
A Logic-based Passive Testing Approach for the Validation
of Communicating Protocols

Xiaoping Che, Felipe Lalanne and Stephane Maag
Telecom SudParis, CNRS UMR 5157, 9 Rue Charles Fourier, 91011 Evry, France

Keywords: Formal Methods, Passive Testing, Monitoring, Protocols, IMS/SIP.

Abstract: Conformance testing of communicating protocols is a crucial step to the validation of systems. Formal ap-
proaches provide many keys to test efficiently these protocols. These approaches are divided in two main sets:
active and passive testing techniques. While they both have their own advantages and drawbacks, passive
testing techniques are the only ones that can be applied when the controllability of the system interfaces is
unavailable or when the implementation under test cannot be stimulated in runtime. In this paper, we present
a novel logic-based passive testing approach. We aim at formally specifying protocol properties in order to
check them on real execution traces. Based on algorithms defined in a previous paper, a prototype is here
developed and experienced. In order to evaluate and assess our technique, we present experiments through a
set of IMS/SIP properties and long-size execution traces. We finally provide relevant verdicts and discussions.

1 INTRODUCTION

Two main types of formal approaches can be applied
to test the conformance of communicating protocols:
active and passive testing. While active testing tech-
niques are based on the analysis of the protocol an-
swers when it is stimulated, the passive ones focus on
the observation of input and output events of the im-
plementation under test (IUT) in run-time. They are
called passive since they do not modify the runtime
behavior of the IUT. Although passive testing does
lack some of the advantages of active techniques, such
as test coverage, it provides an effective tool for fault
detection when the access to the interfaces of the sys-
tem is unavailable, or in already deployed systems,
where the system cannot be interrupted. In order to
check conformance of the IUT, the record of the ob-
servation during runtime (called trace) is compared
with the expected behavior, defined by either a for-
mal model (Lee and Miller, 2006) (when available) or
as a set of formally specified properties (Bayse et al.,
2005) obtained from the requirements of the protocol.

In the context of black-box testing of communi-
cating protocols, executions of the system are limited
to communication traces, i.e. inputs and outputs to
and from the IUT. Since passive testing approaches
derive from model-based methodologies (Hierons
et al., 2009), such input/output events are usually
modeled as: a control part, an identifier for the event

belonging to a finite set, and a data part, a set of
parameters accompanying the control part. In these
disciplines, properties are generally described as rela-
tions between control parts, where a direct causality
between inputs and outputs is expected (as in finite
state-based methodologies) or a temporal relation is
required. In modern message-based protocols (e.g.
SIP (Rosenberg, J. and Schulzrinne, H. and Camar-
illo, G. and Johnston, A. and Peterson, J., 2002)),
while the control part still plays an important role,
data is essential for the execution flow. Input/output
causality cannot be assured since many outputs may
be expected for a single input. Moreover when traces
are captured on centralized services, many equivalent
messages can be observed due to interactions with
multiple clients. That is why temporal relations can-
not be established solely through control parts. Fur-
thermore, although the traces are finite, the number of
related packets may become huge and the properties
to be verified complex.

In this work, we present a passive testing ap-
proach for communicating protocols based on the for-
mal specification of the requirements and their anal-
ysis on collected runtime execution traces. In Sec-
tion 2, we present the related works. While most
of the approaches are based on the study of proto-
col control parts, we herein focus on the causality of
observed events (i.e. packets). In Section 3, a Horn
based logic is defined to specify the properties to be

53Che X., Lalanne F. and Maag S..
A Logic-based Passive Testing Approach for the Validation of Communicating Protocols.
DOI: 10.5220/0003990100530064
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 53-64
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

verified. Both the syntax and a three-valued seman-
tics are provided. The semantics defines satisfaction
within the truth values ftrue, false, inconclusiveg, re-
spectively indicating that the property is satisfied on
the trace, not satisfied and that no conclusion can be
provided. An algorithm has been defined in a pre-
vious work (Maag and Lalanne, 2011) to evaluate
the satisfaction of properties on off-line traces. Our
approach has been implemented and relevant experi-
ments are depicted. They have been performed in an
customized architecture to simulate the type of com-
munication performed in the IP Multimedia Subsys-
tem (IMS) architecture. The test architecture allows
us to effectively assess our approach by tackling sev-
eral interesting issues in Section 4. Besides, we dis-
cuss in Section 5 the obtained verdicts as well as the
efficiency and performance of our approach. Finally,
we conclude our paper in Section 6.

2 RELATED WORK

Formal methods for conformance testing have been
used for years to prove correctness of implementa-
tions by combining test cases evaluation with proofs
of critical properties. In (Hierons et al., 2009) the
authors present a description of the state of the art
and theory behind these techniques. Passive testing
techniques are used to test already deployed platforms
or when direct access to the interfaces is not avail-
able. Most of these techniques only consider con-
trol portions (Lee and Miller, 2006; Ural and Xu,
2007), data portion testing is approached by evalua-
tion of traces in state based models, testing correct-
ness in the specification states and internal variable
values. Our approach, although inspired by it, is dif-
ferent in the sense that we test critical properties di-
rectly on the trace, and only consider a model (if avail-
able) for potential verification of the properties. Our
research is also inspired from the runtime monitor-
ing domain. Though runtime monitoring techniques
are mainly based on model checking while we do not
manipulate any models, some proposed languages to
describe properties are relevant for our purpose. The
authors of (Leucker and Schallhart, 2009) provide a
good survey in this area.

In (Bayse et al., 2005), an invariant approach
taking into account control parts has been presented.
In (Morales et al., 2010), the authors have defined
a methodology for the definition and testing of time
extended invariants, where data is also a fundamen-
tal principle in the definition of formulas and a packet
(similar to a message in our work) is the base con-
tainer data. In this approach, the packet satisfaction

to certain events is evaluated. However, data relation
between multiple packets is not allowed.

