
Agent Oriented Software Engineering
for Multimedia Systems’ Development

An Experimental Case Study

Alma M. Gómez-Rodrı́guez, Juan Carlos González-Moreno, David Ramos-Valcárcel and
Francisco Javier Rodriguez-Martinez

Dept. de Informática, University of Vigo, Ed. Politécnico D-401, Campus As Lagoas, Ourense E-32004, Spain

Keywords: Multimedia Systems, Development Process, Agent Oriented Software Engineering(AOSE), INGENIAS
Methodology, Development Tools.

Abstract: Multimedia systems, and in particular games, have special characteristics that make the process of obtaining
system requirements very difficult. In most cases, an important work of codification is needed in order to obtain
a prototype that can be analyzed by the customer and make requirements elicitation easier. This paper proposes
a way of facilitating the process and obtaining a prototype in a short development time. Our proposal is based
in the combined use of a well-known methodology for the construction of Multimedia Systems and Alice, and
follows an Agent Oriented Software Engineering approach. The work introduces the process proposed as well
as a tool that provides support for such process. Besides, a case study shows the application of the process
and the tool to a simple example. From this example, the suitability of Agent Oriented Software Engineering
approach and the proposed process for game prototype development is concluded.

1 INTRODUCTION

Nowadays, multimedia systems have a growing rele-
vance among all the computer-based systems. Almost
any device, from computers to smartphones or tablets,
introduces multimedia components in the applications
that they run (Songers et al., 2001). Besides, Multi-
media developments are complex because they imply
a multidisciplinary team, which must include: physi-
cist because the system incorporates capabilities such
as GPS, gyroscope . . . , mathematicians, graphic de-
signers, musicians, scriptwriters, and, obviously, soft-
ware engineers (Ramos-Valcárcel et al., 2011).

Among the multimedia systems, games constitute
the most complex system to construct. The reason is
that they incorporate all the multimedia characteris-
tics, as well as, other aspects, such as: defining the
character’s behavior and describing the interactions
(among game characters or between them and the en-
vironment) (Masuch and Rueger, 2005; Capra et al.,
2005; Moreno-Ger et al., 2009).

Despite the importance of multimedia develop-
ments, there is not a public methodology or process
devoted to multimedia development. Although there
are multimedia private companies with productive de-
velopment processes, they are not public because of

the competitive advantage provided.
The special characteristics of multimedia systems

(in particular games, which have characters with a
behavior and sometimes a certain degree of intelli-
gence) make them suitable for applying the agent con-
cept. Agent Oriented Software Engineering (AOSE)
has proof its capability for definition of complex dis-
tributed systems, where different agents cooperate to
achieve certain goals. Moreover, a previous work
(Ramos-Valcárcel, 2011) has shown the correspon-
dence between AOSE concepts and game concepts;
for instance agent concept relates to game character,
agent tasks to object functionalities, etc.

In AOSE, many methodologies have been pro-
posed for systems development (Pavón and Gómez-
Sanz, 2003; Cuesta et al., 2002; Cossentino and
Sabatucci, 2004; Sturm et al., 2003). Among them,
INGENIAS methodology has been selected attending
two basic reasons. The first reason is that the differ-
ent models and elements provided by the methodol-
ogy were very suitable for multimedia modeling, as
it has been introduced in previous works (Fuentes-
Fernández et al., 2010; Gómez-Rodrı́guez et al.,
2011). The second reason is that the methodology
provides a tool that supports the development, called
INGENIAS Development Kit (IDK) (Pavón et al.,

85M. Gómez-Rodríguez A., Carlos González-Moreno J., Ramos-Varcárcel D. and Javier Rodriguez-Martinez F..
Agent Oriented Software Engineering for Multimedia Systems’ Development - An Experimental Case Study.
DOI: 10.5220/0003998700850094
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 85-94
ISBN: 978-989-8565-13-6
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2005). This tool generates automatically code from
the models defined using it, so it can be used as an
initial version of the system to be developed.

Nevertheless, games are very intensive in anima-
tion, so a tool that show how actors behave is needed.
Moreover, the producer of a game expects to see a
storyboard explaining the general idea of the game in
order to take the decision of producing it. Nowadays
there are works that automatically generate an ani-
mated storyboard from a system description that uses
Natural Language (Ma, 2006; Kevin Glass, 2008;
Bolaño-Rodrı́guez et al., 2011).

