
Generating Applications
Framework Reuse Supported by Domain-Specific Modeling Languages

Matheus C. Viana, Rosângela A. D. Penteado and Antônio F. do Prado
Department of Computing, Federal University of São Carlos (UFSCar), P.O. Box 676, 13565-905, São Carlos - SP, Brazil

Keywords: Reuse, Framework, Domain-Specific Modeling Language, Template, Domain Feature.

Abstract: Applications can be developed with efficiency and quality when supported by frameworks. However,
framework reuse is a complex task and its advantages may not be reached if it is not correctly done. In
order to mitigate this difficulty, this work proposes an approach that identifies the domain features of a
framework to build a Domain-Specific Modeling Language (DSML) for this framework. This DSML can
be used to create application models, whose information is mapped into templates aiming to generate the code
of these applications. Framework reuse supported by a DSML provides greater efficiency and quality on the
development of applications, since it provides a more abstract way to instantiate the framework and generates
code from application models. We illustrate our approach using the GRENJ framework, which can be reused
in applications in the domain of rental, purchase, sale and maintenance transactions.

1 INTRODUCTION

Frameworks are reusable artifacts which act as
skeletons that can be instantiated in applications
(Johnson, 1997). The reuse of frameworks provides
higher quality and efficiency to software development
process, since the classes of frameworks have
been previously tested and the applications are not
developed from scratch. However, frameworks
require the developer to have detailed knowledge
about their internal structure and their hot spots so that
they can be properly used (Abi-Antoun, 2007)(Fayad
and Schmidt, 1997).

Some solutions have been applied in order to
ease the difficulties in reusing frameworks, such as
manuals, cookbooks and pattern languages. These
solutions can guide the application developer through
framework instantiation. However, the task of
identifying and configuring the hot spots according
to the application requirements is still executed by the
developer and relies on his/her skills and knowledge.

In order to use a more effective solution, this
paper proposes an approach promoting the building
of a Domain-Specific Modeling Language (DSML) to
facilitate the reuse of frameworks on the development
of applications. DSML can protect the developer
from the framework hot spots complexity. The use of
a DSML is focused on creating models that consider
the features of a domain. Instead of trying to identify

which classes must compose an application, when the
developer uses a DSML, he/she concentrates his/her
efforts on identifying which domain features such
application should have.

The proposed approach is divided in two phases:
Domain Engineering and Application Engineering. In
Domain Engineering, a DSML and a set of templates
are created based on the domain features and the hot
spots of the framework. In Application Engineering,
this DSML is used to create an application model,
which is combined with the templates of the
framework in order to generate the application code
and other artifacts. Although the developer has
to implement some parts of the application code
manually, due to the fact that the framework and its
DSML cannot predict application-specific functions,
this approach improves the efficiency and the quality
on the development of the applications that reuse
a framework by generating most of the code of
the applications and avoiding mistakes made by the
developer while reusing the framework.

The idea of dividing an approach into Domain
and Application Engineering is not new (Weiss
and Lai, 1999). There are also other works
which propose approaches for building DSML of
frameworks (Oliveira et al., 2007)(Antkiewicz et al.,
2009)(Amatriain and Arumi, 2011). However,
they do not explain clearly how they identify the
features of the frameworks. Our approach presents a

5Viana M., Penteado R. and Prado A..
Generating Applications - Framework Reuse Supported by Domain-Specific Modeling Languages.
DOI: 10.5220/0003990000050014
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 5-14
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



systematic way to identify the domain features of the
framework and the information which is necessary to
reuse its classes.

The remainder of this paper is organized as
follows: Sections 2 and 3 present, respectively,
frameworks and Domain-Specific Modeling
Languages. Section 4 presents some related works.
Section 5 presents the approach of framework reuse
supported by Domain-Specific Modeling Language.
Section 6 presents the use of the proposed approach
to build the GRENJ Framework DSML. Section 7
presents the conclusions about this work.

