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Abstract: Given a similarity function and a threshold σ within a range of [0, 1], a similarity join query between two 
sets of records returns pairs of records from the two sets, which have similarity values exceeding or 
equaling σ. Similarity joins have received much research attention since it is a fundamental operation used 
in a wide range of applications such as duplicate detection, data integration, and pattern recognition. 
Recently, a variant of similarity joins is proposed to avoid the need to set the threshold σ, i.e. top-k 
similarity joins. Since data in many applications are generated as a form of continuous data streams, in this 
paper, we make the first attempt to solve the problem of top-k similarity joins considering a dynamic 
environment involving a data stream, named continuous top-k similarity joins. Given a set of records as the 
query, we continuously output the top-k pairs of records, ranked by their similarity values, for the query and 
the most recent data, i.e. the data contained in the sliding window of a monitored data stream. Two 
algorithms are proposed to solve this problem. The first one extends an existing approach for static datasets 
to find the top-k pairs regarding the query and the newly arrived data and then keep the obtained pairs in a 
candidate result set. As a result, the top-k pairs can be found from the candidate result set. In the other 
algorithm, the records in the query are preprocessed to be indexed using a novel data structure. By this 
structure, the data in the monitored stream can be compared with all records in the query at one time, 
substantially reducing the processing time of finding the top-k results. A series of experiments are performed 
to evaluate the two proposed algorithms and the experiment results demonstrate that the algorithm with 
preprocessing outperforms the other algorithm extended from an existing approach for a static environment. 

1 INTRODUCTION 

Given a similarity function and a threshold σ within 
a range of [0, 1], a similarity join query between two 
sets of records returns pairs of records from the two 
sets, which have similarity values equal to or higher 
than σ. The similarity join query has received 
considerable attention since it is a fundamental 
operation in a wide range of applications such as 
page detection (Henzinger, 2006), data integration 
(Cohen, 1998), data de-duplication (Sarawagi and 
Bhamidipaty, 2002), and data mining (Bayardo et al., 
2007). The literatures on similarity joins can be 
roughly categorized into two types, one for 
computing approximate similarity values (Broder et 
al., 1997) (Chowdhury et al., 2002); (Charikar, 2002) 
(Gionis et al., 1999) and the other for computing 
exact similarity values (Chaudhuri et al., 2006) 

(Bayardo et al., 2007) (Sarawagi and Kirpal, 2004); 
(Xiao et al., 2008). 

In (Broder et al., 1997), documents are divided 
into several continuous subsets and then, these 
subsets are employed to approximately identify the 
near duplicate web pages. Local Sensitive Hashing 
(LSH) (Gionis et al., 1999) is a widely adopted 
technique for solving the approximate similarity join 
problem. The basic idea of LSH is to hash the data 
from the databases to ensure that the probability of 
collision is much higher for objects that are close to 
each other than for those that are far apart. Several 
approaches use LSH to obtain the guarantees of the 
probability of false positive and that of false 
negative. (Gionis et al., 1999) applies LSH to detect 
the duplicates of data with high dimensions. 
(Chowdhury et al., 2002) uses the collected statistics 
to detect the duplicate documents. (Charikar, 2002) 
proposes a new LSH scheme to estimate similarity 
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and based on that, a randomized algorithm is also 
proposed. The other type of literatures on similarity 
joins returns the exact answers. Based on various 
index techniques and filtering principles, several 
approaches such as (Sarawagi and Kirpal, 2004); 
(Chaudhuri et al., 2006) (Bayardo et al., 2007); 
(Xiao et al., 2008) have been proposed. (Bayardo et 
al., 2007) proposes a principle to quickly access 
inverted lists. (Xiao et al., 2008) designs a novel 
technique to index and process the similarity join 
queries. (Arasu et al., 2006) divides the records into 
partitions and hashes them into signatures. It also 
employs a post filtering step to prune the pairs of 
records for reducing candidates. 

