
On Continuous Top-k Similarity Joins

Da Jun Li1, En Tzu Wang2, Yu-Chou Tsai3 and Arbee L. P. Chen4
1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

2Cloud Computing Center for Mobile Applications, Industrial Technology Research Institute, Hsinchu, Taiwan, R.O.C.
3Institute for Information Industry, Taipei, Taiwan, R.O.C.

4Department of Computer Science, National Chengchi University, Taipei, Taiwan, R.O.C.

Keywords: Data Stream, Similarity Join, Continuous Query, Top-K Query.

Abstract: Given a similarity function and a threshold σ within a range of [0, 1], a similarity join query between two
sets of records returns pairs of records from the two sets, which have similarity values exceeding or
equaling σ. Similarity joins have received much research attention since it is a fundamental operation used
in a wide range of applications such as duplicate detection, data integration, and pattern recognition.
Recently, a variant of similarity joins is proposed to avoid the need to set the threshold σ, i.e. top-k
similarity joins. Since data in many applications are generated as a form of continuous data streams, in this
paper, we make the first attempt to solve the problem of top-k similarity joins considering a dynamic
environment involving a data stream, named continuous top-k similarity joins. Given a set of records as the
query, we continuously output the top-k pairs of records, ranked by their similarity values, for the query and
the most recent data, i.e. the data contained in the sliding window of a monitored data stream. Two
algorithms are proposed to solve this problem. The first one extends an existing approach for static datasets
to find the top-k pairs regarding the query and the newly arrived data and then keep the obtained pairs in a
candidate result set. As a result, the top-k pairs can be found from the candidate result set. In the other
algorithm, the records in the query are preprocessed to be indexed using a novel data structure. By this
structure, the data in the monitored stream can be compared with all records in the query at one time,
substantially reducing the processing time of finding the top-k results. A series of experiments are performed
to evaluate the two proposed algorithms and the experiment results demonstrate that the algorithm with
preprocessing outperforms the other algorithm extended from an existing approach for a static environment.

1 INTRODUCTION

Given a similarity function and a threshold σ within
a range of [0, 1], a similarity join query between two
sets of records returns pairs of records from the two
sets, which have similarity values equal to or higher
than σ. The similarity join query has received
considerable attention since it is a fundamental
operation in a wide range of applications such as
page detection (Henzinger, 2006), data integration
(Cohen, 1998), data de-duplication (Sarawagi and
Bhamidipaty, 2002), and data mining (Bayardo et al.,
2007). The literatures on similarity joins can be
roughly categorized into two types, one for
computing approximate similarity values (Broder et
al., 1997) (Chowdhury et al., 2002); (Charikar, 2002)
(Gionis et al., 1999) and the other for computing
exact similarity values (Chaudhuri et al., 2006)

(Bayardo et al., 2007) (Sarawagi and Kirpal, 2004);
(Xiao et al., 2008).

In (Broder et al., 1997), documents are divided
into several continuous subsets and then, these
subsets are employed to approximately identify the
near duplicate web pages. Local Sensitive Hashing
(LSH) (Gionis et al., 1999) is a widely adopted
technique for solving the approximate similarity join
problem. The basic idea of LSH is to hash the data
from the databases to ensure that the probability of
collision is much higher for objects that are close to
each other than for those that are far apart. Several
approaches use LSH to obtain the guarantees of the
probability of false positive and that of false
negative. (Gionis et al., 1999) applies LSH to detect
the duplicates of data with high dimensions.
(Chowdhury et al., 2002) uses the collected statistics
to detect the duplicate documents. (Charikar, 2002)
proposes a new LSH scheme to estimate similarity

87Jun Li D., Tzu Wang E., Tsai Y. and L. P. Chen A..
On Continuous Top-k Similarity Joins.
DOI: 10.5220/0003993200870096
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 87-96
ISBN: 978-989-8565-18-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

and based on that, a randomized algorithm is also
proposed. The other type of literatures on similarity
joins returns the exact answers. Based on various
index techniques and filtering principles, several
approaches such as (Sarawagi and Kirpal, 2004);
(Chaudhuri et al., 2006) (Bayardo et al., 2007);
(Xiao et al., 2008) have been proposed. (Bayardo et
al., 2007) proposes a principle to quickly access
inverted lists. (Xiao et al., 2008) designs a novel
technique to index and process the similarity join
queries. (Arasu et al., 2006) divides the records into
partitions and hashes them into signatures. It also
employs a post filtering step to prune the pairs of
records for reducing candidates.

As mentioned, the original similarity join needs a
user-given threshold, yet setting a suitable threshold
may not be easy without the background knowledge
to the given datasets. Therefore, Xiao et al. propose
a variant of similarity joins, i.e. the top-k similarity
join query in (Xiao et al., 2009), which returns the k
pairs of records from the given two sets of records,
with the highest similarity values. In (Xiao et al.,
2009), the topk-join approach, to be formally
introduced in the next section, is proposed to deal
with the top-k similarity join query. Its main idea is
to quickly compute the upper bounds of similarity
values related to pairs of records and then prune the
candidate results if their upper bounds are lower
than the similarity value of the temporal kth pair of
records. Consider a scenario as follows. A blogger
writes some articles in her/his blog and is interested
in the other blog articles highly related to these
articles. As blog articles are continuously generated,
able to be regarded as an article data stream, the
above scenario can be turned into the problem of
continuous top-k similarity joins. Since users often
concern more about the recent data, we adopt the
sliding window model in this paper. Given a set of
records being regarded as a query and a sliding
window over a data stream, the continuous top-k
similarity join query returns k pairs of records
regarding the query and the data contained in the
sliding window, which have the highest similarity
values.

