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Tilo Zemke1, José Ignacio Fernández-Villamor2 and Carlos Á. Iglesias2
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Abstract: Nowadays, developers of web application mashups face a sheer overwhelming variety and pluralism of web
services. Therefore, choosing appropriate web services to achieve specific goals requires a certain amount of
knowledge as well as expertise. In order to support users in choosing appropriate web services it is not only
important to match their search criteria to a dataset of possible choices but also to rank the results according
to their relevance, thus minimizing the time it takes for taking such a choice. Therefore, we investigated six
ranking approaches in an empirical manner and compared them to each other. Moreover, we have had a look
on how one can combine those ranking algorithms linearly in order to maximize the quality of their outputs.

1 INTRODUCTION

Over the past years, the number of web services
that offer an API to access their functionalities
has risen rapidly. As of February 2012, Pro-
grammableWeb.com1 as one of the most important
directories for APIs holds over 5,000 APIs in its
database. This sheer overwhelming plurality of
web services that are available to the community of
mashup creators does not only provide a huge amount
of possibilities to mash up the World Wide Web but
also requires a certain level of expertise when one
wants to create a mashup. Therefore, choosing ap-
propriate web services to accomplish a specific goal
can still be a time-consuming task scaring off poten-
tial developers that are not that experienced in mashup
creation.

In order to overcome this issue, there are different
approaches pursued by current research. Typically,
a user request gets semantically matched against a
web service’s description and a ranking is produced
by providing a list of web services descending in sim-
ilarity scores. Other approaches employ mechanisms
of crowd computing, such as tagging web service de-
scriptions, for example.

Focusing on how to bring order in the variety of
web services, we investigated six simple ranking ap-
proaches, that work independently from a user re-
quest, and analysed them by means of the quality of

1http://www.programmableweb.com

their outputs. Furthermore, we investigated the possi-
bility of linearly combining them to compound rank-
ing functions that provide quality enhancements.

The rest of this paper is structured as follows:
First, we give a brief introduction on the the model
we employed for our rankings in section 2, followed
by the details of the implemented ranking functions as
well as our approach to combine them. Afterwards,
the methodology used for evaluating and comparing
the implemented ranking functions and their respec-
tive outputs is described in section 3. Section 4 sum-
marizes the related work and finally, conclusions of
our work are drawn in section 5 along with a glimpse
on the future work.

2 RANKING MODEL

A metadirectory consisting of web services, mashups
as well as widgets served as the starting point for our
work. This metadirectory makes use of the Linked
Mashups Ontology (LiMOn) (José I. Fernández-
Villamor and Tilo Zemke and Carlos Á. Iglesias,
2012), a unified model for those components, which
integrates information that are available from cur-
rent repositories in the web and covers trust, business
as well as technical aspects. Formalizing this, our
dataset consists of a set of web services S and a set
of mashups M .

In order to support a developer in choosing the
right web services a two-step-methodology was used:
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� First, we filtered S for potential component can-
didates using her query. This filtering provides a
subset of S called Squery.

� Afterwards, a ranking function f 2F is applied on
Squery and returns a specific permutation of Squery,
i.e. a ranking of the web services si 2 Squery, by
assigning each service si a ranking score ri.

Focusing on the ranking part, the filtering was done
by selecting only web services from the metadirectory
whose names, textual descriptions and/or tags con-
tained a specific search term. Hence, for example,
the subset Simage contains all web services that have
the term ”image” in their respective names, textual
descriptions and/or tags.

Our goal was to find indicators for a web service’s
relevance and therefore, six different simple rank-
ing function were chosen and implemented, namely
four different types of centrality and two indicators
of social activity. Dealing with centralities, we de-
fined an undirected and bipartite graph G = (V;E)
letting the set of vertices V = S [ M be the union
of the set of web services and the set of mashups in
our dataset. The set of edges was defined as E =
f(s;m) j Mashup m uses service s:g using the prop-
erty uses of LiMOn. Figure 1 illustrates the structure
of this graph.

Figure 1: Illustration of the Mashup API Graph.

2.1 Simple Ranking Functions

In particular, the following ranking functions have
been investigated:

� CD: Degree Centrality, i.e. in our scenario the
number of mashups that use a certain web service,
which directly reflects its popularity.

� CB: Betweenness Centrality is a more complex ap-
proach that considers the number of shortest paths
between two vertices v 6= u a web service s lies
on. This metric is an important technique in so-
cial network analysis and can be determined with
the help of Brandes’ algorithm (Brandes, 2001).