Our approach is different, since it generates the
animated storyboard from software engineering mod-
els. From these models, a particular tool, the Interac-
tive StoryBoard Generator (ISBGen), obtains the sys-
tem description using XML. This XML documents
are used as inputs for Alice (Group, 1995; Cooper
et al., 2000), that visualizes these descriptions and
provides them with 3D animation.

Finally, the utility of our approach is proved by
using the development process proposed and ISBGen
in a simple game development.

The remainder of the paper is organized as fol-
lows. Next section introduces the technologies used
in this work, as well as, the relationships among them.
Then, section 3 describes the ISBGen tool, which au-
tomatically generates the multimedia prototype. Sec-
tion 4 broaches the development process for a system
constructed following an AOSE approach and using
the INGENIAS meta-models and the proposed tools.
In the following section, this process is applied to a
case study that shows the results obtained. The paper
ends with the conclusions and future work.

2 TECHNOLOGIES IMPLIED

2.1 INGENIAS and IDK

INGENIAS (Pavón et al., 2005) is a methodology
created for the development of Multi-Agent Systems
(MAS). Originally the purpose of INGENIAS was
the definition of a specific methodology for MAS de-
velopment by integrating results from research in the
area of agent technology, and from traditional Soft-
ware Engineering Methodologies. The methodology
covers analysis and design of MAS, and it is intended
for general use, with no restrictions on application do-
main (Gómez-Sanz and Fuentes, 2002). INGENIAS
is based on the definition of a set of meta-models
which describe the elements necessary to specify and
get a MAS from five viewpoints: agent (definition,

control and management of agent mental state), inter-
actions, organization, environment, and goals/tasks.
The meta-models proposed cover the whole life cycle
and capture different views of the system. In the latest
years, these meta-models have demonstrated their ca-
pability and maturity as supporting specification for
the development of MAS (Pavón and Gómez-Sanz,
2003).

The methodology can define either hardware or
software agents, and has been applied in the cre-
ation of systems in several engineering fields, such
as holonic manufacturing systems (Botti and Giret,
2008), multisensor surveillance systems (Pavón et al.,
2007), knowledge management systems (Soto et al.,
2006), business workflow definition (Hidalgo et al.,
2007), simple games (Pavón and Gómez-Sanz, 2003)
and Product-Line Engineering environments (Cuesta
et al., 2007).

From the very beginning, INGENIAS methodol-
ogy provides a supporting CASE tool called IDK.
This tool facilitates the construction of the different
meta-models defined in the methodology and gener-
ates code from those definitions, or at least, code tem-
plates.

Recently the INGENIAS Agent Framework (IAF)
has been proposed taking into account the experi-
ence in application of the methodology during several
years enabling a full model driven development. This
means that, following the guidelines of the IAF, an
experienced developer can focus most of his/her ef-
fort in specifying the system, and so, a great part of
the implementation is converted in a matter of trans-
forming automatically the specification into code.

2.2 Alice

Alice (Group, 1995; Conway et al., 2000; Cooper
et al., 2000) is a programming environment which
facilitates the creation of animations where a virtual
world is populated with 3D objects (e.g., people, an-
imals, vehicles . . . ). The tool is available freely and
allows to create animated movies and simple video
games. The tool has an interactive interface, where
the user can drag and drop graphic tiles to create a
program and allows to immediately see how the ani-
mation programs run.

Alice has a huge library of predefined 3D objects.
It includes static and dynamic objects which have a
graphical aspect and, for dynamic ones, a predefined
behavior. This characteristic makes it very suitable
for making a prototype, because, in some cases, the
developer only has to choose what object to include
in the animation.

Other important advantage of Alice is that it fol-

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

86



Table 1: Correspondence methodological and Alice con-
cepts.

INGENIAS ALICE
Agent Object
Roles Function activation/deactivation
Goals Problems to solve
Task Methods
Interaction Functions
Use Cases Scene Definition

lows an educative approach. This means that the
tool is user-friendly, what makes easier introducing
changes in the animation. This characteristic is very
interesting in this case, because it facilitates changes
in the prototype and the feedback to INGENIAS mod-
els.