As mentioned, the original similarity join needs a 
user-given threshold, yet setting a suitable threshold 
may not be easy without the background knowledge 
to the given datasets. Therefore, Xiao et al. propose 
a variant of similarity joins, i.e. the top-k similarity 
join query in (Xiao et al., 2009), which returns the k 
pairs of records from the given two sets of records, 
with the highest similarity values. In (Xiao et al., 
2009), the topk-join approach, to be formally 
introduced in the next section, is proposed to deal 
with the top-k similarity join query. Its main idea is 
to quickly compute the upper bounds of similarity 
values related to pairs of records and then prune the 
candidate results if their upper bounds are lower 
than the similarity value of the temporal kth pair of 
records. Consider a scenario as follows. A blogger 
writes some articles in her/his blog and is interested 
in the other blog articles highly related to these 
articles. As blog articles are continuously generated, 
able to be regarded as an article data stream, the 
above scenario can be turned into the problem of 
continuous top-k similarity joins. Since users often 
concern more about the recent data, we adopt the 
sliding window model in this paper. Given a set of 
records being regarded as a query and a sliding 
window over a data stream, the continuous top-k 
similarity join query returns k pairs of records 
regarding the query and the data contained in the 
sliding window, which have the highest similarity 
values.  

To deal with this problem, we can apply the 
topk-join approach (Xiao et al., 2009) whenever the 
window slides. Obviously, we can improve this 
solution since most of the data in the current window 
are identical to those in the last window. We first 
propose a solution extended from the topk-join 
approach, which computes the top-k results 
regarding the query and newly arrived data as 
candidate results and derives the join results from 
the candidate set. Moreover, we propose another 

algorithm preprocessing the query in advance, 
making the data able to be compared with all the 
records in the query at one time. Our contributions 
can be summarized as follows. 1) We make the first 
attempt to address the problem on continuous Top-k 
similarity joins in this paper. 2) We also propose two 
algorithms for solving this problem, one extended 
from the topk-join approach proposed in (Xiao et al., 
2009) and the other one based on preprocessing the 
issued query for parallel comparisons of the records. 

The rest of the paper is organized as follows. The 
preliminaries are introduced in Section 2, including 
the problem formulation and the topk-join approach 
(Xiao et al., 2009). Thereafter, the proposed 
solutions are detailed in Section 3. The experiment 
results are presented and analyzed in Section 4 and 
finally, Section 5 concludes this work. 

2 PRELIMINARIES 

To deal with the traditional problem of similarity 
joins, a user needs to set a similarity threshold to 
identify which join results s/he is interested in. In 
(Xiao et al., 2009), Xiao et al. turn to solve a variant 
of the similarity join problem, i.e. top-k similarity 
joins. Without the need to set the threshold, in the 
top-k similarity join problem, the join results with 
the k highest similarity values are returned. Next, the 
problem of top-k similarity joins and the 
corresponding solution proposed in (Xiao et al., 
2009) are introduced in Subsection 2.1, followed by 
the problem of continuous top-k similarity joins, 
formulated in Subsection 2.2. 

2.1 Introduction to Top-k Similarity 
Joins 

Let I = {W1, W2, …, W|I|} be a finite set of symbols 
(literals) called tokens. A record is considered as a 
set of tokens. Given a similarity function denoted 
sim(⋅, ⋅), which returns a similarity value s ∈ [0, 1] 
between two records, top-k similarity joins between 
two sets of records return k pairs of records that have 
the highest similarity values. Notice that, we focus 
on Jaccard similarity function in this paper; 
accordingly, sim(x, y) is equal to | | | |x y x y∩ ∪ , 
where x and y are records. 

A solution to the problem of top-k similarity 
joins, proposed in (Xiao et al., 2009), is mainly 
based on the concept of prefix filtering (Chaudhuri 
et al., 2006); (Xiao et al., 2009) described as follows. 
Suppose that the tokens of two records x and y are 
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each sorted into a common order, e.g. an alphabet 
order, and the p-prefix of a record x is defined as the 
first p tokens of x. If sim(x, y) ≥ α, then 
the ( )| | | | 1x xα− +⎡ ⎤⎢ ⎥ -prefix of x and 

the ( )| | | | 1y yα− +⎡ ⎤⎢ ⎥  -prefix of y must share at least 
one token, where α ∈ [0, 1] and |x| is the cardinality 
of x. For example, let α, the sorted x, and the sorted y 
be 0.5, {A, C, E, G, J}, and {D, E, G, J}, 
respectively. Since sim(x, y) = 0.5 = α, the 3-prefix 
of x, i.e. {A, C, E}, and the 3-prefix of y, i.e. {D, E, 
G}, share at least one token, say E. In other words, if 
the ( )| | | | 1x xα− +⎡ ⎤⎢ ⎥ -prefix of x and 

the ( )| | | | 1y yα− +⎡ ⎤⎢ ⎥ -prefix of y do not share any 
common tokens, sim(x, y) must be smaller than α, 
which is the main pruning rule used in the topk-join 
algorithm proposed in (Xiao et al., 2009). 

