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Abstract: Decision support queries usually involve accessing enormous amount of data requiring significant retrieval 
time. Faster retrieval of query results can often save precious time for the decision maker. Pre-computation 
of materialised views and sampling are two ways of achieving significant speed up. However, drawing 
random samples for queries on range restricted attributes has two problems: small random samples may 
miss relevant records and drawing larger samples from disk can be inefficient due to the large number of 
disk accesses required. In this paper, we propose an efficient indexing scheme for quickly drawing relevant 
samples for data warehouse queries as well as propose the concepts of database and sample relevancy ratios. 
We describe a method for estimating query results for range restricted queries using this index and 
experimentally evaluate the scheme using a relatively large real dataset. Further, we compute the confidence 
intervals for the estimates to investigate whether the results can be guaranteed to be within the desired level 
of confidence. Our experiments on data from a retail data warehouse show promising results. We also report 
the levels of accuracy achieved for various types of aggregate queries and relate them to the database 
relevancy ratios of the queries. 

1 INTRODUCTION 

Analytical queries containing aggregate functions 
such as sum and average on a data warehouse are 
used to gain a good sense of the business situation 
and to support business decisions. Most often we 
require timely retrieval of query results with an 
acceptable level of accuracy rather than absolute 
precision, and so approximate results within certain 
limits of accuracy will be acceptable to the user. Pre-
computation with materialized views and sampling 
are two ways to handle such queries. However, it is 
impractical to maintain a large number of 
materialized views for all possible combinations of 
information retrieval (Hellerstein et al., 1997). In 
contrast, sampling can provide faster results that are 
accurate within given assured confidence levels. 

The main motivation for use of sampling in 
processing queries on a large database or a data 
warehouse is to save time and resources. Even 
though random sampling is both efficient and 
effective as an approximation method, its use for 
database querying has attracted significant research 

interest only recently (Li et al, 2008); (Joshi and 
Jermaine, 2008); (Jin et al., 2006). Sampling has 
also been shown to be effective for aggregate 
queries (Hellerstein et al., 1997); (Jermaine, 2007; 
(Jin et al., 2006); (Jermaine, 2003); (Bernadino et 
al., 2002); (Speigel and Polyzotis, 2009; Jermaine et 
al., 2004). As sampling data may not be fully 
representative of the entire data in a data warehouse, 
it is desirable to return both the query result and the 
confidence intervals that indicate the reliability of 
the results (Li et al, 2008).  

A significant problem with random sampling for 
database queries from a database on stored disk is 
that picking records at random requires almost the 
same amount of I/O as processing the query over the 
whole database (Olken and Rotem, 1990). To keep 
down the cost of sampling based query processing, a 
more efficient method of drawing samples is needed. 
Another problem is that a random sample drawn 
from a very large dataset may not contain relevant 
records that satisfy the range restrictions of a given 
query. To deal with this problem, we require a 
sampling scheme that will include in the sample 
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records satisfying the query predicates.  
Joshi and Jermaine (2008) introduced the ACE 

Tree which is a binary tree index structure for 
efficiently drawing samples for processing database 
queries. They demonstrated the effectiveness of this 
structure for single and two attribute database 
queries, but did not deal with multi-attribute 
aggregate queries. For extending the ACE Tree to k 
key attributes, Joshi and Jermaine proposed binary 
splitting of one attribute range after another at 
consecutive levels of the binary tree starting from 
the root; from level k+1, the process is repeated with 
each attribute in the same sequence as before. This 
process could lead to an index tree of very large 
height for a data warehouse even if only a relatively 
small number of attributes are considered. 

Li et al. (2008) proposed a sampling cube 
framework for answering analytical queries on a 
data warehouse which calculates confidence 
intervals for any multidimensional query. The 
sampling cube is constructed from a random sample 
of the data warehouse. After building the sampling 
cube, there is no further access to the original data 
records should a query require a different sample 
from the one already drawn. If a query has too few 
sample records in the sampling cube, they expand 
the query to gather more sample records from the 
sampling cube itself in an attempt to improve the 
quality of the query result. 