Although closer to runtime monitoring, the au-
thors of (Cao et al., 2010) propose a framework for
defining and testing security properties on Web Ser-
vices using the Nomad (Cuppens et al., 2005) lan-
guage. As a work on Web services, data passed to
the operations of the service is taken into account
for the definition of properties, and multiple events in
the trace can be compared, allowing to define, for in-
stance, properties such as “Operation op can only be
called between operations login and logout”. Never-
theless, in Web services operations are atomic, that is,
the invocation of each operation can be clearly fol-
lowed in the trace, which is not the case with net-
work protocols, where operations depend on many
messages and sometimes on the data associated with
the messages. In (Barringer et al., 2004), the authors
propose a logic for runtime monitoring of programs,
called EAGLE, that uses the recursive relation from
LTL Ff � f_Xf(and its analogous for the past), to
define a logic based only on the operators next (repre-
sented by) and previous (represented by

J
). For-

mulas are defined recursively and can be used to de-
fine other formulas. Constraints on the data variables
and time constraints can also be tested by their frame-
work. However, their logic is propositional in nature
and their representation of data is aimed at character-
izing variables and variable expressions in programs,
which makes it less than ideal for testing message ex-
changes in a network protocol.

3 FORMAL PASSIVE TESTING
APPROACH

3.1 Basics

A message in a communication protocol is, using
the most general possible view, a collection of data
fields belonging to multiple domains. Data fields in
messages, are usually either atomic or compound, i.e.
they are composed of multiple elements (e.g. a URI
sip: name@domain.org). Due to this, we also divide
the types of possible domains in atomic, defined as
sets of numeric or string values1, or compound, as
follows.

Definition 1. A compound value v of
length k > 0, is defined by the set of pairs

1Other values may also be considered atomic, but we
focus here, without loss of generality, to numeric and strings
only.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

54

f(li;vi) j li 2 L ^ vi 2 Di [feg; i = 1:::kg,where
L = fl1; :::; lkg is a predefined set of labels and Di are
data domains, not necessarily disjoint.

In a compound value, in each element (l;v), the
label l represents the functionality of the piece of
data contained in v. The length of each compound
value is fixed, but undefined values can be allowed
by using e (null value). A compound domain is
then the set of all values with the same set of labels
and domains defined as hL;D1; :::;Dki. Notice that,
Di being domains, they can also be either atomic
or compound, allowing for recursive structures to
be defined. Finally, given a network protocol P,
a compound domain Mp can generally be defined,
where the set of labels and element domains derive
from the message format defined in the protocol
specification. A message of a protocol P is any
element m 2Mp.

Example. A possible message for the SIP pro-
tocol, specified using the previous definition is

m = f(method; ‘INVITE’);(status;e);
(f rom; ‘john@b.org’);(to; ‘paul@b.org’);
(cseq;f(num;10);(method; ‘INVITE’)g)g

representing an INVITE request (a call request)
from john@b.org to paul@b.org. Notice that the
value associated to the label cseq is also a compound
value, f(num,10), (method, ‘INVITE’g.

Accessing data inside messages is a basic require-
ment for the current approach. In order to refer-
ence elements inside a compound value, the syntax
v:l1; l2; :::; ln is used, where v is a compound value, and
li are labels. In the previous example, m:cseq:num ref-
erences the value associated with the label num inside
the value for cseq (the value 10). If the reference does
not exist, it is associated to e.

A trace is a sequence of messages of the same
domain (i.e. using the same protocol) containing the
interactions of an entity of a network, called the point
of observation (P.O), with one or more peers during
an indeterminate period of time (the life of the P.O).

Definition 2. Given the domain of messages Mp for
a protocol P. A trace is a sequence G = m1;m2; ::: of
potentially infinite length, where mi 2Mp.

Definition 3. Given a trace G = m1;m2; ::: a trace seg-
ment is any finite sub-sequence of G, that is, any se-
quence of messages r = mi;mi+1; :::;m j�1;m j(j > i),
where r is completely contained in G (same
messages in the same order). The order rela-
tions f<;>g are defined in a trace, where for
m;m0 2 r;m < m0 , pos(m) < pos(m0) and

m > m0 , pos(m) > pos(m0) and pos(m) = i, the
position of m in the trace (i 2 f1; :::; len(r)g).

As testing can only be performed in trace seg-
ments, in the rest of the document, trace will be used
to refer to a trace segment unless explicitly stated.

3.2 Syntax and Semantics for the Tested
Properties

A syntax based on Horn clauses is used to express
properties. The syntax is closely related to that of
the query language Datalog, described in (Abiteboul
et al., 1995), for deductive databases, however, ex-
tended to allow for message variables and temporal
relations. Both syntax and semantics are described in
the current section.

3.2.1 Syntax

Formulas in this logic can be defined with the
introduction of terms and atoms, as defined below.

Definition 4. A term is either a constant, a variable
or a selector variable. In BNF: t ::= c j x j x:l:l:::l
where c is a constant in some domain (e.g. a message
in a trace), x is a variable, l represents a label, and
x:l:l:::l is called a selector variable, and represents a
reference to an element inside a compound value, as
defined in Definition 1.

Definition 5. An atom is defined as

A ::= p

kz }| {
(t; :::; t) j t = t j t 6= t

where t is a term and p(t; :::; t) is a predicate of label p
and arity k. The symbols = and 6= represent the binary
relations “equals to” and “not equals to”, respectively.

In this logic, relations between terms and atoms
are stated by the definition of clauses. A clause is
an expression of the form A0 A1 ^ :::^An, where
A0, called the head of the clause, has the form A0 =
p(t�1 ; :::; t

k
1), where t�1 are a restriction on terms for the

head of the clause (t� = c j x). A1 ^ :::^An is called
the body of the clause, where Ai are atoms.

A formula is defined by the following BNF:

f ::= A1^ :::^An j f! f j 8xf j 8y>xf

j 8y<xf j 9xf j 9y>xf j 9y<xf

where A1; :::;An are atoms, n � 1 and x;y are vari-
ables. Some more details regarding the syntax are
provided in the following

� The ! operator indicates causality in a formula,
and should be read as “if-then” relation.

