol

message generated byΠs
i in response toM. As in

the Abdalla et al. definition (Abdalla et al., 2010),
we consider a special invocation query of the form
Send(Ui ,(

′start′,U1, . . . ,Un)). It creates a new in-
stanceΠs

i with pids
i = (U1, . . . ,Un) and provides

A with the first protocol message.

• SKE(Πs
i ,spid

s
i): Through this query,A can sched-

ule the on-demand subgroup key computation. If
P .SKE is an interactive algorithm, thenA obtains
the first message for the subgroup stage. Other-
wise, Πs

i computesks
i,J. This query is processed

only if Πs
i has accepted andspids

i ⊂ pids
i . Note

that a query(Πs
i ,spid

s
i) can be asked in a (polyno-

mial) number of times.

• RevealGK(Πs
i): A can obtain the group keyks

i
only if Πs

i has accepted in the group stage.

• RevealSK(Πs
i ,spid

s,ℓ
i): A can obtain the group

key ks
i,Jℓ

. The query is answered only if

P .SKE(Πs
i ,spid

s,ℓ
i) has been invoked and the sub-

group key computed.

• Corrupt(Ui): A can obtain theUi ’s long-lived se-
cret keyLLi . Note thatA does not gain control
over theUi ’s behavior, but might be able to com-
municate on behalf ofUi .

• TestGK(Πs
i): For a random bitb

$
← {0,1}, if b=

0 A is given a random value chosen by the group
key space, and ifb= 1 A is given the real group
key ks

i . Note that this query can be issued only
once, and is answered only ifΠs

i has accepted in
the group stage.

• TestSK(Πs
i ,spid

s,ℓ
i): For a random bitb

$
←{0,1},

if b= 0 A is given a random value chosen by the
subgroup key space, and ifb = 1 A is given the
real group keyks

i,Jℓ
. The query is answered only if

P .SKE(Πs
i ,spid

s,ℓ
i) has been invoked and the sub-

group key computed.

A userU is called honest if noCorrupt(U) has been
issued byA . On the contrary, a userU is called cor-
rupted or malicious.

Next, we define two freshness notions by follow-
ing the definitions from (Abdalla et al., 2010).

Definition 2 (Instance Freshness). Let Πs
i be an in-

stance andΠt
j be a partnered instance ofΠs

i . We say
that Πs

i is fresh ifΠs
i has accepted in the group stage

and none of the following is true; (1)RevealGK(Πs
i)

or RevealGK(Πt
j) has been asked, or (2)Corrupt(Ui)

for some Ui ∈ pids
i was asked before anySend(Πs

i , ·).

Definition 3 (Instance-Subgroup Freshness). Let Πs
i

be an instance andΠt
j be a partnered instance ofΠs

i

and spid
t,u
j = spid

s,ℓ
i . We say that(Πs

i ,spid
s,ℓ
i) are

fresh ifΠs
i has accepted in the group stage and none

of the following is true; (1)RevealSK(Πs
i ,spid

s,ℓ
i)

or RevealSK(Πt
j ,spid

t,u
j) has been asked, or (2)

Corrupt(Ui) or Corrupt(U j) was asked before any
Send(Πs

i , ·) or Send(Πt
j , ·).

Definition 4 (AKE Security of Group Key). Let b
$
←

{0,1} be a uniformly chosen bit flipped in theTestGK
oracle. A correct GKE+S protocolP is said to be sat-
isfying AKE security of group key when for any PPT
adversaryA the advantage

Advake-g
A ,P (κ) := 2|Pr[b′← A O (κ);

b′ = b∧The instanceΠs
i is fresh]−1|

is negligible, whereO = {Execute(·),Send(·, ·),
SKE(·, ·),RevealGK(·),RevealSK(·, ·),Corrupt(·),
TestGK(·)}, andΠs

i is input ofTestGK.

Definition 5 (AKE Security of Subgroup Key). Let

b
$
← {0,1} be a uniformly chosen bit flipped in the

TestSK oracle. A correct GKE+S protocolP is said
to be satisfying AKE security of subgroup key when
for any PPT adversaryA the advantage

Advake-s
A ,P (κ) := 2|Pr[b′← A O (κ);

b′ = b∧The instance-subgroup pair(Πs
i ,spid

s,ℓ
i)

is fresh]−1|

is negligible, whereO = {Execute(·),Send(·, ·),
SKE(·, ·),RevealGK(·),RevealSK(·, ·),Corrupt(·),

TestSK(·, ·)}, and(Πs
i ,spid

s,ℓ
i) is input ofTestSK.