2 FRAMEWORKS

Frameworks support software development by
providing reuse of code and design. They are
composed of two parts (Brugali and Sycara, 2000):
frozen spots, which constitute unchangeable parts,
regardless of the application that is being developed;
and hot spots, which represent classes that are
directly reused by the applications. The classes that
are hot spots and their superclasses can contain hook
methods that need to be overridden or invoked in
order to customize the framework according to the
application requirements.

A framework is classified according to the way
its hot spots are accessed: 1) white box, when
such access occurs through inheriting their classes
and overriding their methods, 2) black box, when
the access occurs through composition, and 3) gray
box, when it occurs through the two previous
ways. According to their purpose, frameworks
can also be classified as: 1) System Infrastructure
Frameworks (SIF), which simplify the development
of software that controls low-level operations; 2)
Middleware Integration Frameworks (MIF), which
increase the modularization of applications; 3)
Enterprise Application Frameworks (EAF), which are
used to instantiate applications for specific domains
(Abi-Antoun, 2007)(Fayad and Schmidt, 1997).

In this paper, we used the GRENJ Framework to
exemplify our approach. The GRENJ Framework is
a white box EAF that addresses the domain of rental,
purchase, sale and maintenance transactions of goods
or services (Durelli et al., 2010). The main reasons for
choosing the GRENJ Framework are: 1) it contains
all kind of features, e. g., mandatory, optional and
variable; 2) applications within its domain are widely
adopted by industry and academia; 3) its code is open;
4) we have developed applications reusing it, so we
have full knowledge about its code, hot spots and
functionality.

3 DOMAIN-SPECIFIC
MODELING LANGUAGES

Modeling is the act of creating a model to get a
better understanding of what is to be built and a
more abstract view of a problem solution. It aims
at facilitating the comprehension of the solution and
serves as documentation (Gronback, 2009).

A modeling language is formed by: an abstract
syntax, that defines the elements and the rules of the
language and usually is represented by metamodel;
and a concrete syntax, which defines its notation.
The most common notations for modeling languages
are textual, graphical and tree-view. (Cuadrado and
Molina, 2009).

In place of general-purpose modeling languages,
such as UML, a Domain Specific Modeling Language
(DSML) can be used to model applications with
elements that are appropriate to the addressed
domain. Since there is a greater similarity between
the DSML elements and the application features,
mapping the application requirements is easier (Turki
et al., 2004) and transformations from application
models are more effective. Templates can be
used as skeletons to generate several kinds of
artifacts (Gronback, 2009), such as application code,
documentation, test code and other models.

The main advantages provided by the use
of DSMLs are (France and Rumpe, 2007): 1)
better separation between the logic of the software
and the details of the technologies employed in
its implementation, 2) greater facility in creating
reusable artifacts, and 3) better quality of the software
that are produced since their features are well defined
and their code can be generated.

4 RELATED WORKS

In this section, some studies reporting the difficulties
during the reuse of frameworks and suggesting
possible solutions to this problem are presented and
compared with the approach proposed in this paper.

Braga and Masiero (2003) proposed building a
wizard for the development of applications reusing an
EAF. In this process, the developer fills out the wizard
forms according to the application requirements and
the wizard generates the application code. It is similar
to the approach supported by a DSML. However, it
does not generate code directly from the application
model.

Oliveira et al. (2007) presented a systematic
approach for framework reuse based on the Reuse
Description Language (RDL), a language designed

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

6



by these authors to specify framework instantiation
processes. In their approach, RDL is used to
register the framework hot spots in an XML-format
file and a tool, denominated RDL execution
environment, accesses this file for the execution of
reuse processes and framework instantiations that
lead to domain-specific applications. Therefore, their
approach depends on the RDL and the RDL execution
environment. The main advantage of our approach
over theirs is that our approach does not depend on
any specific tool or language so that developers can
use their favorite tool to construct the DSML.

Antkiewicz et al. (2009) proposed a method for
engineering new framework DSMLs by specializing
existing approaches to domain analysis, software
development, and quality evaluation of models and
languages. Besides their work was focused on the
reuse of MIF, it does not explain in details how the
features of the framework are identified.