 
Figure 1: Similarity upper bounds and inverted lists used 
in the topk-join algorithm. 

Given two sets of records R1 and R2, each record 
in either R1 or R2 is assumed to be sorted into a 
common order as described in (Xiao et al., 2009)1. 
Then, each token in a record is associated with a 
pre-computed similarity upper bound. The similarity 
upper bound of the token in the pth position of a 
record x is equal to ( )1 ( 1) | |p x− − . For example, as 
shown in Figure 1, each token of the record q1, i.e. A, 
B, C, and E, has a corresponding similarity upper 
bound, i.e. 1, 0.75, 0.5, and 0.25. The similarity 
upper bound of the token in the pth position of x 
means if any record, say y, satisfies that y and the (p 
− 1)-prefix of x do not share any one token, sim(x, y) 
must be smaller than or equal to  the corresponding 
similarity upper bound. The topk-join algorithm 
(Xiao et al., 2009) works as follows. Let Ut be a 

                                                       
1In [XW09], tokens in each record are sorted into an increasing 
order of occurrence frequency for efficiency. 

multi-set of tokens, consisting of all tokens of all 
records in the two sets R1 and R2. Moreover, R1 and 
R2 are each associated with a set of inverted lists as 
shown in Figure 1. Each token in Ut is processed in a 
decreasing order of the similarity upper bound. As 
the current processed token T is with a similarity 
upper bound equal to sub, the corresponding record 
of T with sub, say q contained in R1, is inserted into 
the inverted list of T, regarding R1. Then, the 
similarity values between q and the records 
contained in the inverted list of T, regarding R2 are 
computed. The k highest similarity value among the 
computed join results is used to be a threshold 
named stopk. The more tokens contained in Ut are 
processed, the larger the value of stopk becomes. 
Finally, the whole process stops once each 
unprocessed token in Ut has a similarity upper bound 
smaller than stopk. 

 
Figure 2: Continuous Top-2 similarity joins regarding a 
sliding window with a size of 3. 

2.2 Problem Formulation 

Different from the original top-k similarity joins 
considering the static sets of records, in this paper, 
we make the first attempt to deal with the problem 
of top-k similarity joins in a dynamic environment 
involving a data stream. A data stream in this paper 
is defined as an unbounded sequence of records. 
Notice that, in each time slot ti, i = 1, 2, 3, …, a 
non-fixed number of records may be generated in 
the data stream. Since users may often be interested 
in recent data, we take into account the sliding 
window model, which only concerns the data 
records arriving at the most recent m time slots. 
More specifically, we only concern the data records 
of the target stream that arrive in the time slots 
between tc−m+1 and tc, where tc is the current time slot. 
Since top-k similarity joins involve two sets of 
records, in addition to the data records coming from 
the target stream, the other finite set of records are 
issued by a user, being regarded as a continuous 
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query. This type of records is called query records. 
Then, the problem to be solved in this paper is 
defined as follows. Given a set of query records and 
a sliding window with a size of m, we issue a query 
of continuous top-k similarity joins that continuously 
returns k pairs of records with the highest similarity 
values, regarding the query records and the data 
records contained in the current window. 
Example 1: Let both of m and k be 2. Moreover, as 
shown in Figure 2, the continuous query consists of 
five query records. When the sliding window 
contains the time slots t1 and t2, the join results are 
(q2, d1) and (q3, d3). After the window slides to 
contain the time slots t2 and t3, the join results 
become (q4, d4) and (q5, d6). 

3 CONTINUOUS TOP-K 
SIMILARITY JOINS 

A naïve solution to the query of continuous top-k 
similarity joins is to repeatedly perform topk-join 
(Xiao et al., 2009) for the current window whenever 
the window slides. However, since most of the data 
records contained in the current window are likely 
identical to those contained in the last window, 
performing topk-join twice may cause redundant 
computation, thus inefficient. Next, we propose two 
algorithms to solve the query of continuous top-k 
similarity joins, focusing on computation sharing to 
reduce the redundant computation. 

