
MQL: A Mapping Management Language for Model-based Databases

Valéry Téguiak1, Yamine Ait-Ameur2, Stéphane Jean1 andÉric Sardet3
1LIAS, ISAE-ENSMA and Poitiers University, Futuroscope, Poitiers, France

2IRIT-ENSEEIHT, INPT-ENSEEIHT, Toulouse, France
3CRITT Informatique, Futuroscope, Poitiers, France

Keywords: Mapping, Meta-modeling, Model Transformation, Ontology Engineering, Query Languages.

Abstract: Nowadays model mapping plays a crucial role in applications manipulating various heterogeneous sources
(data integration and exchange, datawarehouse, etc.). Users need to query a given data source and still obtain
results from other mapped sources. If many model management systems have been proposed that support high-
level operators on model mappings, a more flexible approach is needed supporting the querying of mapping
models and the propagation of queries through mappings. As a solution, we present, in this paper, a mapping-
based query language called MQL (Mapping Query Language). MQL extends the SQL language with new
operators to exploit mappings. We show the interest of this language for the multi-model ontology design
methodology proposed in the DaFOE4App (Differential and Formal Ontology Editor for Application) project.

1 INTRODUCTION

In order to deal with various heterogeneous models
used to represent the same real word domain, sev-
eral mapping languages (Bouquet et al., 2003; Hor-
rocks et al., 2004) or frameworks (Jouault et al., 2008;
Melnik et al., 2003; Moha et al., 2010) have been
proposed. These frameworks support either model
mappings or model transformations. (Bouquet et al.,
2003; Horrocks et al., 2004) allow users to express
correspondences between models and (Jouault et al.,
2008; Melnik et al., 2003; Moha et al., 2010) describe
model transformations. Both approaches aim at per-
forming instance migration. Most of these languages
run in central memory and do not address scalability
when dealing with huge amount of data.

Moreover, with the emergence of the Web, the
amount of models and instances is growing drasti-
cally. Managing mappings in such a context often
requires writing more and more undesirable complex
queries. Therefore, offering solutions for managing
such mappings and instances in a convenient way be-
comes a necessity if one wants to address real sized
problems.

Before year 2000, mappings were implemented by
programs, then (Bernstein, 2003) introduced the no-
tion of Model Managementthat aimed at reducing the
amount of programming needed for the development
of metadata-intensive applications. More precisely,

(Bernstein, 2003) has provided model management
operators (e.g,compose, diff, merge, match, etc) al-
lowing to manipulate and to manage models and map-
pings as objects. However, to understand and to use
mappings established between source models, design-
ers need to query and to exploit them in order to ex-
press a query on a data source and to obtain data re-
sults from other sources. Thus, a more flexible ap-
proach is needed for supporting the querying of map-
ping model and the propagation of queries through
mappings. As a solution, we propose in this paper
a mapping-based query language named MQL (Map-
ping Query Language). This language is an extension
of traditional SQL query language with new operators
to exploit mappings such as crossing or filtering map-
pings. The interest of this language is shown on a real
use case extracted from the DaFOE4App project.

This paper is organized as follows. Section 2 de-
scribes the use case set up to show the interest of
our proposition. This use case is an ontology design
methodology based on a multi-models approach. Sec-
tion 3 discusses related work. After presenting our
requirements for a new query language in Section 4,
we present, in Sections 5 and 5.1, our MQL language
proposal. Finally, Section 6 concludes this paper and
gives some perspectives of this work.

145Téguiak V., Ait-Ameur Y., Jean S. and Sardet É..
MQL: A Mapping Management Language for Model-based Databases.
DOI: 10.5220/0003998601450150
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 145-150
ISBN: 978-989-8565-10-5
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2 CASE STUDY

In this section, we describe the ontologies de-
sign process led by the DaFOE platform (a
demonstration of this platform is available at
http://testcritt.ensma.fr/dafoe/demo/dafoeV1.zip),
where our MQL language proposal has been applied.
This platform proposes a stepwise approach for
building an ontology starting from text.