A�Logic-based�Passive�Testing�Approach�for�the�Validation�of�Communicating�Protocols

55

� The 8 and 9 quantifiers, are equivalent to its coun-
terparts in predicate logic. However, as it will be
seen on the semantics, here they only apply to
messages in the trace. Then, for a trace r;8x is
equivalent to 8(x 2 r) and 8y<x is equivalent to
8(y 2 r;y < x) with the ‘<’ indicating the order
relation from Definition 3. These type of quanti-
fiers are called trace temporal quantifiers.

3.2.2 Semantics

The semantics used on this work is related to the
traditional Apt–Van Emdem–Kowalsky semantics
for logic programs (Emden and Kowalski, 1976),
however we introduce an extension in order to deal
with messages and trace temporal quantifiers. We
begin by introducing the concept of substitution (as
defined in (Nilsson and Maluszynski, 1990)).

Definition 6. A substitution is a finite set of
bindings q = fx1=t1; :::;xk=tkg where each ti is a term
and xi is a variable such that xi 6= ti and xi 6= x j if
i 6= j.

The application xq of a substitution q to a variable
x is defined as follows.

xq =

(
t if x/t 2 q

x otherwise

The application of a particular binding x/t to an
expression E (atom, clause, formula) is the replace-
ment of each occurrence of x by t in the expression.
The application of a substitution q on an expression
E, denoted by Eq, is the application of all bindings in
q to all terms appearing in E.

Given K = fC1; :::;Cpg a set of clauses and r =

m1; :::;mn a trace. An interpretation2 in logic pro-
gramming is any function I mapping an expression
E that can be formed with elements (clauses, atoms,
terms) of K and terms from r to one element of
f>;?g. It is said that E is true in I if I(E) = >.

The semantics of formulas under a particular
interpretation I, is given by the following rules.
– The expression t1 = t2 is true, iff t1 equals t2 (they
are the same term).
– The expression t1 6= t2 is true, iff t1 is not equal to
t2 (they are not the same term).
– A ground atom3 A = p(c1; :::;ck) is true, iff A 2 I.
– An atom A is true, iff every ground instance of A is
true in I.
– The expression A1^ :::^An, where Ai are atoms, is
true, iff every Ai is true in I.

2Called an Herbrand Interpretation.
3An atom where no unbound variables appear.

– A clause C : A0 B is true, iff every ground
instance of C is true in I.
– A set of clauses K = fC1; :::;Cpg is true, iff every
clause Ci is true in I.

An interpretation is called a model for a clause set
K = fC1; :::;Cpg and a trace r if every Ci 2 K is true
in I. A formula f is true for a set K and a trace r (true
in K,r, for short), if it is true in every model of K;r.
It is a known result (Emden and Kowalski, 1976) that
if M is a minimal model for K;r, then if M(f) = >,
then f is true for K;r.

The general semantics of formulas is then defined
as follows. Let K be a clause set, r a trace for a
protocol and M a minimal model, the operator M
defines the semantics of formulas.

M̂(A1^ :::^An) =

�
> if M(A1^ :::^An) =>
? otherwise

The semantics for trace quantifiers requires first
the introduction of a new truth value ‘?’ (incon-
clusive) indicating that no definite response can be
provided. The semantics of quantifiers 8 and 9 is
defined as follows

M̂(8xf) =

8><>:?
if 9q with x=m 2 q and m 2 r;

where M̂(fq) =?
? otherwise

M̂(9xf) =

8><>:>
if 9q with x=m 2 q and m 2 r;

where M̂(fq) =>
? otherwise

Since r is a finite segment of an infinite execu-
tion, it is not possible to declare a ‘>’ result for 8xf,
since we do not know if f may become ‘?’ after the
end of r. Similarly, for 9xf, it is unknown whether
f becomes true in the future. Similar issues occur in
the literature of passive testing (Bayse et al., 2005)
and runtime monitoring (Bauer and Leucker, 2007),
for evaluations on finite traces. This issue is further
detailed in one of our technical reports. (Maag and
Lalanne, 2011).

The rest of the quantifiers are detailed in the
following, where x is assumed to be found as a
message previously obtained by 8x or 9x

M̂(8y>xf) =

8><>:?
if 9q with y=m 2 q;

where M̂(fq) =? and m > x
? otherwise

M̂(9y>xf) =

8><>:>
if 9q with y=m 2 q;

where M̂(fq) => and m > x
? otherwise

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

56

The semantics for 8y<x and 9y<x is equivalent to
the last two formulas, exchanging > by <. Finally,
the truth value for M̂(f! y)� M̂(f)! M̂(y).

3.3 Evaluation Complexity

An algorithm for evaluation of formulas is provided in
(Maag and Lalanne, 2011). The algorithm uses a re-
cursive procedure to evaluate formulas, coupled with
a modification of SLD (Selective Linear Definite-
clause) resolution algorithm (Apt and Van Emden,
1982) for evaluation of Horn clauses. In the same
work it is shown that the worst-case time complexity
for a formula with k quantifiers is O(nk) to analyze
the full trace, where n is the number of messages in
the trace. Although the complexity seems high, this
corresponds to the time to analyze the complete trace,
and not for obtaining individual solutions, which de-
pends on the type of quantifiers used. For instance for
a property 8x p(x), individual results are obtained in
O(1), and for a property 8x9yq(x;y), results are ob-
tained in the worst case in O(n). Finally, it can also
be shown that a formula with a ‘!’ operator, where
Q are quantifiers

Q : : :Q| {z }
k

(Q : : :Q| {z }
l

(A1^: : :^Ap)!Q : : :Q| {z }
m

(A01^: : :^A0q))

has a worst-case time complexity of O(nk+max(l;m)),
which has advantages with respect to using formulas
without the ‘!’ operator. For instance, evaluation of
the formula 8x(9y p(x;y)! 9zq(z)) has a complexity
of O(n2), while the formula 8x9y9z(p(x;y)^q(z)) has
a complexity of O(n3) in the worst case.

4 EXPERIMENTS

The concepts described in the Section 3, along with
the above mentioned evaluation algorithm (for a rea-
son of space, the reader interested in this algorithm is
invited to see (Maag and Lalanne, 2011)), form part
of our implemented framework.4 The implementa-
tion has been performed using Java and is composed
of two main modules, as shown by the Figure 1.