� CC: Closeness Centrality: A vertex v is ranked
higher the shorter the geodesic distances between
itself and other vertices are, i.e. the closer it is to

other vertices. Closeness centrality is also an im-
portant technique in social network analysis and
can be determined with the help of Brandes’ al-
gorithm as well - even as a side product of calcu-
lating CB. In order to be working with our graph
structure we implemented it with a modification
(Opsahl et al., 2010) proposed.

� CE : Eigenvector Centrality is a very established
and successful approach to rank documents in
other domains, e.g. PageRank (Page et al., 1998)
for web resources. The central idea behind it is
that a web service gets ranked higher the more im-
portant the mashups are that use it and vice versa.

� PUR: The score ranging from 0 to 5 each web
service has on Programmable Web’s user rating
functionality which measures the degree of satis-
faction the users had when working with a specific
API.

� GSO: The amount of hits the Google Search En-
gine2 returned querying it for the web service’s
name and limiting the results to the domain of
StackOverflow3, a question-and-answer website
specialized on programming topics, is an indica-
tor of how widespread a web service is among de-
velopers. ”Twitter site:stackoverflow.com” could
serve as an example for such a search engine
query.

2.2 Compound Ranking Functions

In addition to the mentioned simple functions, we in-
vestigated on how one could combine them linearly
in order to create a new, compound ranking function,
which can result in a different permutation of Squery.
Such a linear combination F can be described as in
equation 1.

F (Squery) = å
f2F

li f (Squery) (1)

The following example will illustrate the idea behind
this: Having three web services in our subset, sA, sB
and sC, as well as two simple ranking functions, f1
and f2 which produce the following ranking scores ri:

� Function f1 ranks service sA as the most relevant
one with a score of rA = 10, sB in second place
scoring rB = 5 and sC in third place with a score
of rC = 1.

� Function f2 places sB (rB = 8) first, sC (rC = 3)
second and sA last with a score of rA = 1.

2http://www.google.com
3http://www.stackoverflow.com
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In order to create a new ranking, we can now combine
f1 with f2 using l1 = l2 = 0:5. The resulting ranking
of our linear combination F would be the following:

� Service sB scores 0:5�8+0:5�5 = 6:5

� Service sA scores 0:5�10+0:5�1 = 5:5

� Service sC scores 0:5�1+0:5�3 = 2:0

Table 1: Illustration of the example scenario for a linear
combination of ranking functions (l1 = l2 = 0:5).

Pos f1 (ri) f2 (ri) F (ri)
1 sA (10) sB (8) sB (6.5)
2 sB (5) sC (3) sA (5.5)
3 sC (1) sA (1) sC (2)

3 EVALUATION AND RESULTS

The metadirectory contains over 10,000 web services
and 7,000 mashups after crawling ProgrammableWeb
and Yahoo Pipes4 in July 2011.

Adapting the methodology of relevance judge-
ments (Küster and König-Ries, 2009), a group of
three relevance judges, i.e. experienced mashup de-
velopers, was formed. Moreover, three different sub-
sets of our dataset’s web services, i.e. Stwitter, Svoice
and Simage containing 32, 19 and 18 web services re-
spectively, were chosen. First of all, each relevance
judge had to individually rate each web service ac-
cording to three different criteria, functional scope,
technical variety and support as well as trust in the
service and its provider. In a second step, the rele-
vance judges met and conflicts, that occurred when
two or more judges did not give the same rating on
a certain criterium for a specific web service, were
discussed until all judges agreed on a uniform rating.
Using this uniform rating to produce gain quantifica-
tions Gi, which reflect the relevance, for each web ser-
vice si, the Normalized Discounted Cumulated Gain
(nDCGi) (Järvelin and Kekäläinen, 2002) metric has
been applied to each simple ranking function. The
nDCGi metric is based on DCGi which is defined as
follows in our scenario:

DCGi =

(
Gi; i = 1
DCGi�1 +Gi=log2(i); otherwise

(2)

The higher the position of web services with high gain
quantifications are in a specific ranking, the better the
evaluational score of the ranking itself. This leads to
a very intuitive sight on the quality of the rankings
produced by the simple ranking functions. We chose

4http://pipes.yahoo.com

sharp gain quantifications, i.e. powers of 2, as well as
a discounting factor of 2 and we only compared the re-
sults up to the 15th position in the rankings (nDCG15)
thus modelling a rather impatient developer that needs
quality results in the beginning of his results list.

Figure 2: Results of the evaluation in Svoice.

Figure 3: Results of the evaluation in Simage.

Figure 4: Results of the evaluation in Stwitter.