Amatriain and Arumi (2011) proposed an
approach in which the construction of a DSML
occurs in parallel to the development of its framework
through iterative and incremental activities. Our
approach differs from theirs, mainly, because our
approach can be applied on frameworks that were
previously developed by other people.

5 THE PROPOSED APPROACH

Figure 1 shows the two phases of the approach that
promotes framework reuse supported by a DSML:
Domain Engineering and Application Engineering.
Subsections 5.1 and 5.2 present the processes of
Domain Engineering and Application Engineering in
details.

Figure 1: The proposed approach phases and their activities.

5.1 Domain Engineering

The Domain Engineering process aims at preparing
an environment that facilitates framework reuse in the
development of applications. In this process, DSML
Construction and Template Construction activities are

carried out.
DSML Construction activity starts with the

creation of a metamodel which contains metaclasses
representing the domain features of the framework
and stores the information required by its hot spots.
The domain features of the framework are identified
by analyzing its documentation and its code through
the following steps:

1. Identify a class that represents a domain feature.
In an EAF, a domain feature is identified by a class
which can be directly extended (white box) or
instantiated (black box) by the applications. This
class is a hot spot and define a functionality of the
framework;

2. Identify the superclasses of the class identified in
step 1;

3. Identify the classes targeted by association
relationships coming from the classes identified in
steps 1 and 2;

4. Analyze the hook methods of the class identified
in step 1 in order to identify the information that
is necessary to reuse it;

5. Include a metaclass in the metamodel to represent
the class identified in step 1. Also include
attributes and/or relationships in this metaclass to
store the necessary information to reuse the class
it represents;

6. Repeat the steps 1 to 5 until all domain features of
the framework have been identified.

Class models are the first artifacts to be analyzed,
because they provide a wide vision of the framework
classes. A framework may also be documented by
a Pattern Language (PL), which specifies the classes
representing the domain features of the framework
(Kirk et al., 2007). The framework code also needs
to be analyzed to confirm the classes identified in the
documentation, as models may be inconsistent with
the current state of the code. Moreover, class models
in analysis level contain only the main classes of the
framework and the hot spots cannot be identified from
these models.

Figure 2 shows part of the GRENJ framework
DSML metamodel as an example. Feature,
Attribute, Operation and Parameter metaclasses are
domain-independent and provide common properties
to domain-specific features. The applications which
reuse GRENJ framework need to contain a class that
extends Resource class. This class is a hot spot of the
GRENJ Framework and represents a feature which
is concerned with the goods or services involved
in transactions. Therefore, Resource metaclass was
included in the metamodel to represent it. As one

Generating�Applications�-�Framework�Reuse�Supported�by�Domain-Specific�Modeling�Languages

7



of the information required by the hook methods
of Resource class is the classes which represents
the resource types in the applications, the types
relationship was created to store this information.

Figure 2: An example of a framework DSML metamodel.

The metamodel represents the abstract syntax of
the DSML in which the domain features are defined.
The concrete syntax, which defines the graphical
notation of the DSML, must also be built so that
developers can use it to model applications (Cuadrado
and Molina, 2009). How the concrete syntax is built
depends on the tool used to construct the DSML.

After DSML Construction activity, Template
Construction activity begins with the use of a
transformation language. The templates depend on
both the DSML metamodel and the content that
they may originate. Therefore, each template is
usually linked to an existing metaclass in the DSML
metamodel.

A template is formed by: fixed parts, consisting
of parts of code that remains the same in all
applications generated from the template; variable
parts, corresponding to parts that change from one
application to another. Usually, in XML-based
template languages, such as Java Emitter Templates
(JET) (Gronback, 2009), the fixed parts consist of
texts and the variant parts consist of tags. The best
tactic to create templates is to analyze the classes
of applications that reuse the framework in order to
identify its fixed and variable parts.