The trace processing module receives the raw
traces collected from the network exchange, and con-
verts the messages from the input format into a list of
messages compatible with the clause definitions. Al-
though the module can be adapted to multiple input
formats, in our experiments, the input format used
was PDML, an XML format that can be obtained

4Available at http://www-public.int-evry.fr/�lalanne/da
tamon.html

from Wireshark5 traces. In the XML, data values are
identified by a field tag, representing an individual
data element in the message (a header, a parameter).
Each sub-element in the target message is related to
a field in the XML by its name, for instance, the
‘status.line’ message element with the XML field
‘sip.Status-Line’. In the XML, fields are grouped
by protocol, which also allows the tool to filter mes-
sages not relevant to the properties being tested.

The tester module takes the resulting trace from
the trace evaluation along with the clause set and the
formula to test, and it returns a set of satisfaction re-
sults for the formula in the trace, as well as the vari-
able bindings and the messages involved in the result.
The results from the experiments are presented in the
following.

Figure 1: Architecture for the framework.

4.1 IP Multimedia Subsystem Services
and SIPp

The IMS (IP Multimedia Subsystem) is a standard-
ized framework for delivering IP multimedia services
to users in mobility. It was originally intended to de-
liver Internet services over GPRS connectivity. This
vision was extended by 3GPP, 3GPP2 and TISPAN
standardization bodies to support more access net-
works, such as Wireless LAN, CDMA2000 and fixed
access network. The IMS aims at facilitating the ac-
cess to voice or multimedia services in an access in-
dependent way, in order to develop the fixed-mobile
convergence. To ease the integration with the Internet
world, the IMS heavily makes use of IETF standards.

The core of the IMS network consists on the Call
Session Control Functions (CSCF) that redirect re-
quests depending on the type of service, the Home
Subscriber Server (HSS), a database for the provision-
ing of users, and the Application Server (AS) where
the different services run and interoperate. Most com-
munications with the core network and between the

5http://www.wireshark.org

A�Logic-based�Passive�Testing�Approach�for�the�Validation�of�Communicating�Protocols

57

services are done using the Session Initiation Proto-
col (Rosenberg, J. and Schulzrinne, H. and Camarillo,
G. and Johnston, A. and Peterson, J., 2002). Figure 2
shows the core functions of the IMS framework and
the protocols used between the different entities.

Figure 2: Core functions of IMS framework.

The Session Initiation Protocol (SIP) is an
application-layer protocol that relies on request and
response messages for communication, and it is an
essential part for communication within the IMS (IP
Multimedia Subsystem) framework. Messages con-
tain a header which provides session, service and
routing information, as well as a body part (optional)
to complement or extend the header information. Sev-
eral RFCs have been defined to extend the protocol
with to allow messaging, event publishing and notifi-
cation. These extensions are used by services of the
IMS such as the Presence service (Open Mobile Al-
liance, 2005) and the Push to-talk Over Cellular (PoC)
service (Open Mobile Alliance, 2006).

For the experiments, traces were obtained from
SIPp (Hewlett-Packard, 2004). SIPp is an Open
Source implementation of a test system conforming to
the IMS, and it is also a test tool and traffic generator
for the SIP protocol, provided by the Hewlett-Packard
company. It includes a few basic user agent scenarios
(UAC and UAS) and establishes and releases multi-
ple calls with the INVITE and BYE methods. It can
also read custom XML scenario files describing from
very simple to complex call flows (e.g. subscription
including SUBSCRIBE and NOTIFY events). It also
support IPv6, TLS, SIP authentication, conditional
scenarios, UDP retransmissions, error robustness, call
specific variable, etc. SIPp can be used to test many
real SIP equipments like SIP proxies, B2BUAs and
SIP media servers. The traces obtained from SIPp
contain all communications between the client and
the SIP core. Based on these traces and properties

extracted from the SIP RFC, tests were performed us-
ing our above mentioned methodology and tool.Tests
were performed using a prototype implementation of
the formal approach mentioned above, using an algo-
rithm developed by us and described in (Maag and
Lalanne, 2011).

4.2 Architectures

In the experiments, we designed a simulation on Lo-
cal Area Network (LAN) architecture for testing. For
ensuring the accuracy and authenticity of the results,
we construct the environment by using real laptops.
The LAN architecture is an environment containing
several UACs, which can be used to test the cor-
rectness, robustness and reliability under tremendous
number of calls. The observation points being on
the UAS (Fig.3). The HW configuration of UAS is
a CPU- Intel Core i5-2520M 2.50 GHz, 4GB DDR3
and the ones of UACs: CPU- AMD Atholon 64 X2
5200+, 2GB DDR2 and CPU- Intel Core2 Duo T6500
2.10 GHz, 2GB DDR2.

Figure 3: Architecture of our LAN.

4.3 Properties

In order to formally design the properties to be pas-
sively tested, we got inspired from the TTCN-3 test
suite of SIP (ETSI, 2004) and the RFC 3261 of
SIP (Rosenberg, J. and Schulzrinne, H. and Camar-
illo, G. and Johnston, A. and Peterson, J., 2002). We
designed seven properties for the experiments, for the
evaluation of each property we used a set of traces
containing f500, 1000, 2000, ... , 512000 packetsg in
order to get exhaustive results.

4.3.1 For every Request there Must be a
Response

This property can be used for a monitoring purpose,
in order to draw further conclusions from the results.
Due to the issues related to testing on finite traces for
finite executions, a f ail results can never be given

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

58

for this context. However inconclusive results can be
provided and conclusions may be drawn from further
analysis of the results (for instance if the same type of
message is always without a response). The property
evaluated is as follows:

8(request(x)^ x:method = ‘ACK’
!9y>x(nonProvisional(y)^ responds(y;x)))

where nonProvisional(x) accepts all non provi-
sional responses (non-final responses, with status �
200) to requests with method different than ACK,
which does not require a response. The results from
the evaluation on the traces are shown on Table 1. As
expected, most traces show only true results for the
property evaluation, but inconclusive results can also
be observed. Taking a closer look at trace 10, the in-
conclusive verdict corresponds to REGISTER mes-
sage, with an Event header corresponding to a con-
ference event (Rosenberg et al., 2006), this message
is at the end of the trace, which could indicate that
the client closed the connection before receiving the
REGISTER message. The same phenomenon can be
observed on the other traces (2,4,5 and 7). The last
trace with question mark is too huge to be executed
due to the limitation of the computer memory, the tool
crashed after four hours execution.