2.1 Ontology Design in the DaFOE

The DaFOE platform provides a stepwise methodol-
ogy for building ontologies from text analysis. The
first step is dedicated to linguistic analysis (Termi-
nology step) in which users manage linguistic infor-
mation (terms and relations between terms) extracted
with natural language processing tools. Then, a step
for terms disambiguation (TerminoOntology step) is
performed. Finally, a formalization step (Ontology
step) allows users to createclassesandpropertiesof
the ontologies. Each step, that is autonomous, has its
own model respectively presented in Figure 1, 2 and
3 and mappings are used to establish correspondences
between these models.

Figure 1: A subset of the Terminology model.

Figure 2: A subset of the TerminoOntology model.

Figure 3: A subset of the Ontology model.

2.2 Persistence of Mappings

In (Téguiak et al., 2012), we argued that model-
based databases (MBDB) are well adapted for han-
dling mappings in a database context. In that pro-
posal, we have extended MBDB with a repository for
mapping representations as illustrated in Figure 4. In
the resulting meta-model (named core meta-model)
where models are defined by their entities and their
attributes, three main constructors for creating corre-
spondences are available. The first one, calledmLink,
is used to establish correspondences between models.
The second one, calledeLink, allows the user to estab-
lish correspondences between entities of models and
finally, theaLinkuses anexpressionto write the target
attribute in term of the sources attributes.

Figure 4: Core metamodel.

2.2.1 Terminology to TerminoOntology Step

Considering bothTerminologyandTerminoOntology
models, a simplified mapping between these models
consists in:

- Creating a mLink between theTerminology
model and theTerminoOntologymodel;

- Creating aeLink from the Term entity and the
TerminoConceptentity to express that instances of the
Termentity will be transformed into instances of the
TerminoConceptentity;

- Creating aaLink expressing that an instance of
the TerminoConceptentity has the samelabel as the
one of its corresponding instances of theTermentity,
prefixed by’tc ’ . AnotheraLink expresses that the
rate of an instance ofTerminoConceptentity, equals
to thefrequencyof the corresponding instance in the
Termentity divided by 100.

2.2.2 TerminoOntology to Ontology Step

ForTerminoOntologyandOntologymodels, a simpli-
fied mapping consists in:

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

146



- Creation amLinkbetween theTerminoOntology
model and theOntologymodel;

- In the context of the previous createdmLinkbe-
tween models, aeLink is created between theTer-
minoConceptentity and theClassentity to express
that instances of theTerminoConceptentity will be
transformed into instances of theClassentity;

- Creating of aaLink expressing that an instance
of the Classentity has the samelabel as the one of
its corresponding instance in theTerminoConcepten-
tity. AnotheraLink expresses that therelevance fac-
tor of an instance ofClassentity, equals to therate
of the corresponding instance in theTerminoConcept
divided by 10.

As an illustration, assume that instances of the
Ontology, TerminoOntology and Terminology mod-
els are represented by Tables 1, 2 and 3 respectively.
Thanks to mappings, a user who queries theClassen-
tity of the Ontology model could want to query both
TerminoConcept of the TerminoOntology model and
Term of Terminology model.

Table 1: Ontology model.

Class
oid c label relevance isAbtract

1000 tc car 0.01 true
1001 tc wheel 0.002 false
1003 electricmotor 0.04 false

Table 2: TerminoOntology model.

TerminoConcept
oid tc label rate
600 tc car 0.1
602 motor 0.08
603 motorcycle 0.8

Table 3: Terminology model.

Term
oid t label frequency
300 car 1
301 wheel 2
302 bicycle 30

Putting these mappings all together results in the
MOF-like database repository (Cf. Figure 5) where
M i+1/M i means that the Mi level is represented as
instance of the Mi+1 level. The meta-schema part
is dedicated for managing the core metamodel while
schema and instance part a dedicated for managing
business models and data respectively.

3 RELATED WORK

Metadata repository systems manage metadata com-
monly represented as models or meta-models. Such a
repository is often equipped with a MOF-based query
language ((Lakshmanan et al., 2001), MSQL (Grant
et al., 1993), SQL/M (Kelley et al., 1995), OntoQL
(Jean et al., 2006), mSQL (Petrov and Nemes, 2008),
SparQL (Konstantinos et al., 2010)) that provides ca-
pabilities to manipulate both data and meta-data.

Another query language, called mapping oriented
query language ((Melnik et al., 2003), (Konstantinos
et al., 2010)) provide and explicit representation of
mappings between models and offer capabilities to
exploit these mappings when querying data. As lim-
itation, these languages do not allow a user to cus-
tomize the mapping exploitation process. In many
cases, the exploitation process is hidden to the user
and all the graph of interconnected database is used
even if the user wants to use only a sub-part of this
graph. Furthermore, in these languages or frame-
works, the representation of mappings is static and
can not be extended dynamically.