Figures 2, 3 and 4 show the results of the evalua-
tion done. As can be seen, the ranking functions pro-
duce results of considerably similar quality except the
ProgrammableWeb user rating PUR. An explanation
for PUR’s lack of quality may be the lack of votes
and therefore missing reliability. Moreover, the rea-
son for the similarity between the centrality measures
is their strongly-related nature and the structure of
our dataset’s graphical representation. For example,
the more mashups use a certain web service (CD) the
higher is the probability of being part of a shortest
path in G (CB) and the higher the number of mashups
or APIs close to it (CC).

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

158



Although runtime performance has not yet been
taken into consideration, our experiments showed that
degree centrality as well as eigenvector centrality de-
liver the best cost-benefit ratios among the analysed
ranking approaches. While betweenness and close-
ness centrality suffer from their algorithmic complex-
ity (O(SM )), the traffic caused by GSO does not im-
ply a practical use.

In addition to that we analysed nearly 325,000
possible linear combinations for each subset of web
services that was evaluated and checked whether or
not nDCG10 could be improved. The results show that
there are slight improvements possible in our scenario
with the most remarkable one found in Simage achiev-
ing an nDCG10 of 0.9715 for a combination of CC,
GSO and PUR, i.e. 1

5CCC + 2
3 GSO+ 2

15 PUR, over
0.9307, the best score of a simple ranking function
(CC) in this specific subset. Table 2 shows the scores
of the most successful linear combinations (nDCG010)
compared to the most successful elementary ranking
functions for each evaluated set.

Table 2: This table shows the score of linear combinations
of the elementary ranking functions that maximize the qual-
ity of the overall ranking output.

Set max(nDCG10( fi)) nDCG10(F �)
Simage 0.9307 (CC) 0.9715
Svoice 0.8991 (CB) 0.9049
Stwitter 0.8338 (CC) 0.8418

As can be seen, the improvements achieved by lin-
early combining ranking functions, especially for
Stwitter and Svoice, are not very high. This is a result
of the the likewise nature of our elementary ranking
functions and therefore the similarity of the rankings
they produce.

4 RELATED WORK

In this paper, we presented different approaches for
ranking web services independently of how they are
matched against a user query. It has to be noted, that
all of the previously mentioned ranking functions do
not take the user request into consideration. Some
of the presented ranking functions use centralities as
indicators for a web service’s relevance while others
employed social activities. Using degree, between-
ness and closeness centrality in order to analyse the
network of Programmable Web, (Wang et al., 2009)
also draw conclusions on the importance of a cer-
tain web service with the help of a user-api-network
and the degree centralities of a service’s neighbour-
hood. Introducing the serviut rank (Ranabahu et al.,

2008) present a composite ranking functionality for
web services that - inter alia - makes use of popular-
ity scores. Moreover, they use Alexa traffic rankings
in order to determine the popularity of a web service.
Futhermore, (Elmeleegy et al., 2008) use estimations
of conditional probabilities that a certain concept is
added to a given mashup input as basis for the ranking
component of their mashup advisor. WSColab (Gaw-
inecki et al., 2010) introduces the concept of struc-
tured collaborative tagging in the context of web ser-
vice matchmaking. While succeeding at JGDEval5 at
S3 Contest in 2009 their rankings are build upon sim-
ilarity scores for web services’ interfaces and func-
tional behaviour. Another approach is presented by
(Goarany et al., 2010) by predicting mashup patterns
using social tagging. Also exploiting the structure
folksonomies, (Hotho et al., 2006) adapted the idea
behind the popular PageRank and created FolkRank
demonstrating their results in the social bookmark-
ing domain. (Skoutas et al., 2010) also propose a
methodology of ranking web services based on domi-
nance relationships between web services where mul-
tiple criteria can be integrated.

5 CONCLUSIONS AND FUTURE
WORK

Throughout this paper we showed that the presented
ranking algorithms can produce quality rankings.
Moreover, we showed that ranking functions can be
linearly combined in order to improve those rank-
ings. Due to the similarity between the analysed rank-
ings, those improvements were mostly rather mini-
mal. Therefore, other ranking approaches, such as,
for example, semantic similarity scores for the web
services’ descriptions to the user’s search query or
QoS of a web service, should be taken into account
as well. During this work a query interface, called
rOMking for end-users has been implemented, where
the presented concepts are provided.

Future work will also involve further analysing
the performance of the presented ranking functions as
well as the process of efficiently optimizing the rank-
ings with the help of linear combinations. Enhancing
the capabilities of the minimalistic filtering process is
planned, too.

5http://fusion.cs.uni-jena.de/professur/jgdeval/
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