3 PROPOSED GKE+S PROTOCOL

In this section, we propose our GKE+S proto-
col supporting subgroup key randomization. In
our proposal, we apply digital signatureΣ :=
(KeyGen,Sign,Verify) for two purposes.

The Underlying Idea. Briefly, the flow of our
GKE+S protocol is described as follows.

[Group Stage]. First, we execute the Abdalla et al.
GKE+S protocol with(U1, . . . ,Un). Then,(y1,y2, . . . ,

yn) = (gx1,gx2, . . . ,gxn) are published and intermedi-
ate values(z′1,2,z

′
2,3, . . . ,z

′
n,1) are calculated. Note that

these intermediate values can be computed by a group
member only.

Flexible�Group�Key�Exchange�with�On-demand�Computation�of�Subgroup�Keys�Supporting�Subgroup�Key�Randomization

355

[Subgroup Stage]. Next, in the (ℓ-th) subgroup
key computation phase, a member of subgroupUi ∈
(U1,U2, . . . ,Um) computes a signatureσi ← Sign(ski ,

(Ui ,zi ,ssid
ℓ
i ,Ri)), whereRi is the random value cho-

sen byUi (and other values are explained in the
scheme).

• Again, only a subgroup member can compute in-
termediate values(z′1,2,z

′
2,3, . . . ,z

′
m,1). We regard

these intermediate values(z′1,2,z
′
2,3, . . . ,z

′
m,1) as

the static5 long-lived secret key in the NAXOS
technique context.

• Moreover, we regard(R1,R2, . . . ,Rm) as the
ephemeral “secret” key in the NAXOS technique
context.

So, the subgroup key is computed by applying a hash
function to (z′1,2,z

′
2,3, . . . ,z

′
m,1) and (R1,R2, . . . ,Rm)

(andssids,ℓ
i also). Here, we pay attention to the fact

that the NAXOS technique leads to the ephemeral se-
cret key leakage resilience. That is,

• Even if the ephemeral secret key(R1,R2, . . . ,Rm)
are revealed, the subgroup key is not revealed,
as long as the static long-lived secret key
(z′1,2,z

′
2,3, . . . ,z

′
m,1) are not revealed.

• So, (R1,R2, . . . ,Rm) can be published, and this
is the reason why we achieve the PKE-free set-
ting (whereas, in the Boyd et al. one-round
GKE (Boyd and Nieto, 2003), a random nonce is
encrypted by using PKE).

On the contrary of the above discussion, even if the
subgroup key is revealed,(z′1,2,z

′
2,3, . . . ,z

′
m,1) are not

revealed since a hash function is modeled as the ran-
dom oracle. In addition, the validity ofRi can be ver-
ified by usingpki .

Here, we describe our GKE+S protocol. It is
particularly worth noting that no additional compu-
tational cost is required, compared with the Abdalla
et al. one. We just additionally require that each user
Ui chooses a random nonceRi .

Protocol 1 (Proposed GKE+S Protocol). We assume
that each Ui ∈ U has the long-lived public and secret
key pair(pki ,ski)←KeyGen(1κ) (i.e., LLi = ski). H :
G× {0,1}∗ → {0,1}κ, Hg : G → {0,1}κ, and Hs :
G→ {0,1}κ are cryptographic hash functions which
are modeled as random oracles.

5That is,(z′1,2,z
′
2,3, . . . ,z

′
m,1) are uniquely determined by

the subgroup memberssid=(U1,U2, . . . ,Um) and their pub-
lic values(y1,y2, . . . ,yn). In the Abdalla et al. GKE+S, the
subgroup key is the hashed value of(z′1,2,z

′
2,3, . . . ,z

′
m,1) and

ssid. This is the reason why the subgroup key derivation
algorithm of the Abdalla et al. GKE+S protocol is deter-
ministic.

P .GKE(U1, . . . ,Un): This is the Group Stage. Let the
group be defined bypid = (U1,U2, . . . ,Un). We
assume that user indices from a cycle such that
Ui = Ui modn and U0 = Un. We omit s ofsids

i for
simplicity.