To deal with this problem, we can apply the
topk-join approach (Xiao et al., 2009) whenever the
window slides. Obviously, we can improve this
solution since most of the data in the current window
are identical to those in the last window. We first
propose a solution extended from the topk-join
approach, which computes the top-k results
regarding the query and newly arrived data as
candidate results and derives the join results from
the candidate set. Moreover, we propose another

algorithm preprocessing the query in advance,
making the data able to be compared with all the
records in the query at one time. Our contributions
can be summarized as follows. 1) We make the first
attempt to address the problem on continuous Top-k
similarity joins in this paper. 2) We also propose two
algorithms for solving this problem, one extended
from the topk-join approach proposed in (Xiao et al.,
2009) and the other one based on preprocessing the
issued query for parallel comparisons of the records.

The rest of the paper is organized as follows. The
preliminaries are introduced in Section 2, including
the problem formulation and the topk-join approach
(Xiao et al., 2009). Thereafter, the proposed
solutions are detailed in Section 3. The experiment
results are presented and analyzed in Section 4 and
finally, Section 5 concludes this work.

2 PRELIMINARIES

To deal with the traditional problem of similarity
joins, a user needs to set a similarity threshold to
identify which join results s/he is interested in. In
(Xiao et al., 2009), Xiao et al. turn to solve a variant
of the similarity join problem, i.e. top-k similarity
joins. Without the need to set the threshold, in the
top-k similarity join problem, the join results with
the k highest similarity values are returned. Next, the
problem of top-k similarity joins and the
corresponding solution proposed in (Xiao et al.,
2009) are introduced in Subsection 2.1, followed by
the problem of continuous top-k similarity joins,
formulated in Subsection 2.2.

2.1 Introduction to Top-k Similarity
Joins

Let I = {W1, W2, …, W|I|} be a finite set of symbols
(literals) called tokens. A record is considered as a
set of tokens. Given a similarity function denoted
sim(⋅, ⋅), which returns a similarity value s ∈ [0, 1]
between two records, top-k similarity joins between
two sets of records return k pairs of records that have
the highest similarity values. Notice that, we focus
on Jaccard similarity function in this paper;
accordingly, sim(x, y) is equal to | | | |x y x y∩ ∪ ,
where x and y are records.

A solution to the problem of top-k similarity
joins, proposed in (Xiao et al., 2009), is mainly
based on the concept of prefix filtering (Chaudhuri
et al., 2006); (Xiao et al., 2009) described as follows.
Suppose that the tokens of two records x and y are

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

88

each sorted into a common order, e.g. an alphabet
order, and the p-prefix of a record x is defined as the
first p tokens of x. If sim(x, y) ≥ α, then
the ()| | | | 1x xα− +⎡ ⎤⎢ ⎥ -prefix of x and

the ()| | | | 1y yα− +⎡ ⎤⎢ ⎥ -prefix of y must share at least
one token, where α ∈ [0, 1] and |x| is the cardinality
of x. For example, let α, the sorted x, and the sorted y
be 0.5, {A, C, E, G, J}, and {D, E, G, J},
respectively. Since sim(x, y) = 0.5 = α, the 3-prefix
of x, i.e. {A, C, E}, and the 3-prefix of y, i.e. {D, E,
G}, share at least one token, say E. In other words, if
the ()| | | | 1x xα− +⎡ ⎤⎢ ⎥ -prefix of x and

the ()| | | | 1y yα− +⎡ ⎤⎢ ⎥ -prefix of y do not share any
common tokens, sim(x, y) must be smaller than α,
which is the main pruning rule used in the topk-join
algorithm proposed in (Xiao et al., 2009).

Figure 1: Similarity upper bounds and inverted lists used
in the topk-join algorithm.

Given two sets of records R1 and R2, each record
in either R1 or R2 is assumed to be sorted into a
common order as described in (Xiao et al., 2009)1.
Then, each token in a record is associated with a
pre-computed similarity upper bound. The similarity
upper bound of the token in the pth position of a
record x is equal to ()1 (1) | |p x− − . For example, as
shown in Figure 1, each token of the record q1, i.e. A,
B, C, and E, has a corresponding similarity upper
bound, i.e. 1, 0.75, 0.5, and 0.25. The similarity
upper bound of the token in the pth position of x
means if any record, say y, satisfies that y and the (p
− 1)-prefix of x do not share any one token, sim(x, y)
must be smaller than or equal to the corresponding
similarity upper bound. The topk-join algorithm
(Xiao et al., 2009) works as follows. Let Ut be a

1In [XW09], tokens in each record are sorted into an increasing
order of occurrence frequency for efficiency.

multi-set of tokens, consisting of all tokens of all
records in the two sets R1 and R2. Moreover, R1 and
R2 are each associated with a set of inverted lists as
shown in Figure 1. Each token in Ut is processed in a
decreasing order of the similarity upper bound. As
the current processed token T is with a similarity
upper bound equal to sub, the corresponding record
of T with sub, say q contained in R1, is inserted into
the inverted list of T, regarding R1. Then, the
similarity values between q and the records
contained in the inverted list of T, regarding R2 are
computed. The k highest similarity value among the
computed join results is used to be a threshold
named stopk. The more tokens contained in Ut are
processed, the larger the value of stopk becomes.
Finally, the whole process stops once each
unprocessed token in Ut has a similarity upper bound
smaller than stopk.