In this paper, we propose the k-MDI Tree which 
extends the ACE Tree structure to deal with multi-
dimensional data warehouse queries. Unlike the 
ACE Tree, the k-MDI tree allows non-binary splits 
of data ranges for key values that do not split evenly 
into 2n distinct ranges. The number of levels in the k-
MDI tree can be limited to the number of key 
attributes. The shallow tree structure resulting from 
multi-way branching also facilitates quicker retrieval 
of leaf nodes from disk storage. Unlike the sampling 
cube of Li et al. (2008), new samples that contain 
relevant records are drawn for each query. These 
records can be considered as drawn from a subset of 
the data warehouse that satisfies the query 
predicates. In estimating the query results, we take 
into account the proportion of relevant records for 
the query in the whole data warehouse. The 
sampling and estimation methods are evaluated 
experimentally using a real life data set.   

The rest of the paper is organized as follows:  In 
Section 2, we define some relevant terms and briefly 
describe the ACE Tree structure. In Section 3, our k-
way multi-dimensional (k-MDI) indexing structure 
is described in detail. We also introduce the concept 
of relevancy ratios, both for the database and a 

specific sample. Section 4 reports the experimental 
results that evaluate the efficacy of our scheme. 
Section 5 is the conclusion of the paper. 

2 TERMS, DEFINITIONS AND 
ACE TREE STRUCTURE 

In this section, we define some terms pertaining to 
data warehousing, define confidence interval and 
then review briefly the ACE Tree structure (Joshi 
and Jermaine, 2008) that has preceded the k-MDI 
tree we propose in Section 3.  

2.1 Dimensions and Measure 

To support decision support queries, data is usually 
structured in large databases called data warehouses. 
Typically, data warehouses are relational databases 
with a large table in the middle called the fact table 
connected to other tables called dimensions. For 
example, consider the fact table Sales shown as 
Table 1. A dimension table Store linked to StoreNo 
in this fact table will contain more information on 
each of the stores such as store name, location, state, 
and country (Kimball and Moss, 2002). Other 
dimension tables could exist for items and date. The 
remaining attributes like quantity and amount are 
typically, but not necessarily, numerical and are 
termed measures. A typical decision support query 
aggregates a measure using functions such as Sum(), 
Avg() or Count().  The fact table Sales along with all 
its dimension tables form a star schema. 

Table 1: Fact table Sales. 

  
SALES 

  

Store
No 

Date Item Quantity Amount 

  21 12-Jan-11 iPad     223 123,455 
  21 12-Jan-11 PC       20   24,800 
  24 11-Jan-11 iMac       11     9,990 
  77 25-Jan-11 PC       10   12,600 

 
In decision support queries a measure is of 

interest for calculation of averages, totals and 
counts. For example, a sales manager may like to 
know the total sales quantity and amount for certain 
item(s) in a certain period of time for a particular 
store or even all (or some) stores in a region. This 
may then allow her to make decisions to order more 
or less stocks as appropriate at a point in time. 
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2.2 Confidence Interval 

When estimating with samples we indicate the 
reliability of the estimate by its confidence interval. 
Consider a sample of records x with the mean of the 
sample denoted by ̅ݔ, and the size of the sample n. 
For a desired confidence level (e.g. 95%) the 
confidence interval estimator of the population mean µ is given by: ̅ݔ – tα/2	 ௦√୬	 ,   ̅ݔ + tα/2	 ௦√୬ 

where tα/2	 is the critical t-value and s the standard 
deviation of the sample (Keller, 2009). 

2.3 ACE Tree Structure 

The ACE Tree is a balanced binary tree where the 
leaf nodes contain the randomized samples of key 
values and the internal nodes above them are the 
index nodes. Each internal node contains a range R 
of key values, a key value k that splits R into left and 
right sub-trees, pointers to the left and right branch 
(child) nodes, and counts of database records falling 
in the left and right sub-trees. Figure 1 shows the 
structure of an example ACE Tree. The root node I1,1 
with its range I1,1.R labeled as [0-64] signifies the 
key value range of the whole data set. The key of the 
root node partitions the range I1,1.R into I2,1.R = [0-
32] and I2,2.R = [33-64]. This partitioning of ranges 
is propagated down the tree among the descendants 
of respective nodes. The ranges associated with a 
section of a leaf node are determined by the ranges 
associated with each internal node on the path from 
the root node to the leaf. If we look at the path from 
I1,1 i.e. the root node down to the leaf node L4, we 
come across the following ranges 0-64, 0-32 and 17-
24. A leaf node is partitioned into sections (S1, S2, 
…), their number depending on the number of 
dimensions indexed.  Thus, the first section L4.S1 has 
a random sample of records in the range 0-64; L4.S2 
has them in the range 0-32; L4.S3 in the range 17-32 
and L4.S4 in the range 25-32. The size of each leaf is 
chosen as the number of records that can be stored in 
a disk block and so the number of leaf nodes 
depends on the size of the database which also 
determines the height of the index tree itself.  