The tool uses Java and C# in its implementation
and stores the definitions using XML documents. As
stated before, the data structures of both INGENIAS
and Alice are based on XML, so that the integration
of them is easier.

Moreover, a direct correspondence between the
concepts used in the methodology and in Alice has
been established in (Ramos-Valcárcel, 2011). These
conceptual relationships constitute the formal basis
for automatic generation of the storyboard. Table 1
reflects such correspondences.

3 ISBGen

This paper presents the tool ISBGen, which pro-
vides a 3D interactive storyboard automatic genera-
tion from the elements of the meta-models defined
using IDK. ISBGen is one of the contributions of this
work and constitutes an important tool to be used in
the process of multimedia storyboard generation, as it
will be shown in next section.

Figure 1 shows IDK with the ISBGen option. The
central opened window shows the dialogue that ap-
pears when generating the storyboard from the meta-
model definitions.

The tool facilitates the automatic production of the
Alice file (with extension .a2w) that contains the sto-
ryboard in the suitable format. ISBGen translates the
meta-models to an XML file that will be used as input
in Alice. The use of XML provides a great versatility
for adapting the tool, if new characteristics appear in
the models or the tools (IDK and Alice).

Figure 1: ISBGen integrated in IDK.

4 PROCESS OF DEVELOPMENT:
FROM THE META-MODELS TO
THE PROTOTYPE

Traditional game developments usually share two
phases: pre-production and production. The first one
includes the preliminary works oriented to define the
basic characteristics of the game and to propose solu-
tions to the most relevant functionalities. The phase
of production will obtain the final product, developing
in detail the sequences defined previously.

Habitually, in pre-production phase, the scripwrit-
ers explain the basic idea using a storyboard which
is evaluated by the responsibles of the project. The
specifications are given after studying the script or
storyboard that graphic designers make. From both
resources, script and storyboard, a first prototype of
the product can be modeled and an animated sequence
is generated . This provides a good simulation of the
final sequences to be developed and constitutes a nat-
ural way for the customer (producer, director, etc.) of
verifying the model built.

Our development process covers the pre-
production phase and has as main aim the automatic
generation of the storyboard. This process is based on
the use of AOSE techniques adapted to multimedia
systems, and on the utilization of ISBGen that
produces fast simulation of the multimedia project at
animation level (Storyboard Interactive). At a high
level of abstraction, the process consists of the cyclic
application of the following steps:

1. The elements (object, tasks, goals, etc.) which
constitute the system are defined using INGE-
NIAS meta-models.

2. Using Alice, the graphical part of the elements

Agent�Oriented�Software�Engineering�for�Multimedia�Systems'�Development�-�An�Experimental�Case�Study

87



Figure 2: Prototype generation process.

(characters and objects in the scenery) is included.
This object can be taken directly from Alice li-
brary or adapted from the available ones.

3. The ISBGen tool is used to generate in an auto-
matic way the prototype.

4. The prototype is revised with the customer, the
improvements are noted down and the process
starts again from the first step. The changes only
imply to redefine the meta-models.
Figure 2 shows a single iteration of the process

previously described.
Starting from a model constructed using IDK, an

animated sequence, which constitutes a rapid interac-
tive prototype that can be evaluated by the customer,
is obtained. Also, the pre-production team can ana-
lyze the results, corroborate the implementation work
that has been carried out and repair the deficiencies or
optimize the features and animations.

Using this process, it is possible to make available
for the customer the idea that the scriptwriter has in
mind, but starring with supporting actors (whose cost

is significantly lower than protagonists). The proto-
type developed is a first test, that facilitates the study
of all possible technical and graphics solutions to be
applied in the final sequences. Moreover, the proto-
type permits to identify not obvious features and con-
tributes to detect errors and problems that may appear
in the future implementation.

The big advantage of this process is that after this
first model done in the analysis phase, a sketch of
the system and the possible animated sequences that
the script creates can be presented to the customer.
Moreover, the feedback provided by him can be in-
corporated directly to the meta-models to improve the
scene.