Round 1. Ui chooses xi
$
←Zp, computes yi = gxi ,

and broadcasts(Ui ,yi).
Round 2. For Ui , set sids

i = (U1|y1, . . . ,Un|yn)
(“ |” stands for the bit concatenation). Ui
computes k′i−1,i := yxi

i−1, k′i,i+1 := yxi
i+1, z′i−1,i :=

H(k′i−1,i,sidi), z′i,i+1 := H(k′i,i+1,sidi), zi :=
z′i−1,i ⊕ z′i,i+1, and σi ← Sign(ski ,(Ui ,zi ,sidi)),
and broadcasts(Ui ,zi ,σi).

Group Key Computation. Ui computes the
group key ki as follows.
• Check whether z1⊕·· ·⊕zn = 0 and whether

all received signatures{σ j}U j∈pid\{Ui} are
valid. If these checks fail, then abort.
• Iteratively compute z′i+1,i+2 ← z′i,i+1⊕ zi+1,

z′i+2,i+3 ← z′i+1,i+2 ⊕ zi+2, . . ., and
z′i+n−1,i+n← z′i+n−2,i+n−1⊕ zi+n−1.

• Output ki = Hg(z′1,2,z
′
2,3, . . . ,z

′
n,1,sidi).

P .SKE(Πi ,spidi): This is the Subgroup
Stage. Let the subgroup be defined by
spid = (U1,U2, . . . ,Um) ⊆ pid. We assume that
user indices from a cycle such that Ui = Ui modm
and U0 = Um. Note that(y1, . . . ,ym) has been
published in the previous group stage. We omit s
of ssids

i andℓ of ki,Jℓ for simplicity.

Round 1. For Ui , setssidi = (U1|y1, . . . ,Um|ym).

Ui chooses Ri
$
← {0,1}κ, and com-

putes k′i−1,i := yxi
i−1, k′i,i+1 := yxi

i+1,
z′i−1,i := H(k′i−1,i,ssidi), z′i,i+1 :=
H(k′i,i+1,ssidi), zi := z′i−1,i ⊕ z′i,i+1, and
σi ← Sign(ski ,(Ui ,zi ,ssidi ,Ri)), and broad-
casts(Ui ,zi ,σi ,Ri).

Subgroup Key Computation. Ui computes
the group key ki,J as follows.

• Check whether z1⊕·· ·⊕zm= 0 and whether
all received signatures{σ j}U j∈spid\{Ui} are
valid. If these checks fail, then abort.

• Iteratively compute z′i+1,i+2 ← z′i,i+1⊕ zi+1,
z′i+2,i+3 ← z′i+1,i+2 ⊕ zi+2, . . ., and
z′i+m−1,i+m← z′i+m−2,i+m−1⊕ zi+n−1.

• Output ki,J =
Hs(z′1,2,z

′
2,3, . . . ,z

′
m,1,R1,R2, . . . ,Rm,ssidi).

In the original Abdalla et al. GKE+S, eachxi is
the random value for establishing both group key
and subgroup key. The most essential point of the

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

356

key exchange is thatUi andUi+1 can computek′i,i+1

by using eitherxi or xi+1 such thatk′i,i+1 = yxi+1
i or

k′i,i+1 = yxi
i+1. So, even ifyi = gxi and yi+1 = gxi+1

are re-randomized, e.g.,y′i := gx′i andy′i+1 := gx′i+1 by

re-selected valuesx′i ,x
′
i+1

$
← Zp, Ui andUi+1 cannot

compute either(y′i+1)
x′i or (y′i)

x′i+1, since bothy′i and
y′i+1 are not published. So, to realize randomization of
keys, our methodology works. As a drawback of our
methodology, it totally depends on the random oracle
methodology.

The remaining concern is the validity of eachRi ,
namely, an adversaryA may insert a non-legitimateR
into the transcript. We prevent this attack by including
R as the signed message. It is particularly worth not-
ing thatA may be an insider (e.g.,A ∈U andA 6∈ pid
or A ∈ pid \ ssid). In both cases,A has a legitimate
long-lived key pair(pk,sk) generated by theKeyGen
algorithm. However, since the member of subgroup is
bound byspid= (U1,U2, . . . ,Um), there is no way that
suchA inserts non-legitimateR into the transcript if
Σ is EUF-CMA. Note that the random nonceRi de-
pends onssidℓi via σi← Sign(ski ,(Ui ,zi ,ssid

ℓ
i ,Ri)). In

addition,ℓ is incremented by each session. That is,Ri
is not used in the different session.