Figure 2: Continuous Top-2 similarity joins regarding a
sliding window with a size of 3.

2.2 Problem Formulation

Different from the original top-k similarity joins
considering the static sets of records, in this paper,
we make the first attempt to deal with the problem
of top-k similarity joins in a dynamic environment
involving a data stream. A data stream in this paper
is defined as an unbounded sequence of records.
Notice that, in each time slot ti, i = 1, 2, 3, …, a
non-fixed number of records may be generated in
the data stream. Since users may often be interested
in recent data, we take into account the sliding
window model, which only concerns the data
records arriving at the most recent m time slots.
More specifically, we only concern the data records
of the target stream that arrive in the time slots
between tc−m+1 and tc, where tc is the current time slot.
Since top-k similarity joins involve two sets of
records, in addition to the data records coming from
the target stream, the other finite set of records are
issued by a user, being regarded as a continuous

On�Continuous�Top-k�Similarity�Joins

89

query. This type of records is called query records.
Then, the problem to be solved in this paper is
defined as follows. Given a set of query records and
a sliding window with a size of m, we issue a query
of continuous top-k similarity joins that continuously
returns k pairs of records with the highest similarity
values, regarding the query records and the data
records contained in the current window.
Example 1: Let both of m and k be 2. Moreover, as
shown in Figure 2, the continuous query consists of
five query records. When the sliding window
contains the time slots t1 and t2, the join results are
(q2, d1) and (q3, d3). After the window slides to
contain the time slots t2 and t3, the join results
become (q4, d4) and (q5, d6).

3 CONTINUOUS TOP-K
SIMILARITY JOINS

A naïve solution to the query of continuous top-k
similarity joins is to repeatedly perform topk-join
(Xiao et al., 2009) for the current window whenever
the window slides. However, since most of the data
records contained in the current window are likely
identical to those contained in the last window,
performing topk-join twice may cause redundant
computation, thus inefficient. Next, we propose two
algorithms to solve the query of continuous top-k
similarity joins, focusing on computation sharing to
reduce the redundant computation.

3.1 The AllTopk Algorithm

A straightforward idea of reducing the redundant
computation mentioned above is that we keep the
top-k pairs of records regarding the current window
and once the window slides, we hope to generate
some join results only from the data records arriving
at the new time slot to obtain the top-k pairs
regarding the new window. However, the problem is
that: are the join results generated from the data
records arriving at the new time slot indeed
contained in the answer set regarding the new
window? Obviously, the answer is “no.” Even that,
this idea can be practical if we keep more candidate
join results rather than keeping only the exact top-k
pairs of records regarding the current window. The
following Lemma claims how many candidate join
results needing to be kept, deriving our first
algorithm named AllTopk.
Lemma 1: Suppose that for each new time slot t, n
pairs of records with the highest similarity values,

regarding the query records and the data records
arriving at t, are kept in a candidate result set.
Moreover, the pairs of records, associated with the
expiring time slot, are deleted from the candidate
result set whenever the window slides. Then, if n ≥ k,
the exact top-k join results regarding the current
window must be contained in the candidate result
set.
Proof: Assume that a pair of records, say (q, d) is
one of the exact top-k join results regarding the
current window yet not kept in the candidate set,
where q is a query record and d is a data record
arriving at the time slot t contained in the current
window. Since for each new time slot, n pairs of
records with the highest similarity values, regarding
the query records and the data records arriving at the
time slot are kept in the candidate set and n ≥ k, we
can infer that at least k pairs of records regarding the
data records arriving at t have the similarity values
larger than that of (q, d). Here, a contradiction
occurs. Accordingly, if n ≥ k, the exact top-k join
results regarding the current window must be
contained in the candidate set.
By Lemma 1, we propose the AllTopk algorithm that
works as follows. For each now time slot t, topk-join
(Xiao et al., 2009) is applied to find the top-k join
results regarding the query records and the data
records arriving at t and the results are kept in a
candidate set. Moreover, once a time slot expires due
to window sliding, the join results associated with
the expiring time slot are deleted from the candidate
set. By the above steps, the top-k join results
regarding the current window are always kept in the
candidate set and can be easily obtained. In Alltopk,
keeping k pairs of records with the highest similarity
values, regarding the query records and the data
records arriving at the new time slot, is needed since
keeping only n pairs of records, where n < k may
have a risk of generating the incorrect results. An
illustration below is used to describe this condition.
Example 2: As shown in Figure2, let both of m and
k be 2. If we only find the top-1 pair of records
between the query records and the data records
arriving at the new time slot, the candidate set
related to the window containing t1 and t2 is {(q2, d1),
(q3, d3)}, which is exactly equal to the corresponding
answer set. After the window slides to contain t2 and
t3, (q2, d1) is deleted and (q4, d4) is inserted in the
candidate set, making the candidate set equal to {(q3,
d3), (q4, d4)}. Actually, the exact answer set
mentioned above is equal to {(q4, d4), (q5, d6)} rather
than {(q3, d3), (q4, d4)}.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

