
Handling Inconsistency in Software Requirements

Richa Sharma1 and K. K. Biswas2
1School of Information Technology, IIT Delhi, India
2Department of Computer Science, IIT Delhi, India

Keywords: Requirements Specification, Inconsistency, Presupposition, Knowledge Representation, Courteous Logic.

Abstract: Software Requirements expressed in the form of natural language are often informal and possibly vague.
The need for formal representation of the requirements has been explored and addressed in various forms
earlier. Of several recommended approaches, logical representation of requirements has been widely
acknowledged to formalize the requirements languages. In this paper, we present courteous logic based
representations for software requirements. We report the benefits of courteous logic based representations
for handling inconsistencies in software requirements and take into account views of multiple stakeholders
and the presuppositions. We show how courteous logic based representations can be used to ensure
consistency as well as to uncover presuppositions in the requirements.

1 INTRODUCTION

Software Development commences with the phase
comprising requirement engineering activities. Any
software model, whether it is Waterfall model,
Iterative or Agile, commences with tasks centred on
the popularly known requirements phase. The
requirements phase becomes crucial to the success
of the software as this phase only serves as the basis
for subsequent phases of software development. It
would not be incorrect to say that establishing
correct requirements is imperative even in agile
model where developers work in close connection
with the users; there is still need to clearly specify
the requirements so that the requirements are well
understood by the developer. The mode of
expressing the requirements may vary from visual
models to textual use-cases to user scenarios, but the
underlying idea is that the requirements should be a
good representation of the domain under study and
should be well understood and agreed upon by all
the stakeholders. There is no precise definition as to
what is meant by ‘good’ representation but with
reference to features of good software requirements
specification, requirements representations should be
consistent, unambiguous and complete in nature
(IEEE CS, 1998). It is a challenging task to draw
upon the representations satisfying these qualities.
The most common defect that arises in software
requirements representation is that of inconsistency.

The elicited requirements describing the functional
specifications of the behaviour of the information
system or the software application are frequently
incomplete in nature as users might not be able to
express all what they need or the stated requirements
are not well understood by the requirements
engineer. Therefore, the gathered requirements often
need enrichment during analysis for functional
behaviour as well as non-functional properties.
Requirements engineers need to examine these
gathered requirements and to transform this “rough”
sketch of requirements into a correct requirement
specification (Zowghi, 2003). As a result, new
requirements are identified that should be added to
the specification, or some of the previously stated
requirements may need to be deleted to improve the
specification. It becomes a critical task for
requirements engineers to maintain the consistency
of the set of specified requirements.

Our contribution in this paper is to demonstrate
the courteous logic based requirements
representations (requirements specification
hereafter) as a worthwhile approach towards
handling inconsistency in the requirements and the
related issue of identifying presuppositions (Ma et
al., 2009). The use of logic to formalize the
requirements has been acknowledged in earlier
works too as logic offers proof-theoretic framework
facilitating requirements validation and evolution.
We are making use of a form of non-monotonic

95Sharma R. and Biswas K..
Handling Inconsistency in Software Requirements.
DOI: 10.5220/0003999500950104
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2012), pages 95-104
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

logic as requirements evolution becomes non-
monotonic after an initial monotonic phase (Zowghi,
2003).

The rest of the paper is organized as follows. In
section 2, we elaborate the inconsistency concern
that motivated the use of courteous logic. Section 3
describes courteous logic in detail and how it can be
used to address the inconsistency and presupposition
concern in requirements. In section 4, we present an
overview of related work followed by possible
threats to the usage of formal logic by requirements
analysts in section 5. Section 6 finally presents
discussion and conclusion.