One may think that what the difference between
our protocol and the following simple protocol is:
the previous subgroup key (sayki,Jℓ) is used as the
massage authentication code (MAC) key, and broad-
castMACki,Jℓ

(Ri), and compute the new subgroup key
ki,Jℓ+1 = H({Ri}

m
i=1) by using certain hash function.

The main difference between ours and the simple pro-
tocol is explained as follows. In our protocol, even if
the subgroup keyki,Jℓ is revealed,(z′1,2,z

′
2,3, . . . ,z

′
m,1)

are not revealed since a hash function is modeled as
the random oracle. So, our protocol is secure against
the subgroup key leakage. On the contrary, in the
above simple protocol, onceki,Jℓ is revealed, its se-
curity is not guaranteed, i.e., anyone (who is not a
subgroup member) can computeki,Jℓ+1. Note that,
unfortunately, our protocol does not follow forward
secrecy (i.e., the long-term secret key leakage), since
(z′1,2,z

′
2,3, . . . ,z

′
m,1) is re-used. There is space for im-

provement of this point.

Here we only state the theorems describing the se-
curity of our GKE+S protocols due to the page limi-
tation. LetqEx, qSe, andqSKE be the number of invo-
cation of theExecute oracle, theSend oracle, and the
SKE oracle, respectively, andqH , qHg, andqHs be the
number of access ofH, Hg, andHs, respectively.

Theorem 1. Our GKE+S protocol satisfies AKE se-
curity of group key under the GDH assumption in the
random oracle model as follows.

Advake-g
A ,P (κ)≤

2n(qEx +qSe)
2

p
+

(qHg +qHs)
2

2κ−1

+2nAdvEUF-CMA
Σ,A (κ)+2qSe(nqHAdvGDH

G
(κ)+

qHg

22κ)

Theorem 2. Our GKE+S protocol satisfies AKE se-
curity of subgroup key under the GDH assumption in
the random oracle model as follows.

Advake-s
A ,P (κ)≤

2n(qEx +qSe)
2

p
+

(qHg +qHs)
2

2κ−1

+2nAdvEUF-CMA
Σ,A (κ)

+2qSe
(

(n+(n−1)qSKE)qHAdvGDH
G

(κ)

+
qSKEqHs

22κ
)

REFERENCES

Abdalla, M., Chevalier, C., Manulis, M., and Pointcheval,
D. (2010). Flexible group key exchange with
on-demand computation of subgroup keys. In
AFRICACRYPT, pages 351–368.

Boyd, C. and Nieto, J. M. G. (2003). Round-optimal con-
tributory conference key agreement. InPublic Key
Cryptography, pages 161–174.

Burmester, M. and Desmedt, Y. (1994). A secure and ef-
ficient conference key distribution system (extended
abstract). InEUROCRYPT, pages 275–286.

Cheng, Q. and Ma, C. (2010). Security weakness of flexible
group key exchange with on-demand computation of
subgroup keys.CoRR, abs/1008.1221.

Gorantla, M. C., Boyd, C., Nieto, J. M. G., and Manulis, M.
(2009). Generic one round group key exchange in the
standard model. InICISC, pages 1–15.

Hatano, T., Miyaji, A., and Sato, T. (2011).T-robust scal-
able group key exchange protocol withO(logn) com-
plexity. In ACISP, pages 189–207.

Jarecki, S., Kim, J., and Tsudik, G. (2007). Robust group
key agreement using short broadcasts. InACM Con-
ference on Computer and Communications Security,
pages 411–420.

Katz, J. and Shin, J. S. (2005). Modeling insider attacks on
group key-exchange protocols. InACM Conference on
Computer and Communications Security, pages 180–
189. ACM.

LaMacchia, B. A., Lauter, K., and Mityagin, A. (2007).
Stronger security of authenticated key exchange. In
ProvSec, pages 1–16.

Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., and Farràs,
O. (2011). Bridging broadcast encryption and group
key agreement. InASIACRYPT, pages 143–160.

Flexible�Group�Key�Exchange�with�On-demand�Computation�of�Subgroup�Keys�Supporting�Subgroup�Key�Randomization

357