90

3.2 The Progressive Parallel
Comparison (PPP) Algorithm

Once the continuous query, say a set of query
records, is registered, we continuously return k pairs
of records with the highest similarity values,
regarding the query records and the data records
contained in the current window. Since the query
records are fixed and need to continuously compare
with the newly generated data records, the process
will be more efficient by parallel comparing a data
record with all query records at one time. Actually,
this is the main idea of our second solution to the
problem of continuous top-k similarity joins, named
PPP (standing for Progressive Parallel comParison).
In the following, we first introduce the data structure
to be used, followed by the pruning strategy, and
then detail the PPP algorithm.

3.2.1 Data Structure

As mentioned, since the query records are fixed once
registered, we design a data structure consisting of
counter sequences and a token list to keep the
information of the query records. An example of the
data structure is shown in Figure3. Each query
record is associated with a sequence of counters,
denoted a counter sequence, which has a dynamic
size equal to the number of data records contained in
the current window. Initially, all of the counters are
set to zero. The kth counter in the counter sequence
associated with a query record q is used to count the
number of common tokens between q and the kth
data record in the current window. On the other hand,
the token list is a list keeping the tokens of the union
of the query records. The tokens kept in the token
list are sorted into an alphabet order. Each token in
the token list points to the counter sequences whose
corresponding query records contain the token. For
example, token A shown in Figure3 points to the
first and second counter sequences since A is
contained in both of q1 and q2.

The links kept in the token list help to quickly
figure out which query records contain a certain
token, and through the counters in the counter
sequences, we can easily get the number of common
tokens between a query record and a data record and
then further obtain the corresponding similarity
value. We assume that each data record is sorted into
an alphabet order. While the window slides and
some newly generated data records arrive, each of
them is processed as follows. We scan the tokens of
a data record and update the corresponding counters
in the counter sequences. More specifically, if the

current token being processed in a data record is
token A, the counters regarding the data record,
linked by token A in the token list, are all increased
by one. Once each token in a data record is
processed, we can compute the similarity values of
all pair of records regarding the data record by using
the counters related to the data record.

Figure 3: A data structure to keep the information of query
records.

3.2.2 Pruning Strategy

As mentioned in Subsection 2.1, the concept of
prefix filtering is used to solve the problem of top-k
similarity joins (Xiao et al., 2009). In the PPP
algorithm, our pruning strategy is also based on the
extension concept of prefix filtering, called extended
prefix filtering.
Lemma 2 (Extended Prefix Filtering): Suppose
that the tokens of two records x and y are each sorted
into a common order. If sim(x, y) ≥ α, then the
()| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and the

()| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y must share at least

(1 + m) tokens, where α ∈ [0, 1] and {0}m Z +∈ ∪ .■

Proof: Assume that the
()| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and the

()| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y share n tokens,
where n < (1 + m). In the following, it is separated
into two cases for discussion, including y < a|x| and
y ≥ a|x|.
Case 1 (y < a|x|):

sim(x, y) = Min(| |, | |) | |
Max(| |,| |) | |

x y x y x
x y x y x

α α∩
< < =

∪

Case 2 (y ≥ a|x|):
Let d be the number of common tokens between the
remainder part of x and that of y. Obviously, d

On�Continuous�Top-k�Similarity�Joins

91

≤ ()| | | | | | 1x x x mα− − + +⎡ ⎤⎢ ⎥ .

()
()

sim(x, y)

1 1

 =
| | | | | | | |

| | (| | | | 1 +)

| | | | | | (| | | | 1 +)

| | | |
| | | | | | 1 | | | | | | 1

x y
x y

n d m d
x y n d x y m d

m x x x m

x y m x x x m

x x
x y x x x x

α

α

α

α α
α α α

∩
=

∪

− −
<

⎡ ⎤⎢ ⎥
⎡ ⎤⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

+ +≤
+ − − + − −

+ − − +
≤

+ − − + − +

= ≤
+ − + + − +

We conclude that if n < (1 + m), then sim(x, y) < α,
which means if sim(x, y) ≥ α, then n ≥ (1 + m).
Accordingly, we demonstrate that If sim(x, y) ≥ α,
then the ()| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and

the ()| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y must share at

least (1 + m) tokens, where α ∈ [0, 1]
and {0}m Z +∈ ∪ .