3.1 The AllTopk Algorithm 

A straightforward idea of reducing the redundant 
computation mentioned above is that we keep the 
top-k pairs of records regarding the current window 
and once the window slides, we hope to generate 
some join results only from the data records arriving 
at the new time slot to obtain the top-k pairs 
regarding the new window. However, the problem is 
that: are the join results generated from the data 
records arriving at the new time slot indeed 
contained in the answer set regarding the new 
window? Obviously, the answer is “no.” Even that, 
this idea can be practical if we keep more candidate 
join results rather than keeping only the exact top-k 
pairs of records regarding the current window. The 
following Lemma claims how many candidate join 
results needing to be kept, deriving our first 
algorithm named AllTopk. 
Lemma 1: Suppose that for each new time slot t, n 
pairs of records with the highest similarity values, 

regarding the query records and the data records 
arriving at t, are kept in a candidate result set. 
Moreover, the pairs of records, associated with the 
expiring time slot, are deleted from the candidate 
result set whenever the window slides. Then, if n ≥ k, 
the exact top-k join results regarding the current 
window must be contained in the candidate result 
set. 
Proof: Assume that a pair of records, say (q, d) is 
one of the exact top-k join results regarding the 
current window yet not kept in the candidate set, 
where q is a query record and d is a data record 
arriving at the time slot t contained in the current 
window. Since for each new time slot, n pairs of 
records with the highest similarity values, regarding 
the query records and the data records arriving at the 
time slot are kept in the candidate set and n ≥ k, we 
can infer that at least k pairs of records regarding the 
data records arriving at t have the similarity values 
larger than that of (q, d). Here, a contradiction 
occurs. Accordingly, if n ≥ k, the exact top-k join 
results regarding the current window must be 
contained in the candidate set. 
By Lemma 1, we propose the AllTopk algorithm that 
works as follows. For each now time slot t, topk-join 
(Xiao et al., 2009) is applied to find the top-k join 
results regarding the query records and the data 
records arriving at t and the results are kept in a 
candidate set. Moreover, once a time slot expires due 
to window sliding, the join results associated with 
the expiring time slot are deleted from the candidate 
set. By the above steps, the top-k join results 
regarding the current window are always kept in the 
candidate set and can be easily obtained. In Alltopk, 
keeping k pairs of records with the highest similarity 
values, regarding the query records and the data 
records arriving at the new time slot, is needed since 
keeping only n pairs of records, where n < k may 
have a risk of generating the incorrect results. An 
illustration below is used to describe this condition. 
Example 2: As shown in Figure2, let both of m and 
k be 2. If we only find the top-1 pair of records 
between the query records and the data records 
arriving at the new time slot, the candidate set 
related to the window containing t1 and t2 is {(q2, d1), 
(q3, d3)}, which is exactly equal to the corresponding 
answer set. After the window slides to contain t2 and 
t3, (q2, d1) is deleted and (q4, d4) is inserted in the 
candidate set, making the candidate set equal to {(q3, 
d3), (q4, d4)}. Actually, the exact answer set 
mentioned above is equal to {(q4, d4), (q5, d6)} rather 
than {(q3, d3), (q4, d4)}. 
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3.2 The Progressive Parallel 
Comparison (PPP) Algorithm 

Once the continuous query, say a set of query 
records, is registered, we continuously return k pairs 
of records with the highest similarity values, 
regarding the query records and the data records 
contained in the current window. Since the query 
records are fixed and need to continuously compare 
with the newly generated data records, the process 
will be more efficient by parallel comparing a data 
record with all query records at one time. Actually, 
this is the main idea of our second solution to the 
problem of continuous top-k similarity joins, named 
PPP (standing for Progressive Parallel comParison). 
In the following, we first introduce the data structure 
to be used, followed by the pruning strategy, and 
then detail the PPP algorithm. 

3.2.1 Data Structure 

As mentioned, since the query records are fixed once 
registered, we design a data structure consisting of 
counter sequences and a token list to keep the 
information of the query records. An example of the 
data structure is shown in Figure3. Each query 
record is associated with a sequence of counters, 
denoted a counter sequence, which has a dynamic 
size equal to the number of data records contained in 
the current window. Initially, all of the counters are 
set to zero. The kth counter in the counter sequence 
associated with a query record q is used to count the 
number of common tokens between q and the kth 
data record in the current window. On the other hand, 
the token list is a list keeping the tokens of the union 
of the query records. The tokens kept in the token 
list are sorted into an alphabet order. Each token in 
the token list points to the counter sequences whose 
corresponding query records contain the token. For 
example, token A shown in Figure3 points to the 
first and second counter sequences since A is 
contained in both of q1 and q2. 