2.4 Sampling for a Query using the 
ACE Tree 

Referring to Figure 1, consider a query Q with a 
range of [28-38]. The query execution algorithm 
proceeds by traversing down I1,1, the root node. Both 
I2,1.R  and I2,2.R overlaps with Q.  

 
Figure 1:  Structure of the ACE Tree. 

A level down from I2,1, only I3,2.R, overlaps with 
Q. Traversing down to the leaf nodes, the algorithm 
finds the right leaf node’s range [25-32] overlaps 
with Q and so retrieves records from L4. The 
relevant records in the query’s range are returned for 
the sample which includes record 28 from L4.S2, 
record 30 from L4.S3 and records 29 and 31 from 
L4.S4. Next, the algorithm traverses down the right 
node I2,2 below the root to the leaf node L5 and 
retrieves all relevant records from all sections of L5 
to the pool of sample records. 

2.5 Extended ACE Tree for Multiple 
Dimensions 

Joshi and Jermaine (2008) proposed extending the 
ACE Tree from a single dimension to multiple 
dimensions as follows: Given key attributes 
(dimensions), a1, ..., ak, split the range of values for 
a1 into two sub trees of approximately equal number 
of keys below the root (level 1); for each node at 
level 2, similarly perform a binary split of the range 
of key values for a2 and so on up to level k for 
attribute ak. Then at level k+1, split the attribute 
values of a1 again followed by a2, etc. at further 
lower levels.  

In real life data, a dimension’s values may not 
split evenly into 2n distinct ranges. For example, if a 
dimension has an odd number of key values, say - 
k1, k2 and k3, with cardinalities of 30000 each; then, 
we cannot split them evenly into 2 distinct ranges 
but we can do so into 3. The height of the tree will 
be very large even for a moderate sized data 
warehouse with a relatively small number of 
dimensions. 
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3 MULTIDIMENSIONAL 
INDEXING 

We propose the k-MDI tree which extends the ACE 
Tree index for multiple dimensions while 
overcoming the limitations of the ACE Tree 
discussed in Section 2.5. The height of the k-MDI 
tree is limited to the number of key attributes. As a 
multi-way tree index, it is relatively shallow even for 
a large number of key value ranges and so requires 
only a small number of disk accesses to traverse 
from the root to the leaf nodes. 

3.1 k-ary Multidimensional Index 
(k-MDI) 

The k-ary multi-dimensional index tree (k-MDI tree) 
is a k-ary balanced tree as described below: 

1. The root node of a k-MDI tree corresponds to the 
first attribute (dimension) in the index. 
2. The root points to k1 (k1 ≤ k) index nodes at level 
2, with each node corresponding to one of the k1 
splits of the ranges for attribute a1. 
3. Each of the nodes at level 2, in turn, points to up 
to k2 (k2 ≤ k) index nodes at level 3 corresponding to 
k2 splits of the ranges of values of attribute a2; 
similarly for nodes at levels 3 to h, corresponding to 
attributes a3,..., ah. 
4. At level h, each of up to kh-1 nodes points to up to 
kh (kh ≤ k) leaf nodes that store data records. 
5. Each leaf node has h+1 sections; for sections 1 to 
h, each section i contains random subset of records 
in the key range of the node i in the path from the 
root to the level h above the leaf; section h+1 
contains a random subset of records with keys in the 
specific range for the given leaf. 
Thus, the dataset is divided into a maximum of kh 
leaf nodes with each leaf node, in turn, consisting of 
h+1 sections and each section containing a random 
subset of records. The total number of leaf nodes 
depends on the total number of records in the dataset 
and the size of a leaf node (which may be chosen as 
equal to the disk block size or another suitable size). 
More details on leaf nodes and sections are given in 
Section 3.3. In real data sets, the number of range 
splits at different nodes of a given level i need not be 
the same. For convenience, the number of splits at 
all levels are kept as k in Figure 2 that shows the 
structure of the general scheme for k-MDI multilevel 
index tree of attributes A1, A2, …, Ah with k ranges 
(R11, R12, …, R1k), (R21, R22, …, R2k ), … (Rh1, Rh2, …, 
Rhk) respectively at levels (1, …,h).  