3.2.3 The PPP Algorithm

In the following discussion, we assume that all of
the data records are sorted into an alphabet order
while being generated. Conceptually, the PPP
algorithm works as follows. When a new data record
arrives at the current time slot due to window sliding,
the tokens of the data record will be sequentially
processed. Notice that, as mentioned above, for each
query record, there is a counter in its corresponding
counter sequence, which is related to a certain data
record contained in the current window. If the token
being processed is T, the query records containing T
can be easily found by the link of the token T in the
token list. Then, the corresponding counters of the
linked counter sequences are increased by one. After
finishing the scanning process of a data record, we
can easily compute all of the similarity values of the
pairs of records regarding the data record by the
counter sequences. These pairs of records with
known similarity values are kept as candidate results
and then, the top-k pairs of records can be always
found from them. This is the basic idea of PPP and
actually, we can apply the extended prefix filtering
to speed up the algorithm. During the process of
scanning the tokens of a data record, once we find
that all of the join results regarding this data record
have no chances at all to be the Top-k pairs of
records in the current window, we stop processing
the remainder tokens of the data record. However,
when the window slides, since the non-Top-k pairs
of records may become the Top-k pairs of records,
we need to resume the stopped scanning process of
the data records to get their corresponding similarity
values. In the following, when to stop the scanning
process of a data record and how to resume the

stopped scanning process of a data record are
detailed.

Let α be a threshold within a range of [0, 1].
According to the prefix filtering principle, if
the ()| | | | 1 -prefixd dα− +⎡ ⎤⎢ ⎥ of a data record d and a
query record q do not share any common tokens,
then processing the remainder tokens from the
position of ()| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ in d is not necessary
since sim(d, q) must be smaller than α. The number
of ()| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ for the data record d is
denoted ISP (standing for Initial Stop Position),
which means once we find that no tokens are shared
between the ()| | | | 1 -prefixd dα− +⎡ ⎤⎢ ⎥ of d and q, sim(d,
q) must be smaller than α, thus stopping the
scanning process of d at the position
of ()| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ . Moreover, we define another
variable, i.e. SP (standing for Stop Position). Initially,
SP of d is set equally to ISP of d,
i.e. ()| | | | 1 1.d dα− + +⎡ ⎤⎢ ⎥ Following the extended
prefix filtering principle, if the
()| | | | 1 -prefixd d mα− + +⎡ ⎤⎢ ⎥ of d and q do not share at
least (m + 1) common tokens, sim(d, q) must be
smaller than α. Accordingly, while scanning the
tokens in d, if q and d have a common token, SP of d
will be accumulated; this scanning process will stop
until the current token to be processed is at the
position of SP of d.

Algorithm 1: The PPP Algorithm
Input: W is a set of records contained in the current window.
Output: the top-k pairs of records regarding the query records and the

data records contained in W.
Variable: stopk, ISP(d), P(d), SP(d), and MI(d).

1. For each record d ∈ W

2. ISP(d) = ()| | | | 1 1d stopk d− + +⎡ ⎤⎢ ⎥

3. If d is at the new time slot
4. P(d) = 1, MI(d) = 0, and SP(d) = ISP(d)
5. Else
6. Load the corresponding P and MI of d
7. For each un-scanned token t in d
8. SP(d) = ISP(d) + MI(d)
9. If P(d) ≥ SP(d)
10. Store P(d) and MI(d)
11. Jump to Line 1
12. Else if t is contained in the token list
13. Accumulate the counters of the counter sequences

linked by t
14. Update MI(d) using the corresponding counters
15. Compute all similarity values of pairs of records regarding d
16. Insert these pairs of records regarding d to the candidate set and

generate the new stopk
17. Return the top-k pairs of records from the
 candidate set
18. After the window slides, generate the new stopk from the

candidate set

We use an example of a query record q to specify

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

92

how to apply the extended prefix filtering principle
to the PPP algorithm as above. In fact, since the
main idea of PPP is to compare a data record with all
of the query records at one time, a variable denoted
MI (standing for Maximum Intersection), is used to
keep the largest number of the intersection between
each query record and the scanned prefix of a data
record d. Then, SP of d is always set to ISP of d plus
MI of d during the scanning process of d. MI of d
can be found from the counter sequences. Notice
that, if SP of d is larger than |d|, we need to process
each token of d and then compute the similarity
values of the pairs of records regarding d. On the
other hand, to resume the stopped scanning process
of a data record is very easy; we only need to keep
the position of the token to be processed of a data
record and its corresponding MI. After resuming the
scanning process, we continuously scan the tokens
of a data record d from the position where it stopped;
this position is denoted P of d.

Now, the whole process of PPP is detailed as
follows. Whenever the window slides, each data
record contained in the current window is
sequentially processed. If a data record d is new in
the current window, P of d, i.e. P(d), and MI of d,
denoted MI(d), are initialized, set to 1 and 0,
respectively. Moreover, ISP of d, denoted ISP(d), is
set to ()| | | | 1 1d stopk d− + +⎡ ⎤⎢ ⎥ , where stopk (playing
the same role as α discussed above) is a threshold
within a range of [0, 1], equal to the similarity value
of the pair of records which is with the kth largest
similarity value in the candidate set.2 If d is not new
in the current window, its status including P(d) and
MI(d) will be restored. Then, we start to scan the
un-scanned tokens in d and also update P(d)
according to the position of the current token to be
processed. If the token being scanned in d is t, the
corresponding counters in the counter sequences
linked by t in the token list are increased by one.
Moreover, MI(d) is also updated to the largest value
of the corresponding counters. During the scanning
process, SP(d) is always set to ISP(d) plus MI(d). If
P(d) ≥ SP(d), then all pairs of records regarding d
must have similarity values smaller than stopk, thus
able to be pruned. However, P(d) and MI(d) are kept
since the pairs of records regarding d may have
chances becoming the Top-k results in the future due
to window sliding. Once all tokens in a data record d
have been scanned, the corresponding similarity
values are computed and the pairs of records
regarding d are kept in the candidate set. In this

2In the very beginning, stopk is equal to 0 since there are no
candidate results kept in the candidate set.

moment, the new stopk is reassigned using the new
candidate set. To find the answer set, we only need
to check the pairs of records kept in the candidate set.
The pseudo codes of PPP are shown in Algorithm 1.