As it has been said before, the process is quick,
because, the graphical part of most objects is obtained
from Alice library. If it is the case that there is not a
suitable object in Alice for a particular element, the
graphical part must be modeled in that moment. Nev-
ertheless, the Alice objects can be adapted, if needed.

The process obtains as output a static model,
which locates the elements inside the scene and de-
fines what parameters should be modeled. This means
establishing a scenery (a location) and natural compo-
nents of the environment by default. These choices
should reflect aspects such as the natural elements
that interact with the environment: trees, plants,
rivers,wind, rain . . . , or the lighting and its different
types (radial, environment, parallel, etc.).

These elements are considered part of the environ-
ment and, as happens in virtual worlds like Second
Life (Kumar et al., 2008; Rymaszewski, 2007) and
OpenSim (Childers, 2009; Fishwick, 2009), should
have their own predefined attributes. Sometimes, the
user should be able to act on such elements, but, in
other moments, it is much more interesting that the
elements have a random behavior, so that, the user
can understand how they interact with the new world
(like in some sites of virtual worlds).

The main aim of this part of the process is to fix
the meta-model elements that are necessary to repre-
sent a multimedia scene and the other elements that
are present on the scene but have not a relevant be-
havior. The agent paradigm provides an enormous
potential to model these elements with undefined be-
havior, that perform the role of extras. The use of
intelligent agents allows defining their behavior inde-
pendently. Once this behavior has been defined, new
not anticipated situations may appear from the inter-
action among agents, and these situations can be iden-
tified before interfering with the relevant ones.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

88



Figure 3: Use case model.

5 CASE STUDY

The system to be modeled as a basic example is a
dialogue between two characters (named Merlin and
Grandmother) who discuss how to give each other a
particular object. The following section explains in
detail and step by step the results that can be achieved
using the process previously described and the intro-
duced tools (Alice, IDK and ISBGen).

5.1 Structure and Use Cases Models

The initial step of this process will be to define the
project structure, that is, the number of scenes/shots
that compose the whole system. For the case study,
the dialog is composed of a single scene that, in turn,
is divided in several shots (in the example of Figure 3
three shots are shown).

Next, a use case diagram must be modeled. Al-
though this kind of diagram is not used in INGE-
NIAS, we consider that it is of great utility in this
moment of development. The diagram introduces the
scenes which form part of the project and verifies the
integrity of the structure previously defined. Figure 3
presents the use case diagram for the case study. The
diagram shows a system with a scene consisting on
three shots, but the example we are dealing with will
be focused only in the first shot.

From this diagram, the ISBGen tool creates in Al-
ice the objects defined in the diagram. Each use case
corresponds to a shot and the tool introduces a num-
ber when generating the Alice object. These numbers
indicate the order in which the use cases are going to
be played. For instance, the model contained in Fig-
ure 3 will generate two objects in Alice: shot1 and
shot11. Shot1 refers to ”Scene 1”, while shot11 cor-
responds to the ”shot1.1” of INGENIAS model that is
part of ”Scene1”’ (see the image in the central bottom
part of Figure 4).

Figure 4: General organization model.

5.2 Organization Model

Following with the definition of the prototype, next
step is defining the Organization Model, which de-
scribes the groups of agents, the functionality and the
restrictions imposed on the agents. Before starting
this diagram it is important to know the actors who
interact with the system, their roles and, if the actors
play different roles, how this roles will be grouped.

In Figure 4, the Organization Model of the case
study is presented. The system consists of two groups
of agents: static and dynamic agent. The agents be-
longing to the dynamic group are characterized by
their capability to attend user interactions, while those
of the static group do not require user intervention, so
that they are completely autonomous, and act follow-
ing their established goals.

This model has a direct correspondence with the
3D world modeled in INGENIAS and automatically
generated by the tool, which can be seen in bottom
part of Figure 4. ISBGen will generate, both the Mer-
lin and the Grandmother agents from the diagram to
Alice code. So, adding another agent to the virtual
world would be as simple as including him in the or-
ganizational model and link him to a group of agents.

Following the process previously defined, the next
step is to define another Organization Diagram. In
this case, the diagram details each of the shots associ-
ated to a particular scene. For instance, in the diagram
of Figure 5, the interaction between agents that play
the roles dynamic and help that fulfil the tasks Request
Information and Provide Clues.