As illustrated in our case study, our proposed
database structure (Cf. Figure 5) is a MOF-like
database that also handles mappings between mod-
els. However, as we will see in the next section, this
database is a bit more complex to manage using clas-
sical SQL queries. This drawback brings us to de-
sign a query language bypassing limitations of lan-
guages presented above and that makes easier map-
pings exploitation using high level operators. So, re-
quirements for such a language are needed.

4 REQUIREMENTS

(Wakeman and Jowett, 1993; Petrov and Nemes,
2008) have investigated requirements for higher-level
query languages managing both data and metadata
(e.g, models). In this section we introduce new re-
quirements specific to mappings exploitation.

4.1 Handling Complex Queries

Considering the example of Section 2 and assume that
a user wants to retrieve, for the ontology model, all
classes of the ontology model whose relevance factor
is high than 0.01. To achieve this goal, the user can
write the following query:
R1) SELECT c label, relevance FROM Class WHERE

relevance ≥ 0.01.
However, if the user also want to retrieve, for
each class, the corresponding object in other models

MQL:�A�Mapping�Management�Language�for�Model-based�Databases

147



Figure 5: Mapping management in the DaFOEApp project.

mapped to the ontology model, two situations may
occur.

On the one hand, if the user knows the mappings
characteristics, so he/she can manually write the ap-
propriate following SQL queries:
R2) SELECT tc label, rate FROM TerminoConcept
WHERE rate/10 ≥ 0.01
R3) SELECT t label, frequency FROM Term WHERE

(frequency/100)/10 ≥ 0.01
R2 and R3 queries are translation of the R1 query

on the TerminoOntology and Terminology models re-
spectively according to the mappings between these
models.

On the other hand, because mappings character-
istics may be evolved dynamically (new mappings
may be created while existing one may be deleted
or updated, just as in a peer to peer system (Iraklis
and Joemon, 2003)), one needs firstly to query map-
pings repository for characteristics retrieval, and then
write the appropriate queries based on these charac-
teristics. Such a query requires to access a repository
which represented instances are model and mappings
between models. According to the transitivity capa-
bility of mappings, this access may raise a syntactic
complex query (Cf. Table 4). To simplify, we assume
that additional data should be retrieved from the Ter-
minoOntology model.

Table 5 represents the results of the Q5 query.
These results are exploited to generate, for the Ter-
minoOntology model, the query for retrieving data.

As we can observe, the process of unfolding
queries on target models is not easy and may become
complex if one needs to integrate the complete net-
work of mappings. In this case, the user handles by
himself the transitivity capabilities of mappings. A
classical approach to deal with this situation consists
in writing a query translator. So, the user writes a

Table 4: Mapping level queries.

Goals Queries
Q1) SELECT M.oid
Retrieve the FROM Entity E, Model M
Ontology model. WHERE E.label= “Class”

AND E.model= M.oid
Q2) Retrieve mLink where SELECT mLink.oid
the Ontology model is FROM mLink
involved as target WHERE mLink.target in Q1
Q3) Retrieve the entities SELECT eLink.source
mapped to Class FROM eLink, Entity E
entity. WHERE eLink.mL in (Q2)

AND eLink.oid= E.oid
AND E.label= “Class”

Q4) Retrieve correspondencesSELECT eLink.oid
between entities where FROM eLink
the Class entity is WHERE eLink.mL in (Q2)
involved as target
Q5) Retrieve mapped SELECT E.label,aLink.exp
entities and mapped FROM Entity E, Attribute A,

aLink
attributes (through WHERE E.oid in (Q3)
their expression). AND aLink.eL in (Q4)

AND aLink.target= A.oid
AND A.dom= E.oid

Table 5: Mapping level results.