The links kept in the token list help to quickly 
figure out which query records contain a certain 
token, and through the counters in the counter 
sequences, we can easily get the number of common 
tokens between a query record and a data record and 
then further obtain the corresponding similarity 
value. We assume that each data record is sorted into 
an alphabet order. While the window slides and 
some newly generated data records arrive, each of 
them is processed as follows. We scan the tokens of 
a data record and update the corresponding counters 
in the counter sequences. More specifically, if the 

current token being processed in a data record is 
token A, the counters regarding the data record, 
linked by token A in the token list, are all increased 
by one. Once each token in a data record is 
processed, we can compute the similarity values of 
all pair of records regarding the data record by using 
the counters related to the data record. 
 

 
Figure 3: A data structure to keep the information of query 
records. 

3.2.2 Pruning Strategy 

As mentioned in Subsection 2.1, the concept of 
prefix filtering is used to solve the problem of top-k 
similarity joins (Xiao et al., 2009). In the PPP 
algorithm, our pruning strategy is also based on the 
extension concept of prefix filtering, called extended 
prefix filtering.  
Lemma 2 (Extended Prefix Filtering): Suppose 
that the tokens of two records x and y are each sorted 
into a common order. If sim(x, y) ≥ α, then the 
( )| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and the 

( )| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y must share at least 

(1 + m) tokens, where α ∈ [0, 1] and {0}m Z +∈ ∪ .■ 

Proof: Assume that the 
( )| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and the 

( )| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y share n tokens, 
where n < (1 + m). In the following, it is separated 
into two cases for discussion, including y < a|x| and 
y ≥ a|x|. 
Case 1 (y < a|x|):  

sim(x, y) = Min(| |, | |) | |
Max(| |,| |) | |

x y x y x
x y x y x

α α∩
< < =

∪
 

Case 2 (y ≥ a|x|):  
Let d be the number of common tokens between the 
remainder part of x and that of y. Obviously, d 
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≤ ( )| | | | | | 1x x x mα− − + +⎡ ⎤⎢ ⎥ . 

( )
( )

sim(x, y)

1 1

 =
| | | | | | | |

| | ( | | | | 1 + )

| | | | | | ( | | | | 1 + )

| | | |
| | | | | | 1 | | | | | | 1

x y
x y

n d m d
x y n d x y m d

m x x x m

x y m x x x m

x x
x y x x x x

α

α

α

α α
α α α

∩
=

∪

− −
<

⎡ ⎤⎢ ⎥
⎡ ⎤⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

+ +≤
+ − − + − −

+ − − +
≤

+ − − + − +

= ≤
+ − + + − +

 

We conclude that if n < (1 + m), then sim(x, y) < α, 
which means if sim(x, y) ≥ α, then n ≥ (1 + m). 
Accordingly, we demonstrate that If sim(x, y) ≥ α, 
then the ( )| | | | 1 -prefixx x mα− + +⎡ ⎤⎢ ⎥ of x and 

the ( )| | | | 1 -prefixy y mα− + +⎡ ⎤⎢ ⎥ of y must share at 

least (1 + m) tokens, where α ∈ [0, 1] 
and {0}m Z +∈ ∪ . 

3.2.3 The PPP Algorithm 

In the following discussion, we assume that all of 
the data records are sorted into an alphabet order 
while being generated. Conceptually, the PPP 
algorithm works as follows. When a new data record 
arrives at the current time slot due to window sliding, 
the tokens of the data record will be sequentially 
processed. Notice that, as mentioned above, for each 
query record, there is a counter in its corresponding 
counter sequence, which is related to a certain data 
record contained in the current window. If the token 
being processed is T, the query records containing T 
can be easily found by the link of the token T in the 
token list. Then, the corresponding counters of the 
linked counter sequences are increased by one. After 
finishing the scanning process of a data record, we 
can easily compute all of the similarity values of the 
pairs of records regarding the data record by the 
counter sequences. These pairs of records with 
known similarity values are kept as candidate results 
and then, the top-k pairs of records can be always 
found from them. This is the basic idea of PPP and 
actually, we can apply the extended prefix filtering 
to speed up the algorithm. During the process of 
scanning the tokens of a data record, once we find 
that all of the join results regarding this data record 
have no chances at all to be the Top-k pairs of 
records in the current window, we stop processing 
the remainder tokens of the data record. However, 
when the window slides, since the non-Top-k pairs 
of records may become the Top-k pairs of records, 
we need to resume the stopped scanning process of 
the data records to get their corresponding similarity 
values. In the following, when to stop the scanning 
process of a data record and how to resume the 