Taking the GRENJ Framework as an example,
an application class that extends the Resource class
should be similar to this:
public class Movie extends Resource {

private int year;

public Class[] typeClasses() {
return new Class[]
{ Category.class, Genre.class };

}

The JET template that was implemented to
generate subclasses of Resource class is:
public class <c:get select="$feature/@name"/>

extends Resource {
<c:iterate
select="$feature/attributes" var="attr">

private <c:get select="$attr/@type"/>
<c:get select="$attr/@name"/>;

</c:iterate>

public Class[] typeClasses() {
return new Class[] {
<c:iterate select="$feature/types"
var="rtype" delimiter=", ">

<c:get select="$rtype/@name"/>.class
</c:iterate> };

}

In the template for Resource subclasses, the fixed
parts consist mainly of Java keywords, annotations,
operators, punctuations and signatures of required
methods, while its variant parts consist of tags
indicating the attributes and references of the
metaclasses presented in Figure 2.

In addition to the templates which are responsible
for generating application code, other templates
can indicate to the transformation tool to generate
the database script, create the application package,
include a copy of the framework, and so on. These
templates are essential for the functioning of the
generated application code.

Templates can be tested to check if they generate
the correct code and if the generated code is correct.
It can be done by creating automated unit tests for the
classes that are generated by these templates. There
can also be tests which verify if the code generated
by a template is similar or even equal to the code of
the classes from which this template was created. The
technique applied to create these unit tests is beyond
the scope of this work.

5.2 Application Engineering

The Application Engineering process comprehends
Application Modeling and Application Construction
activities with the use of the DSML and the templates
constructed in the Domain Engineering phase, as
shown in Figure 1.

In Application Modeling activity, the developer
uses the DSML to create an application model
based on the application requirements. Due
its domain-specific aspect, DSML prevents the
developers from creating relationships that are not
defined in its metamodel and it provides a validation
mechanism of the application models, which verifies
if all obligatory classes were instantiated among other
things.

In Application Construction activity, templates
are implemented to generate code and other artifacts
from the application model. As code generation is

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

8



automated, it provides the efficiency in the application
development. Although all code responsible to reuse
the framework can be generated, it may be necessary
to add code because a framework cannot predict all
the particularities of the applications, whether using a
DSML or not. Generally, the code which is added is
responsible for behavioral aspects of the application
such as the content of application-specific operations.

Application-specific attributes and methods
should be inserted into the application model to
avoid inconsistency between the model and the code.
Moreover, methods which are added or modified
need protection so that their contents can remain
in case of the application code is generated again.
Usually, transformation tools provide mechanisms
that keep the alterations made by the developer, such
as the implementation of the body of a method, even
when the application code is regenerated.

6 USE CASE: GRENJ
FRAMEWORK

We used the GRENJ Framework in order to exemplify
the use of the approach of framework reuse supported
by a DSML. The GRENJ Framework DSML was
built by using the Graphical Modeling Framework
(GMF) and Java Emitter Templates (JET), both
available in the Eclipse IDE. Although we have
chosen these tools, others could be used as well,
such as xPand (Gronback, 2009) and Generic
Modeling Environment (GME) (Institute for Software
Integrated Systems, 2012). The proposed approach is
intended to be tool-independent.

This section is divided as follows: Subsection 6.1
presents the GRENJ Framework Domain Engineering
process; Subsection 6.2 presents the Car Rental Shop
Application Engineering process; Subsection 6.3
presents a study with the development of applications
in the domain of rental transactions reusing the
GRENJ Framework with and without its DSML.

6.1 GRENJ Domain Engineering

In DSML Construction activity, the features were
identified by analyzing models with the GRENJ
framework classes that must be extended in the
applications. The information required by the GRENJ
Framework hot spots were identified by analyzing the
code of the hook methods.

Figure 3 shows a GRENJ Framework model with
the classes related to the resource feature. The hook
methods that need to be overridden by an application

Figure 3: Classes related to the Resource feature.

class which extend the Resource class are highlighted
by stars.