Table 1: For every request there must be a response.

Trace No.of messages Pass Fail Inconclusive Time(s)
1 500 150 0 0 0.941
2 1000 318 0 1 1.582
3 2000 676 0 0 2.931
4 4000 1301 0 1 5.185
5 8000 2567 0 1 10.049
6 16000 5443 0 0 20.192
7 32000 10906 0 1 39.016
8 64000 21800 0 0 84.015
9 128000 43664 0 0 155.903

10 256000 87315 0 1 382.020
11 450000 153466 0 0 1972.720
12 512000 ? ? ? ?

4.3.2 No Session can be Initiated without a
Previous Registration

This property can be used to test that only users suc-
cessfully registered with the SIP Core can initiate a
PoC session (or a SIP call, depending on the service).
It is defined using our syntax as follows

8x(9y>xsessionEstablished(x;y)
!9u<x(9v>uregistration(u;v)))

where sessionEstablished and registration are de-
fined as

sessionEstablished(x;y) x:method = ‘INVITE’
^y:statusCode = 200^ responds(y;x)

registration(x;y) request(x)^ responds(y;x)
^x:method = ‘REGISTER’^ y:statusCode = 200

However, the analysis of the results depends on
the following condition: did the trace collection be-
gin from a point in the execution of the communica-
tion before the user(s) registration took place? If the
answer is positive, then inconclusive results can be
treated as a possible fault in the implementation, oth-
erwise, only inconclusive verdicts can be given. Un-
fortunately, in the traces collected such condition does
not hold, therefore a definitive verdict cannot be pro-
vided. However it can be shown that the property and
the framework allows to detect when the tested prop-
erty holds on the trace, as Table 2 illustrates.

Table 2: No session can be initiated without a previous reg-
istration.

Trace No.of messages Pass Fail Inconclusive Time
1 500 60 0 0 13.690s
2 1000 109 0 0 57.117s
3 2000 182 0 1 207.841s
4 4000 405 0 0 869.322s
5 8000 785 0 0 1.122h
6 16000 1459 0 0 5.660h
7 32000 2905 0 0 27.282h
8 64000 5863 0 1 136.818h
9 128000 ? ? ? ?

From the results on Table 2, it can also be seen
that the evaluation of this property is much more time
consuming than the one on Table 1. By extrapo-
lation from the same time complexity, the trace 9
will take about 23 days for the evaluation where the
same trace took only 155s in property 1. Although
this is expected given the complexity of the evalua-
tion (n2 for the first property vs. n4 in the current
one), the current definition of the property is also
quite inefficient, and shows a limitation of the syn-
tax. During evaluation, all combinations of x and
y are tested until sessionEstablished(x;y) becomes
true, and then all combinations of u and v are eval-
uated until registration(u;v) becomes true. It would
be more efficient to look first for a message with
method INVITE, then look if the invitation was val-
idated by the server as a response with status 200 to
then attempt to look for a registration. This could be
achieved, for instance, by allowing quantifiers on the
clause definitions. But, the syntax as currently speci-
fied does not allow that type of definition.

A�Logic-based�Passive�Testing�Approach�for�the�Validation�of�Communicating�Protocols

59

4.3.3 Subscription to Events and Notifications

In the presence service, a user (the watcher) can sub-
scribe to another user’s (the presentity) presence in-
formation. This works by using the SIP messages
SUBSCRIBE, PUBLISH and NOTIFY for sub-
scription, update and notification respectively. These
messages also allow the subscription to other types of
events other than presence, which is indicated in the
header Event on the SIP message. It is desirable then
to test that whenever there is a subscription, a notifi-
cation MUST occur upon an update event. This can
be tested with the following formula

8x(9y>x(subscribe(x;watcher;user;event)
^update(y;user;event))
!9z>ynoti f y(z;watcher;user;event)))

where subscribe, update and noti f y hold on SUB-
SCRIBE, PUBLISH and NOTIFY events respec-
tively. Notice that the values of the variables watcher,
user and event may not have a value at the beginning
of the evaluation, then their value is set by the evalu-
ation of the subscribe clause, shown in the following

subscribe(x;watcher;user;event)
 x:method = ‘SUBSCRIBE’
^watcher = x: f rom
^user = x:to
^event = x:event

Here, the = operator, compares the two terms, how-
ever if one of the terms is an unassigned variable, then
the operator works as an assignment. In the formula,
the values assigned on the evaluation of subscribe
will be then used for comparison in the evaluation of
update. This is another way of defining formulas, dif-
ferent from using only message attributes.

The results of evaluating the formula are shown
on Table 3. The results show no inconclusive re-
sults, although they also show that the full notifica-
tion sequence is quite few in most traces. Notice that
we are explicitly looking for a sequence subscribe!
update! noti f y, however the sequence subscribe!
noti f y can also be present for subscription to server
events, therefore SUBSCRIBE and NOTIFY events
might also appear on the trace. To test the capabili-
ties of detection, some SUBSCRIBE messages were
manually introduced on a trace, matching existing
PUBLISH messages. The lack of update notification
was correctly detected by the property evaluation.

Similarly to property 2, this property is quite in-
efficient in its evaluation, due to the same nesting of
quantifiers. The evaluation time can be improved by
rewriting the property as

Table 3: Whenever an update event happens, subscribed
users must be notified on the set of traces.

Trace No.of messages Pass Fail Inconclusive Time
1 500 3 0 0 10.412s
2 1000 7 0 0 42.138s
3 2000 10 0 0 160.537s
4 4000 19 0 0 632.192s
5 8000 30 0 0 2520.674s
6 16000 52 0 0 2.808h
7 32000 74 0 0 11.250h
8 64000 122 0 0 45.290h
9 128000 ? ? ? ?