2 INCONSISTENCY CONCERN

Several adequate definitions are available
elucidating the inconsistency concern in software
requirements (Tsai et al., 1992), (Gervasi and
Zowghi, 2005). Of the two IEEE interpretations of
inconsistency, namely internal inconsistency and the
Software Requirements Specification not agreeing
with some higher level document (traceability), we
are interested in addressing the former one. Internal
inconsistency arises when the specification of
requirements contains conflicting or contradictory
information about the expected behaviour of the
system. The reason for conflicting information
existence can be attributed to multiple views of the
stakeholders. Internal inconsistency may also arise
when some new requirement is added or an existing
requirement is removed from the requirements
specification. Internal inconsistency may also arise
due to lack of domain knowledge at the
requirements engineer’s end owing to which some
implicit knowledge, referred to as presupposition
that could not find explicit expression in the
requirements set, gets missed in the elicited
requirements. These forms of inconsistency may be
detected or remain undetected at the time of
requirements analysis. It is often a matter of the
domain expertise of the requirements analyst to
detect the inconsistencies in the elicited
requirements. If inconsistency is detected during
requirements phase, then it can be corrected and the
defects which surface later in software development
lifecycle can be contained in requirements phase
only. If undetected, then the problem permeates the
subsequent phases as the programmer might resolve
the concern arbitrarily during implementation. The
undetected inconsistency is an indication that
possibly the analyst has had a presupposition about
the inconsistent information, or possibly it was

overlooked. Presupposition being a linguistic
phenomenon is related to the utterance and the
intuitive meaning of the sentence (Levinson, 2000).
In context of requirements, presuppositions
significantly contribute to both inconsistency and
incompleteness problems.

In order to contain defects in the requirements
phase and effectively manage the concern of
inconsistency, certain degree of formalism is
required in the requirements specification. It is
essential to draw a formal model or representation of
requirements that is a reflection of the expected
observable behaviour of the system. Such a model or
representation would allow identifying implicit or
hidden inconsistency, which is otherwise difficult to
identify as implicit inconsistency arises out of
interpretation or consequence of the requirements.
We can easily identify and take into consideration
the explicit inconsistency arising because of multiple
views of stakeholders, but no such easy approach is
there with implicit inconsistency. We’ll see in next
section how courteous logic expressions address this
requirements representation problem and obligates
the analyst to explicitly specify the presuppositions
too, if any.

3 COURTEOUS LOGIC BASED
SOLUTION

The idea of having requirements representation in a
form that shows the expected observable behaviour
of the system and the need to formalize requirements
specifications led to the use of logical
representations of the requirements. We are more
focused on non-monotonic reasoning for two
reasons. First, to address the problem of
inconsistency and explicit specification of
presuppositions in the requirements; and secondly,
real-world requirements correspond to human way
of thinking and common-sense reasoning which is
non-monotonic in nature. We found courteous logic
based representation (requirements specification
hereafter) suitable for our cause. We have already
shown the adequacy of courteous logic for
requirements specification in (Sharma and Biswas,
2011). Here, we highlight the concern of undetected
inconsistency and the associated concern of
presupposition.

3.1 Courteous Logic

Courteous Logic (Grosof, 1997) is a form of non-
monotonic logic where consequence relation is not

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

96

monotonic. It is based on prioritization of the rules.
Courteous logical representation (CLP) is an
expressive subclass of ordinary logical
representation (OLP) with which we are familiar
and, it has got procedural attachments for prioritized
conflict handling. First Order Logic beyond Logic
Programming (LP) has not become widely used for
two main reasons: it is pure belief language; it
cannot represent procedural attachments for
querying and actions and, it is logically monotonic;
it can not specify prioritized conflict handling which
are logically non-monotonic. The Courteous Logic
Programming (CLP) extension of LP is equipped
with classical negation and prioritized conflict
handling. CLP features disciplined form of conflict-
handling that guarantees a consistent and unique set
of conclusions. The courteous approach hybridizes
ideas from non-monotonic reasoning with those of
logic programming. CLP provides a method to
resolve conflicts that arise in specifying, updating
and merging rules. Our CLP representations are
based on IBM’s CommonRules, available under free
trial license from IBM alpha works (Grosof, 2004).

In CLP, each rule has an optional rule label,
which is used as a handle for specifying
prioritization information. Each label represents a
logical term, e.g., a logical 0-ary function constant.
The "overrides" predicate is used to specify
prioritization. "overrides (lab1, lab2)" means that
any rule having label "lab1" is higher priority than
any other rule having label "lab2". The scope of
what is conflict is specified by pair-wise mutual
exclusion statements called “mutex's”. E.g., a mutex
(or set of mutex's) might specify that there is at most
one amount of discount granted to any particular
customer. Any literal may be classically negated.
There is an implicit mutex between p and classical-
negation-of-p, for each p, where p is a ground atom,
atom, or predicate.