Hook methods, such as the insertFieldClause
method, were analyzed in order to identify the
information required to the hot spots.

public String insertFieldClause() {

StringBuilder strb = new StringBuilder(
super.insertFieldClause() );

String clause =
quantification.insertFieldClause();

if ( clause != null ) {
strb.append( ", " + clause );

}
return strb.toString();

}

Table 1 shows a list with some of the features
identified in the GRENJ Framework domain. These
features are the minimum necessary to develop
applications that deal with rental transactions reusing
the framework GRENJ. Resource type is used to
define classes that classify the resources. If the
resource type has subtypes, it is a nested type.
Otherwise, it is a simple type. Resource quantification
identifies whether the resource is unique or can have
copies. Resource rental transaction represents the
leasing transaction of resources and destination party
represents who orders the resource rental.

Figure 4 shows the GRENJ Framework DSML
metamodel with the features described in Table 1. All
metaclasses that represent domain features extend the
Feature metaclass shown in Figure 2. The multiplicity
of the relationships defines how many subclasses of
the targeted feature can associate with a subclass of
the source feature in the application models.

GRENJ Framework Template Construction
activity was accomplished with use of JET
transformation language (Gronback, 2009). This
language allows the domain engineer to implement
a set of templates and compile it as an Eclipse IDE
plug-in that can access the application models and
generate code and other artifacts.

Generating�Applications�-�Framework�Reuse�Supported�by�Domain-Specific�Modeling�Languages

9



Figure 4: DSML metamodel which addresses the subdomain of resource rental of GRENJ framework.

Table 1: Some of the GRENJ Framework features.

A JET template is a XML-format file whose text
represents the fixed part of the file that it originates
and the variant part is formed by tags which refer
to the information to be obtained from the models.
Samples of classes of applications that reuse the
GRENJ Framework were analyzed, such as it was
described in Section 5.1, so that the fixed and the
variant parts of the templates could be identified.

6.2 GRENJ Application Engineering

In order to exemplify the Application Engineering
process, the Car Rental Shop application were
developed by using the DSML and the templates
that were created in the Domain Engineering process
described in Section 6.1.

The GRENJ Framework DSML and templates
originate a set of plug-ins for the Eclipse IDE. The
integration of these plug-ins in Eclipse IDE result
in a CASE tool that supports the developing of
applications with the reuse of the GRENJ Framework.

In Car Rental Shop Application Modeling activity,

Table 2: Car Rental Shop Application requirements.

the developer creates a model selecting the domain
features of the GRENJ framework based on the
application requirements listed in Table 2. This is
similar to create a class model in analysis level.

Figure 5 presents the model of the Car Rental
Shop Application which was created with the use
of the GRENJ Framework DSML based on the
requirements of Table 2. In this model, the classes
of the GRENJ framework that are being reused by
the Car Rental Shop application are identified by the
stereotypes and the names of the subclasses are in
bold.

Figure 5: Car Rental Shop Application model created with
the GRENJ Framework DSML.

Figure 6 shows a class model of the Car Rental

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

10



Shop Application, in which the classes highlighted
in grey are from the GRENJ Framework. This class
model is equivalent to the model created with the
GRENJ Framework DSML shown in Figure 6. Most
of the attributes specified in the requirements in Table
2 were not added to the classes of the application
model shown in Figure 5 because these attributes
are inherited from the GRENJ Framework classes
and makes no sense to repeat them on the models.
Our approach assumes that the application developer
knows the framework.

Figure 6: Car Rental Shop Application class model.

In Application Construction activity, the Car
Rental Shop application model was integrated with
the templates. Thus the code and all the file structure
of the application was generated. The code of the
framework was also copied to the application code.
A combination of the application model presented
in Figure 5 with the JET template for Resource
subclasses, presented in Section 5.1, generates the
code of the Car class:
public class Car extends Resource {

private int doors;

public Class[] typeClasses() {
return new Class[] { Category.class };

}

The total price of the rental in this application
is based on the price established by the category
multiplied by the number of days the customer rented
the car. As the framework cannot predict this
calculation, it needs to be manually implemented.