An example of the k-MDI tree is shown in Figure 
3 from a store chain dataset with three dimensions – 
store, date sold and item number. The number of 
range splits and hence branches from non-leaf nodes 
vary between 2 and 4 in this example.  

3.2 Leaf Nodes 

Similar to the ACE tree structure, the lowest level 
nodes of a k-MDI tree point to leaf nodes containing 
data records. The data records are stored in h+1 
sections, where h is the height of the tree. Section S1 
of every leaf node is drawn from the entire database 
with no range restriction on the attribute values. 
Each section Si (2 ≤ i ≤ h+1) in a leaf node L is 
restricted on the range of key values by the same 
restrictions that apply to the corresponding sub-path 
along the path from the root to L. Thus for section 
S2, the restrictions are the same as on the branch to 
the node at level 2 along the path from the root to L 
and so on.  

Figure 3 shows an example leaf node projected 
from the sample k-MDI tree. The sections are 
indicated above the node with attribute ranges for 
each section below the node. The circled numbers in 
each section indicate record numbers that are 
randomly placed in the section. The range 
restrictions on the records are indicated below each 
section, where the first section S1 has records drawn 
from the entire range of the database. Thus, it can 
contain records uniformly sampled from the whole 
dataset.  The next section S2 has restriction on the 
first dimension viz. store (for leaf node L7 this range 
is store numbers 1-16).  The third section S3 has 
restrictions on both first and second dimensions viz. 
store and date.  While the last section S4 has 
restrictions on all the three dimensions – store, date 
and item. 

The scheme for selection of records into various 
leaf nodes and sections is explained in detail in the 
following section.  

3.3 Building the k-MDI Tree 

The purpose of the k-MDI tree is to quickly retrieve 
relevant random samples of records for processing 
data warehouse queries. The records in the sample 
are obtained from leaf nodes by traversing the index 
from the root. The k-MDI Tree is built in the 
following three steps:  
1. First, the dataset records are sorted by the first 
key attribute a1 as the major field, followed by the 
second attribute a2 and so on until the last attribute 
ah.  
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2. The next step is to find the split points of key 
attribute values in the index tree at the levels 1 to h 
so that the number of records of the dataset that fall 
under each sub-tree rooted at levels 2 to h is 
approximately equal. The k1-1 split points at level 1 
are chosen such that the total number of records in 
the dataset are split into k1 approximately equal 
parts; the records falling under each of the nodes at 
level 2 are split into k2 approximately equal parts, 
and so on until the records falling under each of the 
nodes at level h split into kh approximately equal 
parts. The number of splits at all the levels in the 
index should be such that the number of leaf nodes 
are equal to a pre-computed number based on the 
total number of records in the dataset and the size of 
each leaf node (which could be chosen as the disk 
block size as in the case of the ACE Tree or some 
other suitable size).  
3. Next, a random number between 1 and h+1 is 
assigned to each data record as its section number. 
Depending on the section number and its composite 
key value, the record is assigned to a leaf node as 
follows: If the section number is 1, the record is 
assigned randomly to any one of the leaf nodes in 
the tree; if the section number is i (2≤i≤h), starting 
from the root of the index tree, we locate the root of 
a sub-tree at level i in which the key of the record 
falls and assign the record randomly to section i of 
any of the leaf nodes in that sub-tree;  
if the record’s section number is h+1, it is assigned 
to the specific leaf node where the record’s key 
value belongs. When all the records have been thus 
assigned section and leaf node numbers, the dataset 
is re-organised with records sorted according to their 

leaf node and section numbers. 

3.4 Using the k-MDI Tree for Data 
Warehouse Queries 

By using a k-MDI tree index, we can draw stratified 
samples for data warehousing queries from restricted 
ranges of key values. In this section, we first 
introduce two measures that are useful for the 
estimation of query results using such samples. The 
database relevancy ratio (DRR) of a query Q, 
denoted by ρ(Q) is the ratio of the number of records 
in a dataset D that satisfies the query conditions to 
the total number of records in D.  For a query with 
no condition, ρ(Q) is 1. Similarly, the sample 
relevancy ratio (SRR) of a query Q for a sample set 
S, denoted by ρ(Q, S) is defined as the ratio of the 
number of records in S that satisfy a given query Q 
to the total number of records in S. 