stopped scanning process of a data record are 
detailed. 

Let α be a threshold within a range of [0, 1]. 
According to the prefix filtering principle, if 
the ( )| | | | 1 -prefixd dα− +⎡ ⎤⎢ ⎥ of a data record d and a 
query record q do not share any common tokens, 
then processing the remainder tokens from the 
position of ( )| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ in d is not necessary 
since sim(d, q) must be smaller than α. The number 
of ( )| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ for the data record d is 
denoted ISP (standing for Initial Stop Position), 
which means once we find that no tokens are shared 
between the ( )| | | | 1 -prefixd dα− +⎡ ⎤⎢ ⎥ of d and q, sim(d, 
q) must be smaller than α, thus stopping the 
scanning process of d at the position 
of ( )| | | | 1 1d dα− + +⎡ ⎤⎢ ⎥ . Moreover, we define another 
variable, i.e. SP (standing for Stop Position). Initially, 
SP of d is set equally to ISP of d, 
i.e. ( )| | | | 1 1.d dα− + +⎡ ⎤⎢ ⎥ Following the extended 
prefix filtering principle, if the 
( )| | | | 1 -prefixd d mα− + +⎡ ⎤⎢ ⎥ of d and q do not share at 
least (m + 1) common tokens, sim(d, q) must be 
smaller than α. Accordingly, while scanning the 
tokens in d, if q and d have a common token, SP of d 
will be accumulated; this scanning process will stop 
until the current token to be processed is at the 
position of SP of d. 

Algorithm 1: The PPP Algorithm 
Input: W is a set of records contained in the current window. 
Output: the top-k pairs of records regarding the query records and the 

data records contained in W. 
Variable: stopk, ISP(d), P(d), SP(d), and MI(d). 

1. For each record d ∈ W 

2.    ISP(d) = ( )| | | | 1 1d stopk d− + +⎡ ⎤⎢ ⎥  

3.    If d is at the new time slot 
4.       P(d) = 1, MI(d) = 0, and SP(d) = ISP(d) 
5.    Else 
6.       Load the corresponding P and MI of d 
7.    For each un-scanned token t in d 
8.       SP(d) = ISP(d) + MI(d) 
9.       If P(d) ≥ SP(d) 
10.         Store P(d) and MI(d) 
11.         Jump to Line 1 
12.      Else if t is contained in the token list 
13.         Accumulate the counters of the counter sequences 

linked by t  
14.         Update MI(d) using the corresponding counters 
15.   Compute all similarity values of pairs of records regarding d 
16.   Insert these pairs of records regarding d to the candidate set and 

generate the new stopk 
17. Return the top-k pairs of records from the 
   candidate set 
18. After the window slides, generate the new stopk from the 

candidate set

We use an example of a query record q to specify 
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how to apply the extended prefix filtering principle 
to the PPP algorithm as above. In fact, since the 
main idea of PPP is to compare a data record with all 
of the query records at one time, a variable denoted 
MI (standing for Maximum Intersection), is used to 
keep the largest number of the intersection between 
each query record and the scanned prefix of a data 
record d. Then, SP of d is always set to ISP of d plus 
MI of d during the scanning process of d. MI of d 
can be found from the counter sequences. Notice 
that, if SP of d is larger than |d|, we need to process 
each token of d and then compute the similarity 
values of the pairs of records regarding d. On the 
other hand, to resume the stopped scanning process 
of a data record is very easy; we only need to keep 
the position of the token to be processed of a data 
record and its corresponding MI. After resuming the 
scanning process, we continuously scan the tokens 
of a data record d from the position where it stopped; 
this position is denoted P of d. 