8x(update(x;user;event)
! (9y<xsubscribe(y;watcher;user;event)
!9z>xnoti f y(z;watcher;user;event)))

which can be understood as: “if an update event is
found, then if a previous subscription exists to such
event, then a notification must be provided at some
point after the update event”. The results of evaluat-
ing this property are shown on Table 4. Notice that for
trace 1,3 and 7, a different number of true results are
returned. This is due to the order of search given by
the property, in the previous property, one pair SUB-
SCRIBE - PUBLISH was sufficient to return a re-
sult. In the current property, for each PUBLISH it
will look for a matching SUBSCRIBE. Since for ev-
ery subscription there can exist multiple updates, the
number of true results differs.

Table 4: If an update event is found, then if a previous sub-
scription exists, then a notification must be provided.

Trace No.of messages Pass Fail Inconclusive Time(s)
1 500 4 0 0 0.560
2 1000 7 0 0 1.158
3 2000 11 0 0 3.089
4 4000 19 0 0 6.164
5 8000 30 0 0 12.684
6 16000 52 0 0 25.416
7 32000 75 0 0 50.130
8 64000 122 0 0 99.372
9 128000 198 0 0 202.492
10 256000 342 0 0 394.756
11 512000 ? ? ? ?

4.3.4 Every 2xx Response for INVITE Request
must be Responded with an ACK

This property can be used to ensure that when the IUT
(UAC) has initiated an INVITE client transaction, ei-
ther it is in the Calling or Proceeding state, on receipt
of a Success (200 OK) response, the IUT MUST gen-
erate an ACK request. The ACK request MUST con-
tain values for the Call-ID, From and Request-URI
that are equal to the values of those header fields in the

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

60

INVITE request passed to the transport by the client
transaction. The To header field in the ACK MUST
equal the To header field in the 2xx response being
acknowledged, and therefore will usually differ from
the To header field in the original INVITE request by
the addition of the tag parameter. The ACK MUST
contain a single Via header field, and this MUST be
equal to the top Via header field (the field without the
branch parameter) of the original INVITE request.
The CSeq header field in the ACK MUST contain the
same value for the sequence number in the original
INVITE request, but the value of Method parameter
MUST be equal to ‘ACK’.

This evaluated property is as follows:

8x(request(x)^ x:method = INVITE
!9y>x(responds(y;x)^ success(y))
!9z>y(ackResponse(z;x;y)))

where success is defined as

success(y) y:statusCode >= 200^ y:statusCode < 300

and ackResponse is defined as

ackResponse(x;y;z)
 x:method = ACK
^x:Call� id = y:Call� id
^x:CSeq = y:CSeq
^x:CSeq:method = ACK
^x:to = z:to
^x:From = y:From
^x:Request�URI = y:Request�URI
^x:TopVia = y:TopVia

Table 5: Every 2xx response for INVITE request must be
responded with an ACK.

Trace No.of messages Pass Fail Inconclusive Time
1 500 60 0 0 1.901s
2 1000 109 0 0 3.665s
3 2000 183 0 0 11.805s
4 4000 405 0 0 40.104s
5 8000 784 0 1 130.611s
6 16000 1459 0 0 522.050s
7 32000 2904 0 1 2237.442s
8 64000 5864 0 0 2.093h
9 128000 11555 0 1 8.630h

10 256000 23154 0 0 37.406h
11 450000 43205 0 0 142.568h
12 512000 ? ? ? ?

The inconclusive messages observed in traces
5,7,9 are caused by the same phenomenon described
in property 1. Besides, we observe a regular pattern in
the results of this property: as the Table 2 and 5 illus-
trate, with the evaluation of same traces, the sum of
Pass and Inconclusive verdicts of each trace in prop-
erty 4 equal to the sums in property 2. This can be
interpreted as the continuity of the transactions.

We are looking for a sequencea: “REGISTER!
200 ! INVITE” in property 2, on the other
side, in property 4 we are searching a sequenceb:
“INVITE! 200! ACK”. As described in prop-
erty 2, each INVITE must have a previous REG-
ISTER message. We can infer a new sequence:
“REGISTER! 200! INVITE! 200! ACK”,
which means each ACK message in the transac-
tion must be corresponded to one REGISTER re-
quest. Since multiple user conference is not consid-
ered in the experiments, we could only conclude: un-
der our particular architecture, the verdict numbers of
sequencea should be equal to the ones of sequenceb.

4.3.5 Every 300-699 Response for INVITE
Request must be Responded with an ACK

Similar to the previous one, this property can be used
to ensure that when the IUT (UAC) has initiated an
INVITE client transaction, either it is in the Calling
state or Proceeding state, on receipt of a response with
status code 300-699, the client transaction MUST be
transited to “Completed”, and the IUT MUST gener-
ate an ACK request. The ACK MUST be sent to the
same address and port which the original INVITE re-
quest was sent to, and it MUST contain values for
the Call-ID, From and Request-URI that are equal to
the values in the INVITE request. The To header
field in the ACK MUST equal the To header field in
the response being acknowledged. The ACK MUST
contain a single Via header field, and this MUST be
equal to the Via header field of the original INVITE
request which includes the branch parameter. The
CSeq header field in the ACK MUST contain the
same value for the sequence number in the original
INVITE request, but the value of Method parameter
MUST be equal to ‘ACK’.

Similarly to the property above, this property can
be applied as:

8x(request(x)^ x:method = INVITE
!9y>x(responds(y;x)^ f ail(y))
!9z>y(ackResponse(z;x;y)))

where f ail is defined as

f ail(y) y:statusCode >= 300^ y:statusCode < 700

and ackResponse is defined as

ackResponse(x;y;z)
 x:method = ACK
^x:Call� ID = y:Call� ID
^x:CSeq = y:CSeq
^x:CSeq:method = ACK
^x:to = z:to
^x:From = y:From
^x:Request�URI = y:Request�URI
^x:TopVia = y:TopVia

A�Logic-based�Passive�Testing�Approach�for�the�Validation�of�Communicating�Protocols

61

Table 6: Every 300-699 response for INVITE request must
be responded with an ACK.