From this model, the communication between the
two actors that play the roles dynamic and help can
be extracted. The dynamic role selects the charac-
ter to which it makes the request for information and,
then the other role, through the establishment of a di-
alogue, provides the requested information. This dia-

Agent�Oriented�Software�Engineering�for�Multimedia�Systems'�Development�-�An�Experimental�Case�Study

89



Figure 5: Organization model for Shot 1.1.

logue makes that both roles achieve their established
goals. The elements of this diagram are used to deter-
mine which tasks are involved in the interactions that
occur during the execution of the system.

ISBGen does not use this diagram for code gener-
ation, sice since the tasks definition is performed later,
and the information provided by this diagram is just
illustrative for the developer. For this reason, this step
can be skipped and it is only recommended to define
these diagrams in large systems where this extra in-
formation can be useful.

5.3 Tasks and Goals Model

Next phase consists in specifying the order in which
the goals must be completed by agents. It is manda-
tory to take such decision before starting the execu-
tion of the system, and it is made through the defini-
tion of Tasks and Goals Model. The Tasks and Goals
Model represents the relationships between goals, so
that the order in which they must be achieved can be
deduced. Moreover, the model may be used to break
down the goals in the particular tasks that must be
done to fulfil them. In the case study, the Tasks and
Goals model has a sole goal: to dialogue, so that, the
diagram is not showed here.

Task and Goals Model is very relevant in this pro-
cess because, the hierarchical structure of the system
is completed using the information that it contains.
The methods and functions responsible for managing
the lists of basic and secondary goals are automati-
cally built by ISBGen.

From all the properties available in Alice, we
have choose the most suitable ones for defining agent
characteristics. In particular, figure 6 reflects in Al-
ice the list of goals, methods, functions and proper-
ties associated with the case study. The properties
panel (Properties) of the object world (the root of the
project) -top left image- is an ordered list of the main
goals of the system called GoalHierarchy. It also con-
tains the objects that reference the current, the next

Figure 6: Correspondences Alice - Task and goal model.

and the previous shot. In the methods panel (Meth-
ods) -upper right image- the methods for operating on
the goals list and for modifying the current shot are
shown. The bottom left panel is functions and con-
tains the methods needed to perform operations on
agents, objects, shots and goals. Finally, the bottom
right panel displays the properties of the object prin-
cipal, that is,the main attributes of the main character,
the list of objects and the list of goals, among others.

5.4 Agent Model

Next diagrams to be constructed are based on the
Agent Model. An Agent Model must be done for
each agent in the system. The model will show the
capabilities and goals of each of the actors. The ca-
pabilities are represented by tasks, and each task must
have an associated goal that must be achieved after ex-
ecution. Summarizing, the agent model allows a de-
tailed description of existing agents in the multimedia
system.

An example of this kind of model is shown in Fig-
ure 7. From the definition of Agent Models, ISBGen
generate the data related to the agent, its tasks and
goals, the methods, and the list of goals to be met,
which will be used in Alice. The figure reflects all the
previous attributes for the main character of the case
study. Each new feature of the 3D character of the
system must be specified in the corresponding Agent
Model as a task and, also, the goal accomplished by
the task must be specified. For instance, to make an
actor capable to move, in the Agent Model an agent
with the tasks move and the goal walk must be de-
fined. Once the information is used by ISBGen for
generating the character, this will be reflected in the
3D world as a new method of the character of Alice,

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

90



Figure 7: Agent model.

symbolizing the actor.
The bottom part of Figure 7 contain the proper-

ties, the methods and the functions for the main char-
acter of the case study, in particular the one called
Merlinho. The properties panel represented contains
the list of objects in the system, the ordered lists of
goals and the role played by the agent selected. The
second image -lower left- panel shows the object’s
methods, that is, the basic methods of the dynamic
character, the movements and all the functionalities
specified in the Tasks and Goal Model for the agents
and tasks. The last image, bottom right, shows the
functions panel, where the exchanges between the el-
ements and the environment are shown. These func-
tions represent the units of interaction described in the
Interaction Model.