A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

(α2, β1, 0.75)
(α1, β1, 0.6)

stopk: 0.6

SP(β1): 9

ISP(β1): 6
MI(β1): 3

G M

J

0

0

0

0

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0

(α3, β1, 0.125)
(α4, β1, 0)

A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

(α2, β1, 0.75)
(α1, β1, 0.6)

stopk: 0.6

SP(β1): 9

ISP(β1): 6
MI(β1): 3

G M

J

0

0

0

0

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0

(α3, β1, 0.125)
(α4, β1, 0)

Figure 4(1): After processing β1.

A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

stopk: 0.6

SP(β2): 5
ISP(β2): 4

MI(β2): 1

G M

J

1

1

1

1

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.6

(α2, β1, 0.75)
(α1, β1, 0.6)
(α3, β1, 0.125)
(α4, β1, 0)

P(β2): 5

A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

stopk: 0.6

SP(β2): 5
ISP(β2): 4

MI(β2): 1

G M

J

1

1

1

1

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.6

(α2, β1, 0.75)
(α1, β1, 0.6)
(α3, β1, 0.125)
(α4, β1, 0)

P(β2): 5

Figure 4(2): Porcessing β2 and then stopping at the
position of 5.

A
B
C
E
F

H

2

1

5

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

stopk: 0.75

SP(β3): 9
ISP(β3): 4

MI(β2): 5

G M

J

1

1

1

1

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.6
(α3, β3, 1)
(α2, β1, 0.75)

(α1, β3, 0.29)
(α2, β3, 0.14)

(α4, β3, 0)

(α1, β1, 0.6)

(α3, β1, 0.125)
(α4, β1, 0)

Top-2
(α3, β3, 1)
(α2, β1, 0.75)

P(β2): 5

A
B
C
E
F

H

2

1

5

J
K

M

0

G

L

Token listCounter sequences

A B C

A F I J K

C E F

D

Candidate set

stopk: 0.75

SP(β3): 9
ISP(β3): 4

MI(β2): 5

G M

J

1

1

1

1

3

3

1

α1

α2

α3

0α4

β1 β2 β3

β1

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.6
(α3, β3, 1)
(α2, β1, 0.75)

(α1, β3, 0.29)
(α2, β3, 0.14)

(α4, β3, 0)

(α1, β1, 0.6)

(α3, β1, 0.125)
(α4, β1, 0)

(α3, β3, 1)
(α2, β1, 0.75)

(α1, β3, 0.29)
(α2, β3, 0.14)

(α4, β3, 0)

(α1, β1, 0.6)

(α3, β1, 0.125)
(α4, β1, 0)

Top-2
(α3, β3, 1)
(α2, β1, 0.75)

P(β2): 5

Figure 4(3): After processing β3.

A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A F I J K

C E F

Candidate set

stopk: 0.29

SP(β2): 7
ISP(β2): 5

MI(β2): 2

G M

J

2

1

5

0

1

1

1

α1

α2

α3

2α4

β2 β3 β4

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.29

β4 A B C D H

(α3, β3, 1)
(α1, β3, 0.29)

(α2, β3, 0.14)

(α4, β3, 0)

(α1, β2, 0.125)

(α2, β2, 0.14)

(α3, β2, 0.11)

(α4, β2, 0.29) A
B
C
E
F

H

0

0

0

J
K

M

0

G

L

Token listCounter sequences

A F I J K

C E F

Candidate set

stopk: 0.29

SP(β2): 7
ISP(β2): 5

MI(β2): 2

G M

J

2

1

5

0

1

1

1

α1

α2

α3

2α4

β2 β3 β4

β2

β3

4

3

5

4

W (data records)

Length of
query records

stopk: 0.29

β4 A B C D H

(α3, β3, 1)
(α1, β3, 0.29)

(α2, β3, 0.14)

(α4, β3, 0)

(α1, β2, 0.125)

(α2, β2, 0.14)

(α3, β2, 0.11)

(α4, β2, 0.29)

(α3, β3, 1)
(α1, β3, 0.29)

(α2, β3, 0.14)

(α4, β3, 0)

(α1, β2, 0.125)

(α2, β2, 0.14)

(α3, β2, 0.11)

(α4, β2, 0.29)

Figure 4(4): The window slides to contain β2, β3, andβ4.

Figure 4: A running example of the PPP algorithm.