Now, the whole process of PPP is detailed as 
follows. Whenever the window slides, each data 
record contained in the current window is 
sequentially processed. If a data record d is new in 
the current window, P of d, i.e. P(d), and MI of d, 
denoted MI(d), are initialized, set to 1 and 0, 
respectively. Moreover, ISP of d, denoted ISP(d), is 
set to ( )| | | | 1 1d stopk d− + +⎡ ⎤⎢ ⎥ , where stopk (playing 
the same role as α discussed above) is a threshold 
within a range of [0, 1], equal to the similarity value 
of the pair of records which is with the kth largest 
similarity value in the candidate set.2 If d is not new 
in the current window, its status including P(d) and 
MI(d) will be restored. Then, we start to scan the 
un-scanned tokens in d and also update P(d) 
according to the position of the current token to be 
processed. If the token being scanned in d is t, the 
corresponding counters in the counter sequences 
linked by t in the token list are increased by one. 
Moreover, MI(d) is also updated to the largest value 
of the corresponding counters. During the scanning 
process, SP(d) is always set to ISP(d) plus MI(d). If 
P(d) ≥  SP(d), then all pairs of records regarding d 
must have similarity values smaller than stopk, thus 
able to be pruned. However, P(d) and MI(d) are kept 
since the pairs of records regarding d may have 
chances becoming the Top-k results in the future due 
to window sliding. Once all tokens in a data record d 
have been scanned, the corresponding similarity 
values are computed and the pairs of records 
regarding d are kept in the candidate set. In this 
                                                       
2In the very beginning, stopk is equal to 0 since there are no 
candidate results kept in the candidate set. 

moment, the new stopk is reassigned using the new 
candidate set. To find the answer set, we only need 
to check the pairs of records kept in the candidate set. 
The pseudo codes of PPP are shown in Algorithm 1. 
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Figure 4(1): After processing β1. 
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Figure 4(2): Porcessing β2 and then stopping at the 
position of 5. 
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Figure 4(3): After processing β3. 
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Figure 4(4): The window slides to contain β2, β3, andβ4. 

Figure 4: A running example of the PPP algorithm. 
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Example 3: Let k be 2. The continuous query 
consists of four query records including α1, α2, α3, 
and α4 with a length equal to 4, 3, 5, and 4, 
respectively. Initially, stopk is set to 0. After 
processing β1, stopk becomes 0.6. The candidate set 
and the corresponding values of β1 are as shown in 
Figure 4(1). In Figure 4(2), since SP(β2) is equal to 5, 
the scanning process stops at the position of K in β2. 
P(β2) is set to 5 for resuming the scanning process of 
β2 in the future. Then, we continue to process β3 as 
shown in Figure 4(3). After processing β3, stopk 
becomes 0.75. Since all data records contained in W 
are went through, the Top-2 pairs of records are 
found from the candidate set. That is, (α3, β3, 1) and 
(α2, β1, 0.75). When the window slides to contain 
β2, β3, andβ4, stopk first becomes 0.29 since β1 is out 
of the window. Then we resume the scanning 
process of β2 from the position of P(β2). 

4 PERFORMANCE EVALUATION 

A series of experiments are performed to compare 
the AllTopk algorithm and the PPP algorithm. The 
experiment setup is described in Subsection 4.1 and 
the experiment results are shown and analyzed in 
Subsection 4.2. 

4.1 Experiment Setup 

In addition to comparing AllTopk and PPP, a naïve 
algorithm is used to be the basis in the experiments. 
How the naïve algorithm works is described as 
follows. To the best of our knowledge, since the 
topk-join algorithm (Xiao et al., 2009) is the 
state-of-the-art solution in the static environment, 
whenever the window slides, we apply topk-join to 
find the results regarding the query records and the 
data records contained in the current window. Naïve, 
AllTopk, and PPP are all implemented in C++ and 
compiled using GCC 4.1.2. Moreover, all 
experiments are performed on a PC with the Intel 
Core2 Quad 2.4 GHz CPU and 2GB memory. 

Following (Xiao et al., 2009), we use DBLP data 
from the DBLP web site to be the test dataset. We 
cache the titles of papers from DBLP and treat a 
paper title as a record. Moreover, paper titles are 
divided into 2-grams and a 2-gram string is regarded 
as a token. The total number of data records kept in 
the dataset is 81790. Notice that, the order 
mentioned in the algorithms follows the alphabet 
order and the priority of uppercase is higher than 
that of lowercase.  