5.5 Interaction Model

To complete the example of case study, it is neces-
sary to use the Interaction Model. All the informa-
tion exchanges that occur between two or more ac-
tors in the system should be reflected as interactions.
This diagram represents the information exchanges,
breaks down the actions of each interaction and spec-
ifies what is sent, and who is the sender and the re-
ceiver.

Figure 8 shows the model that defines the dialogue
between the two agents, that is the core of the system.
The bottom part of the figure introduces the ALICE
definitions associated with the interaction units of the
model. Each interaction unit appears in ALICE as

Figure 8: Interaction model.

Figure 9: Task and goal model.

a function associated with the agent that initiates the
interaction.

5.6 Environment Model

The inclusion of events in the 3D world is done
through the Environment Model, by identifying dif-
ferent internal applications that can be used and
shared by the actors.

Finally, it will be necessary to describe in detail
each of the tasks in the system using again Tasks and
Goals Models. In these models the inputs and out-
puts that occur during the execution of a task and what
are the initiators of such events should be described.
The example in Figure 9 contains the description of
the task Provide clues initiated by receiving certain
information, called RequiredInformation. This task
produces other task GaveInformation, which is used
in the interaction, to complete the objective Provide
clues. In addition, the task changes the mental status
of the agent responsible for the task.

After modeling the environment, as stated before,
an initial review with the customer is carried out. This

Agent�Oriented�Software�Engineering�for�Multimedia�Systems'�Development�-�An�Experimental�Case�Study

91



approach, though simple, allows to discuss with the
customer this first prototype of the final product.

Any change to this prototype, represents a very
small cost because the system is still in the very early
stages of development. So that, this does not signify
a cost beyond the predictions and is part of the pro-
cess of product development. The customer can im-
mediately see this first draft and confirm or change the
specification of the generated prototype . Thus, the
interaction developer/customer becomes really effi-
cient, resulting in rapid prototypes that conform to the
pattern expected. Attending the customer changes,
a process redesign, involving product improvement
through optimization of the results of the prototype,
is followed. With all this, a rapid definition of the ex-
pected product, which may be brought to the stage of
implementation without risks, is obtained.

6 CONCLUSIONS

In the first steps of a multimedia project a high-level
prototype makes easier the task of obtaining and val-
idating the basic system’s functionalities. The pro-
totype makes available to the user an overview of the
multimedia product, and facilitates the feedback. This
increases the efficiency in the pre-production process,
because all the changes needed are made at initial
stages of development: unnecessary sequences can
be eliminated or others are discovered. Moreover,
the obtained models have more meaningful elements
whose implementation is partially automated thanks
to the tools offered. The use of ISBGen to obtain in
an automatic way the storyboard from those defini-
tions substantially reduces the time and costs of pre-
production.

The use of a well-defined process supported by
several tools introduces a certain degree of formaliza-
tion in multimedia development, which usually lacks
a formal process of software specification. In addi-
tion, the use of agent paradigm is very valuable, as the
concept of role, associated to a particular agent behav-
ior, enhances the creation of intelligent autonomous
behaviors that can discover new situations, not de-
fined a priori, that may occur in the scenes. The use of
ALICE, the modeling elements provided by the tool,
as well as their by default behavior, makes it much
easier to find objects that adapt to a particular situa-
tion to model.

Using the case study presented, it can be con-
cluded that modeling a multimedia system is feasible
using Agent Oriented Software Engineering. The use
of INGENIAS methodology is not specially relevant,
and in the future, other methodologies will be used.

We consider this is feasible, because the concepts and
elements between different methodologies coincide,
and the process proposed can be applied in the same
way.

The case study has identified some limitations of
the methodology for being used in this kind of devel-
opments. For instance, INGENIAS introduces many
modeling elements that are not needed for multimedia
definitions (like the sequence Model or the BDI men-
tal state). Due to this, in the future, we plan to pose
a new methodological proposal that overcomes such
limitations. In addition, a new IDK profile for mul-
timedia systems will be defined, which incorporates
the proposed changes .

Despite the satisfactory results of ISBGen tool,
several improvements are intended to be made in the
future, in order to extend its functionalities. In partic-
ular, an interesting issue will be to incorporate the ca-
pability of selecting the graphical aspect of the agents.
At the moment, the tool automatically assigns an Al-
ice character for each of the agents in the system. In
the future, the user will be able to choose for each
agent its character from the ones available in Alice
library.