In a true random sample of records, the SRR for 
a query Q is expected to be equal to its DRR, i.e., 
E(ρ(Q, S) ) = ρ(Q).  A sample with ρ(Q, S) > ρ(Q) is 
likely to give a better estimate of the mean than a 
true random sample. However, for the sum of a 
column, the sample needs to be representative of the 
population, i.e., ρ(Q, S) should be close to ρ(Q). 

Consider the following formula for estimating 
the sum (Berenson and Levine, 1992): ܶ = ̂ܰ തܺ , 
where N is the cardinality of the population, ̂ the 
estimated proportion of records satisfying the query 
conditions and തܺ the mean of records in the sample 
satisfying the query condition.  In order to estimate 
the mean we can use all relevant sampled records 
from all sections of the retrieved leaf nodes, but to 
estimate the sum we can use sampled records

 
Figure 2: General structure of the k-MDI tree – A1, A2, …, Ah are h attributes and Rij the i-th attribute’s j-th range high 
water mark (HWM). 
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only from section S1, which is the only section with 
records drawn randomly from the entire dataset. For 
estimating the sum for a query with conditions on 
some of the indexed dimensions we use appropriate 
sections of the retrieved leaf nodes to get a better 
estimate of the mean; the records from section S1 are 
also used to get a fair estimation of the proportion 
records that satisfy the query conditions.  

3.5 Effect of Sectioning on Relevancy 
Ratio 

As discussed earlier, sections S1 to Sh+1 of each leaf 
node contain random collections of records with the 
difference that S1 contains records from the entire 
dataset while other sections contain random records 
from restricted ranges of the key attributes. Consider 
a query with the same range restrictions on all three 
dimensions (store, date and item) as section L7.S4 in 
Figure 3. We are then likely to get more relevant 
records in the sample from the second section L7.S2 
than from S1 since records of S2 have restrictions on 
the first dimension of store that matches the query 
condition. Records in S3 will have restrictions on 
both store and date dimensions that match that of the 
query and so are likely to contain more relevant 
records than in S2. All records in section L7.S4 will 
satisfy the query since the range restrictions on S4 
exactly match the query. Mathematically, for a query 
Q having restrictions as mentioned above: 

ρ(Q) = E(ρ(Q, L7.S1)) ≤ E(ρ(Q, L7.S2)) 

≤ E(ρ(Q, L7.S3)) ≤ E(ρ(Q, L7.S4)) 

Using this property of the k-MDI tree, it is possible 
to quickly increase the size of a sample that is too 
small, by including more records from other sections 
of the retrieved leaf nodes. 

3.6 Record Retrieval to Process a 
Query  

The objective of using the k-MDI tree is to retrieve a 
significant number of relevant records (i.e. records 
that satisfy the query conditions) in the sample 
drawn for processing a given query. The query 
conditions may span sections of one or more leaf 
nodes which can be reached from index nodes that 
straddle more than one range of attribute values. 
These leaf nodes can be accessed by traversing the 
tree from the root using the attribute value ranges in 
the query conditions and sections from multiple leaf 
nodes can be combined to form the sample. 

We describe the retrieval process using an 
example query on the sample database of Figure 4. 

Consider a query Q0 about sales in store 12 for date 
range 1-13 and item range 12M-20M.  The retrieval 
algorithm finds the sections of leaf nodes for this 
query as follows: 
1. Search index level 1 to locate the relevant store 
range. Store 12 is in the left most range of 1-16. 
2. Traverse down to index level 2 (date), indicated 
by a dashed arrow in Figure 4, along the first store 
range. Since there is a condition on date (1-13), 
compare the HWMs (high water marks) of the three 
ranges and find that it fits into two date ranges viz. 
the first and the second. Make a note of these date 
ranges. 
3. Traverse down using the first date range to the 
next index level which has item ranges.  Since there 
is a condition on item numbers (12M-20M), 
compare this range with HWMs and find that it fits 
into two ranges viz. the third and the fourth.  Make a 
note of these item ranges. 
4. Traverse down using the third item range to 
relevant leaf pages and make a note of them.   
5. Iterate step 4, except this time using the fourth 
item range. 
6. Next, repeat the above three steps i.e. steps 3 
through 5; but this time using the second date range 
instead. 
7. Now retrieve records from the relevant sections 
in the four leaf nodes (viz. L3, L4, L7 and L8) to form 
a sample for the given query. 