Table 1: The parameters used in the experiments. 

Parameter Default 
value 

Range 

Query Size 150 50~450 
k 100 1~100 

Window Size 2 1~8 
Sliding Size 1 1~8 

Time Slot Size [480, 620] [120, 140] and [480, 620] 
 

All of the experiment parameters are shown in 
Table 1 and detailed as follows. Query Size means 
the number of query records. k means the number of 
results to be reported. Window Size means the 
number of time slots contained in the sliding 
window. Sliding Size means the number of time slots 
in each slide. For example, if Sliding size is 2, two 
time slots are newly contained and another two time 
slots expire whenever the window slides. Moreover, 
to simulate an inconsistent number of data records 
arriving at a time slot, the number of data records at 
a time slot is randomly chosen from a range (e.g. 
[480, 620] in Table 1). This number is denoted Time 
Slot Size. 

4.2 Experiment Results 

The experiment results on varying Query Size, 
including processing time, preprocessing time, and 
memory usage are shown in Figures 5-7. The 
processing time is defined as the total computation 
time of processing the whole dataset. As shown in 
Figure 5, the processing time of each algorithm 
increases with the increasing of Query Size. PPP 
outperforms Naïve and AllTopk. Moreover, since 
only the data records arriving at the current time slot 
need to be processed rather than the data records 
contained in the whole window as in Naïve, AllTopk 
outperforms Naïve. Although preprocess is needed 
in PPP, the corresponding computation cost is quite 
lightweight as shown in Figure 6, which also 
increases with the increasing of Query Size. 
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Figure 5: Relation between Processing time and Query 
size. 
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The memory usage of each algorithm is shown in 
Figure 7. PPP uses more memory space because of 
keeping the token list and the counter sequences for 
the query records. Moreover, since the top-k pairs of 
records, regarding the query records and the data 
records of each time slot in the current window, are 
kept as candidate results, AllTopk uses more 
memory space than Naïve. 
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Figure 6: Relation between Preprocessing time of PPP and 
Query size. 
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Figure 7: Relation between Memory usage and Query size. 

The experiment results on varying k are shown in 
Figure 8. As can been seen, PPP still outperforms 
AllTopk and Naïve in this experiment. The 
experiment results on varying Window Size are 
shown in Figure 9. As shown in Figure 9, the 
processing time of AllTopk is quite stable and seems 
not influenced by Window Size. This is because we 
only concern about the data records arriving at the 
last time slot rather than all of the data records 
contained in the whole window as in Naïve. 
Moreover, although the processing time of PPP 
increases with the increasing of Window Size, the 
increasing degree is lightweight. PPP is more 
efficient than the others in most of the cases. The 
experiment results on varying Sliding size are shown 
in Figure 10. In this experiment, Time Slot Size is 

randomly chosen from a range of [120, 140]. As 
shown in Figure 10, the larger the value of Sliding 
Size is, the longer the processing time of AllTopk 
will be. This is because the number of data records 
to be processed whenever the window slides 
increases with the increasing of Sliding Size. 
Moreover, as Naïve concerns the data records 
contained in the current window, its processing time 
is stable and not influenced by Sliding Size. 
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Figure 8: Relation between Processing time and k. 
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Figure 9: Relation between Processing time and Window 
size. 

0

100

200

300

400

500

1 2 3 4 5 6 7 8
Sliding Size (time slots)

Pr
oc

es
si

ng
 T

im
e 

(s
) Naive AllTopk PPP

 
Figure 10: Relation between Processing time and Sliding 
size. 
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5 CONCLUSIONS 

We make the first attempt to address the problem of 
continuous top-k similarity joins in this paper. We 
also propose two algorithms named AllTopk and 
PPP to solve this problem. The AllTopk algorithm 
computes the top-k pairs of records regarding the 
data records arriving at the last time slot and the 
query records to generate the candidate results. On 
the other hand, in the PPP algorithm, the query 
records are processed in advance to make each data 
record able to be compared with all of the query 
records at one time. The experiment results 
demonstrate that PPP outperforms AllTopk and a 
naïve algorithm. In the near future, we consider 
solving another similar problem in the environment 
of data streams, which takes into account two data 
streams and continuously finds the top-k pairs of 
records from these two data streams. 
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