The calculateTotalPrice method was generated
in the Rental class with an empty body by the
transformation tool. It was modified in order to
calculate the total price in the instances of the Rental
class. The method was marked as “generated NOT”
to avoid its code to be erased in case of the application
code is generated again.

The code of the calculateTotalPrice method after
it was manually modified is:
/**

* @generated NOT
*/

public double calculateTotalPrice() {

Category category = (Category)
getResource().getTypes().get(0);

int numDays =
Period.numberOfDays(

getDate(), getReturningDate());
return category.getPrice() * numDays;

}

6.3 GRENJ DSML Evaluation

In order to evaluate the proposed approach, a
study was performed to compare the time spent
on the development of applications with the reuse
of the GRENJ Framework. Two approaches were
applied in this study: 1) an approach in which
application-specific code was manually implemented;
and 2) the approach supported by DSML, in which the
application-specific code was generated with the use
of the GRENJ Framework DSML and templates, such
as it was described in the Section 6.1.

26 Computer Science undergraduate students
were trained to develop applications reusing the
GRENJ Framework through both approaches in order
to get knowledge about the framework and the tools
used in each approach. The students that participated
in this study had previous knowledge about Java
programming and UML modeling.

In the study, the students should develop two
applications involving resource rental transactions:
the first one to check books out from a library and
the second one for checking guests in a hotel. These
applications have the same level of complexity of
the Car Rental Shop application (Section 6.2). The
students were divided into two teams, T1 and T2, with
13 students each one. The teams should carry out the
following tasks:

� T1 development of the application for the hotel
with the reuse of the GRENJ Framework through
manual programming and development of the
application for the library with the reuse of the
GRENJ Framework supported by its DSML;

� T2 development of the application for the library
with the reuse of the GRENJ Framework through
manual programming and development of the
application for the hotel with the reuse of the
GRENJ Framework supported by its DSML.

To perform the study, the students received
a document containing the requirements of the
applications they had to develop. Each student
also received a class model in analysis level of

Generating�Applications�-�Framework�Reuse�Supported�by�Domain-Specific�Modeling�Languages

11



the application he/she had to develop by manual
programming. The applications were developed
by using the Eclipse IDE, whose workspace were
configured with one project for each application with
set of JUnit tests. All the computers the students used
had the same configuration of software and hardware.

Each student has developed the applications
referent to his/her team individually and measured the
time spent in the development of each application.
After finishing the development of an application, the
students had to pause the chronometer and run its
JUnit tests to verify whether or not the application
worked correctly. In case of test fail, the students
had to write in a form a description of the fail and
activate the chronometer again to correct the defects
they found. The application was considered finished
only after the tests had shown no fail.

To evaluate the approaches, the study worked with
two hypotheses:

� Null Hypothesis, H0 - the DSML does not make
the process of application development with the
reuse of frameworks easier and faster; and

� Alternative Hypothesis, H1 - the DSML make the
process of application development with the reuse
of frameworks easier and faster.

The applications developed by the students had
approximately 18,400 lines of code, from which
18,000 correspond to the GRENJ Framework code
and only 400 belong to the code generated or
implemented during the application development.
Due to idiomatic patterns imposed by the GRENJ
Framework, the codes of the applications developed
by the students are similar, whether they were
manually implemented or generated. Moreover, the
number of lines of the code generated or implemented
during the application development was small due to
the reuse of code provided by the GRENJ Framework.

Table 3 presents the averages (AVG) and the
standard deviation (SD) of the time spent by students
of each team (T1 and T2) in the development
of the applications. It was possible to observe
that there was an average reduction of about
89.3% for Library Application and 87.5% for Hotel
Application. It results in a general reduction of
88.5% in the time spent on developing applications
with reuse of the GRENJ Framework through its
DSML when compared to time spent on the manual
implementation approach. The times in Table 3
are measured in minutes (‘) and seconds (“) and
consider the development of the applications and the
successful execution of the application tests.