E.label aLink.expression
TerminoConcept tc label
TerminoConcept rate/10

query (R1 query for example) and the translator gen-
erates queries for target models. This queries genera-
tion process is hidden to the user and made implicit.
In other words, this approach assumes that the user
does not know any mappings characteristics usable to
customize the queries generation process.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

148



4.2 Handling Mapping Navigation

Considering more closely the second situation of the
requirement presented in Section 4.1 where users
need to query mappings repository in order to retrieve
mappings characteristics. One can ask itself how to
handle transitivity with query languages such as SQL
for example. This issue refers to the needs to dynam-
ically navigate through the mappings hiding the ex-
ploitation of these mappings. So, a policy for a tran-
sitive subqueries propagation through chains of arbi-
trarily huge mapped models is required because these
models may contain huge amount of data.

4.3 Providing Persistent Mappings

This requirement refers to the problem ofmemory
saturation, that means avoiding loading into cen-
tral memory big amount of data whose models are
mapped together. Indeed, the mappings repository
may become very huge and therefore expensive (in
response time and memory consumption) for naviga-
tion purposes because, new models (says news mod-
eling steps) could be created dynamically according
to the needs of a particular user. Thus, a persistent-
based approach is required.

5 OUR APPROACH

In this section, we present an overview of the
MQL (Mapping Query Language), our mapping-
based query language proposal for handling mappings
according to previous quoted requirements. This lan-
guage is highly coupled to the Model Based Database
(MBDB) persistence approach presented in (Téguiak
et al., 2012). For each part (meta-schema, schema,
instance) of the MBDB, the MQL language provides
operators to define, manipulate and query its content.
Due to space limitation, we only present capibilities
for MQL to query instances and mappings together.
More details are available in a complete version of our
unpublished internal report (Téguiak et al., 2011).

5.1 Instances and Mappings Together

To address the requirements mentioned in Section 4,
we propose to extend the classical ”SELECT ... FROM

... WHERE ... ” query. In other words, our approach is
and hybrid one that can be used even if a user knows
mappings characteristics or not. As the main purpose
of MQL is to facilitate navigation through mappings,
we introduced optional statements useful for query
propagation in order to get compact syntactic queries.

The following statements are exploited in the queries
translation process to customize this process.

MATCH. Specify the target models in which the
MQL query is propagated at runtime.

FILTER. When propagating a MQL query from a
modelm1 to another modelm2, an entity ofm1 may
correspond to several entities ofm2. In this case, one
may want to restrict the translation so that it applies
only to part of these entities. Such a restriction is de-
scribed using theFILTER clause.

CONFIDENCE. Confidence degrees are often as-
signed to mappings in order to handle fuzzy map-
pings. This clause restricts the propagation of the
MQL query for the models that satisfy the specified
confidence degree. When specified, this clause is used
as a threshold to be respected.

With closure. If specified, the propagation of the
query is achieved through the mappings repository us-
ing the transitive closurein the way that, instances
are retrieved according to the transitivity of available
mappings.

DEPTH. When a MQL query uses theWith clo-
sureclause, it may result in a memory saturation or a
bad response time according to the size of the graph
of mappings. TheDEPTH clause specifies the depth
exploration of the graph of mappings. For example,
”DEPTH 4” means that the MQL query will be prop-
agated transitively on four consecutive mappings at
most .

mWHERE. Unlike the classical WHERE clause of
a SQL query, the mWHERE clause allows users to
specify predicates to filter correspondences. In other
words, the mWHERE clause is comparable to a SQL
WHERE clause, but it is dedicated to mapping level.

5.2 MQL in Action

Applied to the Ontology model, the mQ1 query
returns data (Cf. Table 6) of the Ontology model
(no mapping statement is used). In other words,
this query is a classical SQL query. For readability
purpose, all the result records are prefixed by the
name of its entity.

Table 6: Results of the mQ1 MQL query.

mQ1 Results
SELECT c label, relevance Class(tccar, 0.01)
FROM Class Class(electricmotor, 0.04)
WHERE relevance ≥ 0.01 ...

Applied to the Ontology model, the mQ2 query
returns data (Cf. Table 7) extracted from both the
Ontology and the TerminoOntology models (the

MQL:�A�Mapping�Management�Language�for�Model-based�Databases

149



MATCH statement has been set to TerminoOntology).

Table 7: Results of the mQ2 MQL query.

mQ2 Results
SELECT c label, relevance Class(tccar, 0.01)
FROM Class Class(electricmotor, 0.04)
WHERE relevance ≥ 0.01 TC(motorcycle, 0.8)
MATCH TerminoOntology ...