3.7 Estimating Query Results from 
Samples 

In decision support queries on large databases, the 
most common estimation performed is either of the 
mean or the sum of a column measure (Jin et al., 
2006). We maintain a table representing a histogram 
of record counts for each leaf node and its sections. 
It is used to estimate the number the leaf nodes 
required to have adequate number of samples. The 
following steps outline our method of estimating the 
mean, sum, standard deviation and the confidence 
intervals: 
1. Draw a sample set L of leaf nodes as described in 
Section 3.6 for the given sampling rate.   
2. The following parameters are computed: 

a. Sample size – n 
b. Count of sampled records satisfying the 
query condition – m 
c. Count of records in all sampled S1 sections of L 
– n′ 
d. Count of  records in all sampled S1 sections of 
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Figure 3: A leaf node (changes in range values for attributes are indicated in bold). 

 
Figure 4: Navigation down index tree nodes for conditions on three dimensions. 
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3. Estimating the sum, average, variance and C.I. 
limits (Chaudhuri and Mukherjee, 1985):  

a. Estimate of the number of records M that 
satisfy the query condition in the population 
(given the cardinality of the dataset N) 

ܯ  =  

b. Estimate of Average 		̅ݔ   =  
c. Estimate of Sum   ܶ =  ݔ̅ܯ
d. Estimate of variance of Average  v(ݔത) 

 
e. Confidence interval lower limit 

 
f. Confidence interval upper limit 

 

4 EXPERIMENTAL RESULTS 

To evaluate the effectiveness of our sampling 
technique based on the k-MDI tree, we performed 
experiments on real life supermarket retail sales data 
(TUN, 2011) for a month from 150 outlets.  The data 
warehouse is structured as a star schema shown in 
Figure 5, with the fact table (itemscan) consisting of 
over 21 million rows and three dimension tables viz. 
storeInfo, itemDesc and storeMemberVisits. TPC-H 
queries (TPC Benchmarks, 2011) with suitable 
modifications for this sample data warehouse were 
used in the experiments.  Most of the TPC-H queries 
involve SQL aggregate functions of sum(), avg() or 
count(). A few include min() and max() which are 
not easily calculated by sampling (Joshi, 2008; 
Hellerstein et al., 1997). So, we investigated only 
sum, avg and count in our experiments. The index 
tree structure was simulated using the Oracle 
DBMS. We clustered the fact table on leaf and 
section number to maintain the records in that 
sequence. This organisation supported the 
simulation of both the storage and retrieval of 
records for the experiments. 

A set of three queries were used containing the 
SQL functions – avg(), sum(), count() with varying 
database relevancy ratios (DRR). The queries were 
of the form: 

Select  Avg(totscanAmt), Sum(totscanAmt),  
  Count(*) 

  From  itemscan, storeinfo, itemdesc 

  Where  storeno between s1 and s2 

 And itemscan.storeno=storeinfo.storeno   

 And itemscan.itemno=itemdesc.itemno   

And datesold between d1 and d2 

And itemno between i1 and i2; 
 

The DDR value was set high or low for the queries 
by choosing a given proportion of the dimension 
range for the query. For example, assuming a 
uniform distribution of values for a dimension in the 
database, we can get a DRR of approximately 0.33 
on a single dimension query, by picking a third of 
the dimension range. However, in practice we 
empirically varied the dimension ranges in the 
queries to get the desired DRR values. 

The first test query had a condition on a single 
dimension and a high DRR value of 0.37; the second 
query had a lower DRR (0.05) with conditions on 
two dimensions; and the third query had a very low 
DRR (0.002) with conditions on all three 
dimensions. The relevance of DRR in estimating the 
query results may be seen from the query result 
estimation process of Section 3.7. In step 3a, the 
count ܯ  directly depends upon the DRR, which is 
the statistical proportion p whose estimate is given 
by ᇲିᇲି . In step 3c, the estimation of sum depends 
on the count ܯ  and thereby on p.  

We conducted the experiments using several 
random samples at sampling rates of (1% - 12%) and 
the results were averaged for each sampling rate.  
The error for the three aggregate functions viz. avg, 
sum and count were computed as the absolute value 
of the difference between estimated and actual 
values for the whole database. Figure 6 shows the 
results with error rates for both average (mean) of 
totscanamt column, sum of totscanamt and count for 
the different database relevancy ratios mentioned 
above. 