This study shown that the development of
applications with reuse of frameworks spends less

Table 3: Average of time spent on the development of the
applications.

time when performed with the use of a DSML
than when it is done through manual programming.
However, a long time is spent in the execution
of the Domain Engineering process in order to
construct the DSML and the templates of the
framework. Therefore, the approach supported by
DSML represents an advantage only when several
applications are developed, making the sum of the
time spent on Domain Engineering phase and the
time spent on the engineering of the applications
lesser than the time spent developing these same
applications manually. For example, the Domain
Engineering process of the GRENJ Framework was
accomplished in, approximately, 5 hours. The sum of
5 hours and the times shown in Table 3 demonstrates
that, considering the GRENJ Framework, the
approach supported by DSML becomes worthwhile
when 6 or more applications are developed.

Besides the time spent in the development of the
applications, the problems shown by the application
tests were analyzed in order to identify when the
students made more mistakes: with or without the
use of the DSML. This analysis were based on the
information the students wrote in the form after they
had run the tests.

Table 4: The number of times which some problems was
found in the applications developed by the students.

Table 4 shows the number of times which some
problems was found in the applications developed
by all students in the study. These problems
does not include compilation errors, because the

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

12



applications were tested only when they could be
run. The students made more mistakes while reusing
the framework without the use of the DSML. This
occurred due to the fact that, in the approach
through manual programming, there is a higher
probability of defect insertions in the code, e.g.,
mistyping, misuse of the controls, lack of methods
required by the framework and so on. In some
cases, multiple hot spots of the GRENJ framework
require the same information, usually, when many
classes has the same hook method. Some students
implemented these hook methods returning different
values, resulting in inconsistencies. It cannot occur
with the DSML because it requires each information
only once. However, the correct selection of a
framework class to implement a requirement of the
application relies on the knowledge the developer
has about the framework. This statement could be
confirmed, when some students misused the same
framework class both in the manual programming
approach and in the DSML approach.

Some restrictions and threats to the validity of this
study should be taken into consideration:

� In the development of the applications with the
DSML, all students used the DSML and the
templates created in the Domain Engineering
process described in Section 6.1. In this manner,
there would be no difference among students on
the way that the applications were modeled and
the codes were generated.

� It can be argued that the examples developed
by the students are simple. However, the
applications which were described access most
types of GRENJ Framework hot spots. If two
or more hot spots request similar information, for
example, class names, then these hot spots are the
same type.

� The addition of functionality not predicted by
the GRENJ Framework was not verified in this
experiment because this activity can be done only
by a manual programming approach.

7 CONCLUSIONS

In this paper, an approach to framework reuse
supported by Domain-Specific Modeling has been
presented. This approach improves the efficiency
and the quality on the development of applications
in a specific domain, since it generates code from
application models and prevents the developer from
incorrectly accessing the hot spots of the framework.

The proposed approach requires effort in Domain

Engineering phase to build the environment for
the development of applications that reuse the
framework. However, in Application Engineering
phase, the total effort comes down to the effort for
modeling the application as well as the effort for the
refinement of the code, if it occurs. The time to
generate the application code is irrelevant compared
to the total effort, because it is generated.

The quality of the DSML depends on the
identification of the domain features of the framework
in the same way as the quality of an application
depends on the identification of its classes. The
proposed approach mainly aims to provide a sequence
of steps which the developer should follow in order to
identify the domain features of the framework, model
them and create templates. The use of tools only
supports these activities, so that the developer can
choose his/her favorite tools for each activity.

The DSML does not eliminate the necessity of
the developer to know the framework. He/She has
to know the hot spots and the attributes and the
operations provided by them in order to add to the
classes of the applications only properties that are
not provided by the framework or even modify the
generated code correctly. The DSML is useful to
liberate the developer from implementing the code to
reuse the framework, saving time and avoiding some
mistakes. Thus, the developer can dedicate more
effort to implement the functionality not provided by
the framework.