The process proposed in this paper follows a
top-down approach. Nevertheless, once the story-
board is obtained and presented to customer, it suffers
changes. Offering a mechanism to automatically in-
corporate those changes to meta-models definitions,
providing some kind of reengineering process, is, at
the moment, under study.

Finally, we have the intention of integrate
the NPL4INGENIAS tool (Gonzalez-Moreno
and Vazquez-Lopez, 2008; Gómez-Rodrı́guez
et al., 2011) in the process of development.
NPL4INGENIAS is a tool that obtains the sys-
tem requirements form its description in Natural
Language. The requirements obtained are docu-
mented using the INGENIAS meta-models, this
implies that the tool can be easily integrated in the
process defined here and can simplify the obtention
of a first model of the system to construct. A first
experiment, which suggest this is possible has been
done in (Bolaño-Rodrı́guez et al., 2011).

ACKNOWLEDGEMENTS

This work has been supported by the project
Plataforma Tecnoloxica Intelixente de Xestin Avan-
zada para Produtores de Planta Ornamental de Gali-
cia with grant 10MRU007E of Xunta de Galicia.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

92



REFERENCES

Bolaño-Rodrı́guez, E., Moreno, J. C. G., Ramos-Valcárcel,
D., and López, L. V. (2011). Using multi-agent sys-
tems to visualize text descriptions. In PAAMS, pages
39–45.

Botti, V. and Giret, A. (2008). ANEMONA: A Multi-
agent Methodology for Holonic Manufacturing Sys-
tems. Springer Series in Advanced Manufacturing.

Capra, M., Radenkovic, M., Benford, S., Oppermann, L.,
Drozd, A., and Flintham, M. (2005). The multimedia
challenges raised by pervasive games. In Proceedings
of the 13th annual ACM international conference on
Multimedia, MULTIMEDIA ’05, pages 89–95, New
York, NY, USA. ACM.

Childers, B. (2009). Run your own virtual reality with open-
sim. Linux J., 2009.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Chris-
tiansen, K., Deline, R., Durbin, J., Gossweiler, R.,
Koga, S., Long, C., Mallory, B., Miale, S., Monkaitis,
K., Patten, J., Pierce, J., Shochet, J., Staack, D.,
Stearns, B., Stoakley, R., Sturgill, C., Viega, J.,
White, J., Williams, G., and Pausch, R. (2000). Al-
ice: Lessons learned from building a 3d system for
novices.

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3-d
tool for introductory programming concepts. Journal
of Computing Sciences in Colleges, 15(5):107–116.

Cossentino, M. and Sabatucci, L. (2004). Agent System Im-
plementation. Agent-Based Manufacturing and Con-
trol Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press.

Cuesta, P., Gómez, A., González, J., and Rodrı́guez, F. J.
(2002). The MESMA methodology for agent-oriented
software engineering. In Proceedings of First Interna-
tional Workshop on Practical Applications of Agents
and Multiagent Systems (IWPAAMS’2002), pages 87–
98.

Cuesta, P., Gómez-Rodrı́guez, A., and González-Moreno,
J. C. (2007). Agent oriented software engineering. In
Whitestein Series in Software Agent Technologies and
Autonomic Computing, pages 1–31. Springer.

Fishwick, P. (2009). An introduction to opensimulator and
virtual environment agent-based applications. In Sim-
ulation Conference (WSC), Proceedings of the 2009
Winter, pages 177 –183.

Fuentes-Fernández, R., no, I. G.-M., Gómez-Rodrı́guez,
A. M., and González-Moreno, J. C. (2010). A
technique fordefining agent-oriented engineering pro-
cesses with tool support. Engineering Applications of
Artificial Intelligence, ‘23(3):432– 444.

Gómez-Rodrı́guez, A., González-Moreno, J. C., Ramos-
Valcárcel, D., and Vázquez-López, L. (2011). Model-
ing serious games using aose methodologies. In Intel-
ligent Systems Design and Applications (ISDA), 2011
11th International Conference on, pages 53 –58.