On�Continuous�Top-k�Similarity�Joins

93

Example 3: Let k be 2. The continuous query
consists of four query records including α1, α2, α3,
and α4 with a length equal to 4, 3, 5, and 4,
respectively. Initially, stopk is set to 0. After
processing β1, stopk becomes 0.6. The candidate set
and the corresponding values of β1 are as shown in
Figure 4(1). In Figure 4(2), since SP(β2) is equal to 5,
the scanning process stops at the position of K in β2.
P(β2) is set to 5 for resuming the scanning process of
β2 in the future. Then, we continue to process β3 as
shown in Figure 4(3). After processing β3, stopk
becomes 0.75. Since all data records contained in W
are went through, the Top-2 pairs of records are
found from the candidate set. That is, (α3, β3, 1) and
(α2, β1, 0.75). When the window slides to contain
β2, β3, andβ4, stopk first becomes 0.29 since β1 is out
of the window. Then we resume the scanning
process of β2 from the position of P(β2).

4 PERFORMANCE EVALUATION

A series of experiments are performed to compare
the AllTopk algorithm and the PPP algorithm. The
experiment setup is described in Subsection 4.1 and
the experiment results are shown and analyzed in
Subsection 4.2.

4.1 Experiment Setup

In addition to comparing AllTopk and PPP, a naïve
algorithm is used to be the basis in the experiments.
How the naïve algorithm works is described as
follows. To the best of our knowledge, since the
topk-join algorithm (Xiao et al., 2009) is the
state-of-the-art solution in the static environment,
whenever the window slides, we apply topk-join to
find the results regarding the query records and the
data records contained in the current window. Naïve,
AllTopk, and PPP are all implemented in C++ and
compiled using GCC 4.1.2. Moreover, all
experiments are performed on a PC with the Intel
Core2 Quad 2.4 GHz CPU and 2GB memory.

Following (Xiao et al., 2009), we use DBLP data
from the DBLP web site to be the test dataset. We
cache the titles of papers from DBLP and treat a
paper title as a record. Moreover, paper titles are
divided into 2-grams and a 2-gram string is regarded
as a token. The total number of data records kept in
the dataset is 81790. Notice that, the order
mentioned in the algorithms follows the alphabet
order and the priority of uppercase is higher than
that of lowercase.

Table 1: The parameters used in the experiments.

Parameter Default
value

Range

Query Size 150 50~450
k 100 1~100

Window Size 2 1~8
Sliding Size 1 1~8

Time Slot Size [480, 620] [120, 140] and [480, 620]

All of the experiment parameters are shown in
Table 1 and detailed as follows. Query Size means
the number of query records. k means the number of
results to be reported. Window Size means the
number of time slots contained in the sliding
window. Sliding Size means the number of time slots
in each slide. For example, if Sliding size is 2, two
time slots are newly contained and another two time
slots expire whenever the window slides. Moreover,
to simulate an inconsistent number of data records
arriving at a time slot, the number of data records at
a time slot is randomly chosen from a range (e.g.
[480, 620] in Table 1). This number is denoted Time
Slot Size.

4.2 Experiment Results

The experiment results on varying Query Size,
including processing time, preprocessing time, and
memory usage are shown in Figures 5-7. The
processing time is defined as the total computation
time of processing the whole dataset. As shown in
Figure 5, the processing time of each algorithm
increases with the increasing of Query Size. PPP
outperforms Naïve and AllTopk. Moreover, since
only the data records arriving at the current time slot
need to be processed rather than the data records
contained in the whole window as in Naïve, AllTopk
outperforms Naïve. Although preprocess is needed
in PPP, the corresponding computation cost is quite
lightweight as shown in Figure 6, which also
increases with the increasing of Query Size.

0

200

400

600

800

1000

1200

50 100 150 200 250 300 350 400 450 500
Query Size (records)

Pr
oc

es
sin

g
Ti

m
e

(s
)

Naive AllTopk PPP

Figure 5: Relation between Processing time and Query
size.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

94

The memory usage of each algorithm is shown in
Figure 7. PPP uses more memory space because of
keeping the token list and the counter sequences for
the query records. Moreover, since the top-k pairs of
records, regarding the query records and the data
records of each time slot in the current window, are
kept as candidate results, AllTopk uses more
memory space than Naïve.

0
0.1
0.2
0.3
0.4
0.5
0.6

50 100 150 200 250 300 350 400 450 500 550

Query Size (records)

Pr
ep

ro
ce

ss
in

g
tim

e
(s

) PPP

Figure 6: Relation between Preprocessing time of PPP and
Query size.

1
10

100
1000

10000
100000

1000000

50 100 150 200
Query Size (records)

M
em

or
y

U
sa

ge
 (B

yt
es

)

Naive AllTopk PPP

Figure 7: Relation between Memory usage and Query size.

The experiment results on varying k are shown in
Figure 8. As can been seen, PPP still outperforms
AllTopk and Naïve in this experiment. The
experiment results on varying Window Size are
shown in Figure 9. As shown in Figure 9, the
processing time of AllTopk is quite stable and seems
not influenced by Window Size. This is because we
only concern about the data records arriving at the
last time slot rather than all of the data records
contained in the whole window as in Naïve.
Moreover, although the processing time of PPP
increases with the increasing of Window Size, the
increasing degree is lightweight. PPP is more
efficient than the others in most of the cases. The
experiment results on varying Sliding size are shown
in Figure 10. In this experiment, Time Slot Size is

randomly chosen from a range of [120, 140]. As
shown in Figure 10, the larger the value of Sliding
Size is, the longer the processing time of AllTopk
will be. This is because the number of data records
to be processed whenever the window slides
increases with the increasing of Sliding Size.
Moreover, as Naïve concerns the data records
contained in the current window, its processing time
is stable and not influenced by Sliding Size.