Our work focused on developing DSMLs
for Enterprise Application Frameworks, whose
domain features are related to social and economic
aspects. Although we have not applied our approach
to develop DSMLs for System Infrastructure
Frameworks or Middleware Integration Frameworks,
there is no theoretical impediment to do it. The most
important thing is identify the features from the hot
spots and the information necessary to instantiate the
framework.

In future works, we intend to extend the
proposed approach to include the development of
the framework from domain features models. We
also intend to include in the proposed approach
mechanisms to generate behavioral aspects, such as
the code of application-specific operations.

ACKNOWLEDGEMENTS

We would like to thank the students of Computer
Science Course of UFSCar for participating in our
study. We also thank CAPES for financial support.

Generating�Applications�-�Framework�Reuse�Supported�by�Domain-Specific�Modeling�Languages

13



REFERENCES

Abi-Antoun, M. (2007). Making Frameworks Work:
a Project Retrospective. In Companion to the
22nd ACM SIGPLAN conference on Object-Oriented
Programming Systems and Applications, OOPSLA
’07, pages 1004–1018, New York, NY, USA. ACM.

Amatriain, X. and Arumi, P. (2011). Frameworks Generate
Domain-Specific Languages: A Case Study in the
Multimedia Domain. Software Engineering, IEEE
Transactions on, 37(4):544–558.

Antkiewicz, M., Czarnecki, K., and Stephan, M.
(2009). Engineering of Framework-Specific Modeling
Languages. Software Engineering, IEEE Transactions
on, 35(6):795–824.

Braga, R. and Masiero, P. (2003). Building a Wizard
for Framework Instantiation Based on a Pattern
Language. In Konstantas, D., Léonard, M., Pigneur,
Y., and Patel, S., editors, Object-Oriented Information
Systems, volume 2817 of Lecture Notes in Computer
Science, pages 95–106. Springer Berlin / Heidelberg.

Brugali, D. and Sycara, K. (2000). Frameworks and Pattern
Languages: an Intriguing Relationship. ACM Comput.
Surv., 32(1).

Cuadrado, J. and Molina, J. (2009). A Model-Based
Approach to Families of Embedded Domain-Specific
Languages. Software Engineering, IEEE Transactions
on, 35(6):825–840.

Durelli, V. H. S., Borges, S. S., Penteado, R. A. D., and
Viana, M. C. (2010). An Iterative Reengineering
Process Applying Test-Driven Development and
Reverse Engineering Patterns. INFOCOMP Journal
of Computer Science, Special Edition(1):1902–1929.

Fayad, M. and Schmidt, D. C. (1997). Object-Oriented
Application Frameworks. Communications of ACM,
40(10):32–38.

France, R. and Rumpe, B. (2007). Model-driven
Development of Complex Software: A Research
Roadmap. In Future of Software Engineering, 2007.
FOSE ’07, pages 37–54.

Gronback, R. C. (2009). Eclipse Modeling Project:
A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley.

Institute for Software Integrated Systems (2012). Generic
Modeling Environment.

Johnson, R. E. (1997). Frameworks = (Components +
Patterns). Communications of ACM, 40(10):39–42.

Kirk, D., Roper, M., and Wood, M. (2007). Identifying
and Addressing Problems in Object-Oriented
Framework Reuse. Empirical Software Engineering,
12(3):243–274.

Oliveira, T. C., Alencar, P. S. C., Lucena, C. J. P. D.,
and Cowan, D. D. (2007). RDL: A language for
framework instantiation representation. Journal of
Systems and Software, 80(11):1902–1929.

Turki, S., Soriano, T., and Sghaier, A. (2004). An MDA
Application for a Virtual Reality Environment. In
Industrial Technology, 2004. IEEE ICIT ’04. 2004
IEEE International Conference on, volume 2, pages
807–812.

Weiss, D. M. and Lai, C. T. R. (1999). Software
Product Line Engineering: A Family-Based Software
Development Process. Addison-Wesley.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

14