Applied to the Ontology model, the mQ3 query re-
turns data (Cf. Table 8) extracted from both Ontology
and TerminoOntology models (theMATCH statement
for this query has been set to all models using the *
symbol). However due to theDEPTH statement, the
results are limited to 1 transitive propagation. Only
the TerminoOntology model is reachable from the
Ontology model with 1 propagation.

Table 8: Results of the mQ3 MQL query.

mQ3 Results
SELECT c label, relevance Class(tccar, 0.01)
FROM Class Class(electricmotor, 0.04)
WHERE relevance ≥ 0.01 TC(motorcycle, 0.8)
MATCH * ...
FILTER *
DEPTH 1
With closure

Applied to the Ontology model, the mQ4 query
returns data (Cf. Table 9) extracted from both the
Ontology, TerminoOntology and Terminology mod-
els. Indeed, thanks to the * symbol of theMATCH
statement and with noDEPTH limitation, mQ4 is
propagated to any model transitively reachable from
the Ontology model.

Table 9: Results of the mQ4 MQL query.

mQ4 Results
SELECT c label, relevance Class(tccar, 0.01)
FROM Class Class(electricmotor, 0.04)
WHERE relevance ≥ 0.01 TC(motorcycle, 0.8)
MATCH * Term(bicycle, 30)
FILTER * ...
With closure

6 CONCLUSIONS

In this paper, we have presented a mapping-based
query language called MQL that makes easier query-
ing data thanks to available mappings between mod-
els. This language has a knowledge part based on
a core metamodel dedicated models and mappings
representation. One of the main features of our ap-
proach is that this knowledge part can be extended

by evolving the core metamodel. MQL has been im-
plemented for model-based databases, where both in-
stance, metamodel and metametamodel level are per-
sisted in a single database. As perspective of this
work, we are working on the definition of a bench-
marking scenario for improving performance of our
approach.

REFERENCES

Bernstein, P. A. (2003). Applying model management to
classical meta data problems. InCIDR.

Bouquet, P., Giunchiglia, F., Harmelen, F. V., Serafini, L.,
and Stuckenschmidt, H. (2003). C-owl: Contextualiz-
ing ontologies. InACM SIGIR’03, pages 164–179.

Grant, J., Litwin, W., Roussopoulos, N., and Sellis,
T. (1993). Query languages for relational multi-
databases. InVLDB.

Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S.,
Grosof, B., and Dean., M. (2004). Swrl: a semantic
web rule language combining owl and ruleml.

Iraklis, K. and Joemon, J. (2003). An architecture for
peer-to-peer information retrieval. InACM SIGIR’03,
pages 401–402.

Jean, S., Ait-Ameur, Y., and Pierra, G. (2006). Querying on-
tology based database. the ontoql proposal. InSEKE,
pages 166–171.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008).
Atl: a model transformation tool. InScience of Com-
puter Programming, pages 31–39.

Kelley, W., Gala, S., Kim, W., Reyes, T., and Graham, B.
(1995). Schema architecture of the unisql/m multi-
database system. InModern Database Systems.

Konstantinos, M., Nektarios, G., Nikos, B., and Stavros, C.
(2010). Ontology mapping and sparql rewriting for
querying federated rdf data sources. InOnTheMove,
pages 1108–1117.

Lakshmanan, L., Sadri, F., and Subramanian, S. N. (2001).
Schemasql: An extension to sql for multidatabase in-
teroperability. InJTDS.

Melnik, S., Rahm, E., and Bernstein, P. A. (2003). Devel-
oping metadata-intensive applications with rondo. In
Journal of Semantic Web, pages 47–74.

Moha, N., Sen, S., Faucher, C., Barais, O., and Jézéquel, J.-
M. (2010). Evaluation of kermeta for solving graph-
based problems. InJSTT.

Petrov, I. and Nemes, G. (2008). A query language for mof
repository systems. InOnTheMove, pages 354–373.

Téguiak, V., Ait-Ameur, Y., and Sardet, E. (2012). Use of
persistent meta-modeling systems to handle mappings
for ontology design. InMOPAS, page To appear.

Téguiak, V., Ait-Ameur, Y., Sardet, E., and Bellatreche, L.
(2011). MQL: an extension of SQL for mappings
manipulation. Technical report, LIAS.

Wakeman, L. and Jowett, J. (1993).PCTE: the standard for
open repositories. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

150