0
50

100
150
200
250
300
350
400

1 10 20 30 40 50 60 70 80 90 100

k
Pr

oc
es

si
ng

 T
im

e
(s

) Naive AllTopk PPP

Figure 8: Relation between Processing time and k.

0
200
400
600
800

1000
1200
1400

1 2 3 4 5 6 7 8
Window Size (time slots)

Pr
oc

es
si

ng
 T

im
e

(s
)

Naive AllTopk PPP

Figure 9: Relation between Processing time and Window
size.

0

100

200

300

400

500

1 2 3 4 5 6 7 8
Sliding Size (time slots)

Pr
oc

es
si

ng
 T

im
e

(s
) Naive AllTopk PPP

Figure 10: Relation between Processing time and Sliding
size.

On�Continuous�Top-k�Similarity�Joins

95

5 CONCLUSIONS

We make the first attempt to address the problem of
continuous top-k similarity joins in this paper. We
also propose two algorithms named AllTopk and
PPP to solve this problem. The AllTopk algorithm
computes the top-k pairs of records regarding the
data records arriving at the last time slot and the
query records to generate the candidate results. On
the other hand, in the PPP algorithm, the query
records are processed in advance to make each data
record able to be compared with all of the query
records at one time. The experiment results
demonstrate that PPP outperforms AllTopk and a
naïve algorithm. In the near future, we consider
solving another similar problem in the environment
of data streams, which takes into account two data
streams and continuously finds the top-k pairs of
records from these two data streams.

ACKNOWLEDGEMENTS

We thank the Taiwan Ministry of Economic Affairs,
Taiwan National Science Council, and Institute for
Information Industry (Fundamental Industrial
Technology Development Program 1/4) for
financially supporting this research.

REFERENCES

Arasu, A., Ganti, V., and Kaushik, R., 2006. Efficient
exact set-similarity joins. In Proceedings of the 32nd
International Conference on Very Large Data Bases,
VLDB2006. pp. 918-929.

Broder, A., Glassman, S., Manasse, M., and Zweig, G.,
1997 Syntactic clustering of the web. Computer
Networks, vol. 29, no. 8-13, (1997) pp. 1157-1166.

Bayardo, R., Ma, Y., and Srikant, R., 2007. Scaling up all
pairs similarity search. The 16th International World
Wide Web Conference, WWW2007, New York, NY,
USA, pp. 131-140.

Chowdhury, A., Frieder, O., Grossman, D., and McCabe,
M., 2002. Collection statistics for fast duplicate
document detection. ACM Trans. Inf. Syst., vol. 20, no.
2, (2002) pp. 171-191.

Chaudhuri, S., Ganti, V., and Kaushik, R., 2006. A
primitive operator for similarity joins in data cleaning.
In Proceedings of the 22nd International Conference
on Data Engineering, ICDE2006, Atlanta, Georgia.

Cohen, W., 1998. Integration of heterogeneous databases
without common domains using queries based on
textual similarity. In Proceedings of the ACM Special
Interest Group on Management of Data, SIGMOD1998,

New York, NY, USA, pp. 201-212.
Charikar, M., 2002. Similarity estimation techniques from

rounding algorithms. In Proceedings of the 34th Annual
ACM Symposium on Theory of Computing, STOC2002,
Montreal, Quebec, Canada, pp. 380-388.

Gionis, A., Indyk, P., and Motwani, R., 1999. Similarity
search in high dimensions via hashing. In Proceedings
of the 25th International Conference on Very Large
Data Bases, VLDB1999, Edinburgh, Scotland, UK, pp.
518-529.

Henzinger, M., 2006. Finding near-duplicate web pages: a
large-scale evaluation of algorithms. In Proceedings of
the ACM Special Interest Group on Information
retrieval, SIGIR2006, New York, NY, USA. pp.
284-291.

Sarawagi, S., and Bhamidipaty, A., 2002. Interactive
deduplication using active learning. ACM Special
Interest Group on Knowledge Discovery in Data,
KDD2002, New York, NY, USA, pp. 269-278.

Sarawagi, S., and Kirpal, A., 2004. Efficient set joins on
similarity predicates. In Proceedings of the ACM
Special Interest Group on Management of Data,
SIGMOD2004, New York, NY, USA, pp. 743-754.

Xiao, C., Wang, W., Lin, X., Shang, H., 2009. Top-k set
similarity joins. 25th International Conference on Data
Engineering. ICDE2009, Shanghai, China, pp.
916-927.

Xiao, C., Wang, W., Lin, X., and Yu, J. X., 2008. Efficient
similarity joins for near duplicate detection. In
Proceedings of the 17th International World Wide Web
Conference, WWW2008, New York, NY, USA, pp.
131-140.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

96