There are two graphs for each level of DRR. 
Figure 6a shows the error rates for the average, the 
sum of scan amount and count for high DRR. Figure 
6b shows the confidence intervals (lower and upper 
limits) for the average amount for high DRR. Figure 
6b also shows the estimated and actual values of the 
average scan amount. Figures 6c and 6d show 
similar information as above for the low value of 
DRR; Figures 6e and 6f show similar information 
for very low DRR. 

It is seen that for the high DRR query with ρ(Q1) 
= 0.37, the error rates for the count, average and the 
sum of the total scan amount stabilize as the 
sampling rate is increased. The estimates are close
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Figure 5: The schema for experimental retail sales data warehouse. 

to the actual values for the lowest to the highest 
sampling rates used and the true value of average is 
always within the estimated confidence interval. For 
the medium DRR query with ρ(Q1) = 0.05, we still 
get error rates below the normally acceptable rate of 
5%. For query with very low DRR of ρ(Q1) = 0.002, 
the error rates for the average scan amount, for all 
but 1% sampling rate, are below 5% and the true 
values within the C.I. limits. But the error rates for 
the estimated sum of scan amount and count of 
records are not below the acceptable limit at any 
sampling rate used for the very low DRR query. 
Thus, we cannot satisfactorily estimate the sum and 
the count for low values of DRR, while for medium 
to high values of DRR the estimations of both the 
sum and average are within acceptable error limits. 
Also, it’s observed from the graphs that there is an 
apparent close correlation between the estimates of 
sum and count. 
Time Improvement – Figure 7 shows the average 
time for processing the queries at various sampling 
rates and also the average time for processing these 
queries on the full database. It is seen that there is a 
significant time improvement from using the 
sampling scheme. 

5 CONCLUSIONS 

In this paper, we proposed the k-MDI tree 
indexwhich can be used to draw samples quickly for 

answering multi-dimensional aggregate queries from 
a data warehouse. The k-MDI tree extends the ACE 
binary tree as a multi-way tree index. The maximum 
number of levels of the k-MDI index is limited to the 
number of key attributes and so makes the access to 
the leaf nodes much quicker compared to a binary 
tree index on external storage. 

We also proposed the concepts of database 
relevancy ratio (DRR) and sample relevancy ratio 
(SRR) for queries. We investigated the effect of the 
DRR on the accuracy of query results estimated 
from samples drawn using the k-MDI index. From 
the experimental evaluation of the sampling scheme 
on a large real dataset, it is found that even at 
relatively low sampling rates of 1% to 12 %, query 
results can be estimated accurately with a minimum 
of 95% confidence for queries with medium to high 
DRR. At a very low DRR of 0.002, the estimated 
values of sum and count fell outside the acceptable 
confidence level of 95%, but the estimated mean 
was within the 95% confidence interval even at very 
low DRR. Depending on the sampling rate, the 
sampling based query processing was on average 9 
to 30 times faster than processing the same queries 
against the whole dataset.  

As future work, it is proposed to develop a 
generic tool that can be used with some parameter 
inputs to set up the k-MDI tree index for any data 
warehouse schema. We also plan to further evaluate 
the sampling based estimation scheme on data 
warehouses with larger dimensions. 

ITEMSCAN 
 

storeno 
datesold 
itemno 
visitno 
qty 
totalScanAmt 
unitcost 
unitprice 

 

21,421,663 

ITEMDESC 
 
itemno                          
categoryno             
subcategoryno     
 primarydesc            
 secondarydesc      
 colour                        
 sizedesc                      
 statuscode               
  :                   

19,825 

STOREINFO 
  

storeno         
 storename   
 regionno      
 districtno     
 storetype     
 address        
   : 
 

150 

STOREMEMBERVISTS 
 
 memberno           
 visitno                
 storeno 
 memberstatuscode             
   : 
      

218,872 
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(a) Error rates for query with condition on one dimension (high 
relevancy ratio). 

(b) Confidence interval (AVG amt) for query with condition on 
one dimension (high DRR). 

 
(c) Error rates for query with condition on two dimensions 
(medium relevancy ratio). 

(d) Confidence interval (AVG amt) for query with condition on 
two dimensions (medium DRR). 

 
(e) Error rates for query with condition on three dimensions (low 
relevancy ratio). 

(f) Confidence interval for query with condition on three 
dimensions (low DRR). 

Figure 6: Error rates of average scan amount and sum of scan amount and confidence interval of average scan amount at 
various sampling rates for high, medium and low relevancy ratios. 
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Figure 7: Query times at different sampling rates as 
compared to full database scan. 
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