Gómez-Sanz, J. J. and Fuentes, R. (2002). Agent ori-
ented software engineering with ingenias. In Fourth
Iberoamerican Workshop on Multi-Agent Systems (Ib-
eragents’2002), a workshop of IBERAMIA’2002, the

VIII Iberoamerican Conference on Artificial Intelli-
gence.

Gonzalez-Moreno, J. C. and Vazquez-Lopez, L. (2008). De-
sign of multiagent system architecture. In Ieee, editor,
IEEE International Workshop on Engineering Seman-
tic Agent Systems, pages 565–568, Turku (Finlandia).
IEEE.

Group, U. U. I. (1995). Alice: Rapid prototyping for virtual
reality. IEEE Computer Graphics and Applications,
15:8–11.

Hidalgo, A., Gomez-Sanz, J., and Mestras, J. (2007). Work-
flow Modelling with INGENIAS methodology. In
5th IEEE International Conference on Industrial In-
formatics (INDIN’07), volume 2, pages 1103–1108.
Vienna, Austria.

Kevin Glass, S. B. (2008). Automating the creation of 3d
animation from annotated fiction text. In IADIS 2008 :
Proceedings of the International Conference on Com-
puter Graphics and Visualization 2008, pages 3–10.

Kumar, S., Chhugani, J., Kim, C., Kim, D., Nguyen, A.,
Dubey, P., Bienia, C., and Kim, Y. (2008). Second life
and the new generation of virtual worlds. Computer,
41(9):46 –53.

Ma, M. (2006). Automatic conversion of natural language
to 3D animation. PhD thesis, University of Ulster,
Derry, Ireland.

Masuch, M. and Rueger, M. (2005). Challenges in col-
laborative game design developing learning environ-
ments for creating games. In Proceedings of the
Third International Conference on Creating, Connect-
ing and Collaborating through Computing, pages 67–
74, Washington, DC, USA. IEEE Computer Society.

Moreno-Ger, P., Fuentes-Fernández, R., Sierra-Rodrı́guez,
J.-L., and Fernández-Manjón, B. (2009). Model-
checking for adventure videogames. Information and
Software Technology, 51(3):564 – 580.

Pavón, J. and Gómez-Sanz, J. (2003). Agent Oriented Soft-
ware Engineering with INGENIAS. Multi-Agent Sys-
tems and Applications III, 2691:394–403.

Pavón, J., Gómez-Sanz, J. J., Fernández-Caballero, A., and
Valencia-Jiménez, J. J. (2007). Development of intel-
ligent multisensor surveillance systems with agents.
Robotics and Autonomous Systems, 55(12):892–903.

Pavón, J., Gómez-Sanz, J. J., and Fuentes-Fernández, R.
(2005). The INGENIAS Methodology and Tools, arti-
cle IX, pages 236–276. Idea Group Publishing.

Ramos-Valcárcel, D. (2011). Ingenierı́a de software orien-
tada a agentes en el modelado de sistemas multimedia
(in spanish). PhD thesis, Universidad de Vigo. Depar-
tamento de Informática. Escola Superior de Enxeñerı́a
Informática.

Ramos-Valcárcel, D., Fajardo-Toro, C., and de la
Pena Ojea, F. (2011). Multimedia smart process
(msp). In Information Systems and Technologies
(CISTI), 2011 6th Iberian Conference on, volume 1,
pages 320–325.

Rymaszewski, M. (2007). Second life : the official guide.
John Wileyy.

Songers, A., Diekmann, J., and Karet, D. (2001).
Animation-based construction schedule review. Con-

Agent�Oriented�Software�Engineering�for�Multimedia�Systems'�Development�-�An�Experimental�Case�Study

93



struction Innovation: Information, Process, Manage-
ment, Colorado.

Soto, J. P., Vizcaino, A., Portillo, J., and Piattini, M. (2006).
Modelling a Knowledge Management System Archi-
tecture with INGENIAS Methodology. In 15th Inter-
national Conference on Computing (CIC’06), pages
167–173. Mexico City, Mexico.

Sturm, A., Dori, D., and Shehory, O. (2003). Single-model
method for specifying multi-agent systems. In AA-
MAS, pages 121–128. ACM.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

94