Trace No.of messages Pass Fail Inconclusive Time
1 500 10 0 0 3.445
2 1000 18 0 0 10.798
3 2000 49 0 0 34.331
4 4000 91 0 0 137.083
5 8000 165 0 0 557.803
6 16000 367 0 1 1950.656
7 32000 736 0 0 2.103h
8 64000 1403 0 0 8.498h
9 128000 2796 0 0 36.159h

10 256000 5513 0 0 145.088h
11 512000 ? ? ? ?

The only inconclusive verdict in trace 6 is due to
the same phenomenon described in property 1. This
property has the same evaluation time complexity
as the previous one (O(n3)), which should equal or
be close to the ones in the property 4. However, the
actual evaluation time does not respect it. From the
Table 5 and 6, we can observe that the evaluation
times of property 5 are always one higher level
than the times of property 4. In order to clarify this
issue, we can use the following formula to derive it.
Assuming that, the processing time of a message is
t, the total number of messages is n, the number of
INVITE is k, there are x success responses and y fail
responses. The evaluation time of property 4 can be
derived as

Te = x�t+ffn� [2x
y + (n�k�x�y)

y]g+fn�2� [2x
y +

(n�k�x�y)
y]g+ fn� 3 � [2x

y + (n�k�x�y)
y]g+; :::;+fn�

(y � 1) � [2x
y + (n�k�x�y)

y]g + fn � y � [2x
y +

(n�k�x�y)
y]gg

where we know under regular condition k = x+y,
and the equation becomes:

Te = x� t + t � [n� y� (å
y
a=1 a)� (2x+n�2k)

y]

= t � [y2 + (n�2)y
2 + n

2 + k� y]

This always gives a positive result and the evalu-
ation time is proportional to the value of y (the num-
ber of fails). Conversely in property 5, the evaluation
time is proportional to the value of x (the number of
successes). Considering the success responses are 10
times more than the fail ones, the phenomenon that
property 5 consumes more time than the property 4
can be well explained.

4.3.6 A CANCEL Request Should Not be Sent
to Cancel a Request other than INVITE

Since requests other than INVITE are responded to
UAC immediately, sending a CANCEL for a non-
INVITE request would always create a race condi-
tion. Once the CANCEL is constructed, the client
should check whether it has received any response for
the request being canceled. If no provisional response
has been received, the CANCEL request must not be
sent. Rather, the client must wait for the arrival of a
provisional response (1xx) before sending the request.
If the original request has generated a final response,
the CANCEL should not be sent. This property can
be used to ensure when the IUT having received a
1xx response to its INVITE request, to give up the
call, it can send a CANCEL request with the same
Request-URI, Call-ID, From, To headers, Via head-
ers, numeric part of CSeq as in the original INVITE
message, with a method field in the CSeq header set
to “CANCEL”.

This property can be defined by using our syntax
as follows:

8x(request(x)^ x:method = CANCEL
!9y<x(continues(y;x)^ y:statusCode = 1xx)
!9z<y(responds(y;z)^ invite(z;x)))

where continues is defined as

continues(y;x) y:to = x:to
^y:Call� ID = x:Call� ID
^y:From = x:From
^y:Request�URI = x:Request�URI
^y:TopVia = x:TopVia

and invite is defined as

invite(z;x) z:method = INVITE
^x:to = z:to
^x:Call� ID = z:Call� ID
^x:From = z:From
^x:Request�URI = z:Request�URI
^x:CSeq = z:CSeq
^x:TopVia = z:TopVia

As Table 7 illustrates, there is no inconclusive ver-
dict. The evaluation time of each trace almost respects
the linear increment of y = 2x (x being the evaluation
time of the current trace, y being the evaluation time
of next trace), which means the complexity of evalu-
ation is O(n).

5 DISCUSSION

In this section, we discuss an interesting property and
possible improvements for performance testing.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

62

Table 7: A CANCEL request should not be sent to cancel a
request other than INVITE.

Trace No.of messages True False Inconclusive Time(s)
1 500 5 0 0 0.780
2 1000 11 0 0 1.232
3 2000 21 0 0 2.309
4 4000 43 0 0 4.212
5 8000 87 0 0 8.284
6 16000 172 0 0 16.395
7 32000 344 0 0 32.870
8 64000 689 0 0 65.080
9 128000 1377 0 0 133.380
10 256000 2753 0 0 266.372
11 512000 ? ? ? ?

5.1 The Session MUST be Terminated
After a BYE Request

The BYE request is used to terminate a specific ses-
sion or attempted session. When a BYE is received
on a dialog, any session associated with that dialog
SHOULD terminate. A UAC MUST NOT send a
BYE outside of a dialog. Once the BYE is con-
structed, the UAC core creates a new non-INVITE
client transaction and passes it to the BYE request.
The UAC MUST consider the session terminated as
soon as the BYE request is passed to the client trans-
action. If the response for the BYE is a 481 or a 408
or no response at all is received for the BYE, the UAC
MUST consider the session and the dialog terminated.
This property can be used to ensure that the IUT, once
a dialog has been established, after sending a BYE re-
quest, the session MUST be terminated. As the ‘ter-
minated’ is not clearly defined in the RFC, we define
the ‘terminated’ as follows:
– The IUT stops sending messages.
– The IUT stops listening messages except the re-
sponse for BYE request.
– The IUT transaction transmits to Completed state.

The BYE request must be constructed with a To
header set to the same as in the last received final re-
sponse, the same Call-ID, From headers as in the orig-
inal INVITE message, an incremented CSeq value
and a method field in the CSeq header set to “BYE”.

Differently as the properties before, this one is
complicated to formalize, due to the difficulty of de-
tecting the ‘terminated’ state. Indeed, we do not have
any complete formal specification available and we
can not stimulate the IUT. Moreover, we should en-
sure that no more messages will be exchanged after
the ‘terminated’ state, which indicate that we need to
keep monitoring the transaction even after it termi-
nates. It is time consuming and unpredictable.

5.2 Time Complexity

Figure 4: Evaluation time table.

In the experiment, we observe a phenomenon
which occurred in all the properties. The time com-
plexity of evaluation is proportional to the number of
inconclusive verdicts. Take property one and its re-
sults for example, its worst time complexity of evalu-
ation is O(n2) (where n is the number of packets). If
the variable n is doubled, the expected evaluation time
should be 4 times greater than the previous one. How-
ever, from the Table 1, we can see there is hardly any
inconclusive verdict, and the actual evaluation time is
only about twice greater than the previous one, as the
Figure 4 shows. It means that the actual evaluation
time complexity is close to its best complexity O(n).

In addition, we test the same property with the
same number of traces where numerous inconclusive
verdicts can be observed (the inconclusive verdicts
accounted for 100% of the total verdicts). The result
can be seen from Figure 5, which illustrates the eval-
uation time practically equal to our expected time. In
other words, the actual time complexity of evaluation
is almost equal to O(n2). This phenomenon can be
used to estimate the evaluation time and the number
of inconclusive verdicts.

Figure 5: The evaluation time table of numerous inconclu-
sive verdicts.

5.3 Performance Testing

As defined in the RFC1242 (Bradner, S., 1991) and
RFC2544 (Bradner, S. and McQuaid, J., 1991), a per-
formance benchmarking can be indicated as:

A�Logic-based�Passive�Testing�Approach�for�the�Validation�of�Communicating�Protocols

63

– Accessibility: if the packet can reach a destina-
tion.
– Communication bandwidth: the data transfer rate
between two nodes.
– Maximum frame rate: the maximum transmission
rate of the device under test.
– Communication Latency: the time required for
delivering the packet to destination.
– Frame loss rate: the ratio of loss packets and sent
packets during the data transport.

We can build a passive performance benchmark-
ing system if all these norms are measurable. Cur-
rently, the result of property 1 already showed we
could certainly test the Accessibility and Frame loss
rate by detecting the number of resent packets from
the inconclusive verdicts. But if we want to test the
Communication Latency, a timer function needs to be
added in order to test the arrival time.

6 CONCLUSIONS

This paper introduces a novel approach to passive
testing of network protocol implementation, with a
particular focus on IMS services. This approach al-
lows to define high-level relations between messages
or message data, and then use such relations in or-
der to define properties that will be evaluated on the
trace. The property evaluation returns a pass, f ail or
inconclusive result for a given trace. To verify and
test the approach, we design several properties for the
evaluation. The approach has been implemented into
a framework, and results from testing these properties
on tremendous traces collected from IMS service.

The results are positive, the implemented ap-
proach allows to define and test complex data rela-
tions efficiently, and evaluate the properties success-
fully. Besides, as described in the Section 5, some
improvements can be proposed as future works for
performance testing, such as: Testing the accessi-
bility and loss rate of traces by measuring the time
complexity, Introducing a timer function to the ap-
proach for testing the communication latency. More-
over, we guess that some properties need, for various
reasons as mentioned in this paper, to be specified us-
ing timers. In this objective, other perspectives are to
enhance our syntax and semantics as well as study the
more relevant way of formulating an RFC property.

REFERENCES

Abiteboul, S., Hull, R., and Vianu, V. (1995). Datalog and
Recursion. Addison-Wesley, 2nd edition.

Apt, K. R. and Van Emden, M. H. (1982). Contributions to
the theory of logic programming. Journal of the ACM
(JACM), 29(3):841–862.

Barringer, H., Goldberg, A., Havelund, K., and Sen, K.
(2004). Rule-based runtime verification. In Verifi-
cation, Model Checking, and Abstract Interpretation,
pages 277–306.

Bauer, A. and Leucker, M. (2007). Runtime verification for
ltl and tltl. ACM Transactions on Software Engineer-
ing and Methodology, pages 1–68.

Bayse, E., Cavalli, A., Nunez, M., and Zaidi, F. (2005). A
passive testing approach based on invariants: applica-
tion to the wap. Computer Networks.

Bradner, S. (1991). Benchmarking terminology for network
interconnection devices.

Bradner, S. and McQuaid, J. (1991). Benchmarking
methodology for network interconnect devices.

Cao, T.-D., Phan-Quang, T.-T., Felix, P., and Castanet, R.
(2010). Automated runtime verification for web ser-
vices. IEEE International Conference on Web Ser-
vices, pages 76–82.

Cuppens, F., Cuppens-Boulahia, N., and Nomad, T. S.
(2005). A security model with non atomic actions and
deadlines. IEEE.

Emden, M. V. and Kowalski, R. (1976). The semantics of
predicate logic as a programming language. Journal
of the ACM, pages 23(4):733–742.

ETSI (2004). Methods for testing and specification (mts);
conformance test specification for sip.

Hewlett-Packard (2004). SIPp. http://sipp.sourceforge.net/.
Hierons, R. M., Krause, P., Luttgen, G., and Simons,

A. J. H. (2009). Using formal specifications to support
testing. ACM Computing Surveys, page 41(2):176.

Lee, D. and Miller, R. (2006). Network protocol sys-
tem monitoring-a formal approach with passive test-
ing. IEEE/ACM Transactions on Networking, pages
14(2):424–437.

Leucker, M. and Schallhart, C. (2009). A brief account of
runtime verification. Journal of Logic and Algebraic
Programming, pages 78(5):293–303.

Maag, S. and Lalanne, F. (2011). A formal data-centric ap-
proach for passive conformance testing of communi-
cation protocols. Technical report, Telecom Sud-Paris.

Morales, G., Maag, S., Cavalli, A., Mallouli, W., and
De Oca, E. M. (2010). Timed extended invariants
for the passive testing of web services. IEEE Inter-
national Conference of Web Services.

Nilsson, U. and Maluszynski, J. (1990). Logic, program-
ming and Prolog. Wiley, 2nd edition.

Open Mobile Alliance (2005). Internet messaging and pres-
ence service features and functions.

Open Mobile Alliance (2006). Push to talk over cellular
requirements.

Rosenberg, J., Schulzrinne, H., and Levin, O. (2006). A
session initiation protocol (sip) event package for con-
ference state.

Rosenberg, J. and Schulzrinne, H. and Camarillo, G. and
Johnston, A. and Peterson, J. (2002). Sip: Session
initiation protocol.

Ural, H. and Xu, Z. (2007). An efsm-based passive fault de-
tection approach. Lecture Notes in Computer Science,
pages 335–350.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

64