An example illustrating the power of CLP:
Consider following rules for giving discount to
customer:

 If a customer has Loyal Spending History, then
give him 5% Discount.

 If a customer was Slow to pay last year, then
grant him No Discount.

 Slow Payer rule overrides Steady Spender.
 The amount of discount given to a customer is
unique.

These rules are represented in CLP as following
set of rulebase:

<steadySpender>
if shopper(?Cust) and

 spendingHistory(?Cust, loyal)
then
 giveDiscount(percent5, ?Cust);

<slowPayer>
if slowToPay(?Cust, last1year)
then

giveDiscount(percent0, ?Cust);

overrides(slowPayer, steadySpender);

As discussed above, the two types of customers

are labeled as <steadySpender> and <slowPayer>;
the predicate ‘overrides’ is used to override the
discount attributed to slowpayer over the discount to
be given to steadyspender in case a customer is
found to be both steadySpender and slowPayer.

We found that courteous logic representations are
closer to natural language representation of business
rules in terms of commonly used ‘if - then’ rules
and, can be easily interpreted by both the users and
the developers. An experience with CLP shows that
it is especially useful for creating rule-based systems
by non-technical authors too (Grosof, 1997).
Another advantage of CLP is computational
scalability: inferencing is tractable (worst-case
polynomial time) for a broad expressive case. By
contrast, classical logic inferencing is NP-hard for
this case.

3.2 Identifying Inconsistency and
Presuppositions

In this sub-section, we bring forth the expressive and
the reasoning power of courteous logic and,
demonstrate how it proves effective in identifying
instances of inconsistency and consequent
presupposition through three case-studies in varying
domains.
Example 1 - Representing and Prioritizing
Conflicting Views (Academic Grade Processing):
Consider the specification of students’ grade
approval process where the students’ grades are
approved by the course-coordinator, the department
head and the dean. The expected behaviour of the
system refers to the fact that at any point in time,
approval from department head holds higher priority
over course-coordinator; and approval from dean
higher priority over department head and in turn,
the course coordinator. Often, this observable
behaviour is not captured in its essence in
requirements specification. The use-case of the
academics system that we got to study had a mention
of process-flow only as:

Handling�Inconsistency�in�Software�Requirements

97

The grades of students once entered in the system
need to be approved by the course-coordinator, the
department head and the dean.

This particular use-case served an excellent example
of inconsistency as well as the presence of
presupposition as this process-flow nowhere
mentions the priority of grade-approval level. In the
absence of validation against explicit expected
behaviour of the real-time system, the software
system can possibly have an inconsistent state of
grades subject to the arbitrary implementation done
by the programmer. The pragmatic presupposition
(Levinson, 2000) associated with this use-case is
that when process-flow describes approval by the
course-coordinator, the department head and the
dean, then it refers to a sequential and prioritized
flow with highest priority of the dean, followed by
department head and then, course-coordinator.
Consequently, programmer needs to take care of
these details and should not take any decision
arbitrarily.
The courteous logic specification of the
requirements as stated in the given use-case
translates to four labelled rules, namely new, cdn,
hod and dean respectively:
<new>

if assignGrades(?Regno, ?Year, ?Sem,
 ?Group, ?Sub, ?Point)
then valStatus(new, ?Regno, ?Year,
 ?Sem, ?Group, ?Sub);
<cdn>

if approvedby(?Regno, ?Year, ?Sem,
 ?Group, ?Sub, ?Point, ?Status,
 coordinator)
then valStatus(coordApproved, ?Regno,
 ?Year, ?Sem, ?Group, ?Sub);
<hod>

if approvedby(?Regno, ?Year, ?Sem,
?Group,?Sub, ?Point, coordApproved,
hod)

 then valStatus(hodApproved, ?Regno,
 ?Year, ?Sem, ?Group, ?Sub);
<dean>

 if approvedby(?Regno, ?Year, ?Sem,
?Group,?Sub, ?Point, hodApproved, dean)

 then valStatus(deanApproved, ?Regno,
 ?Year, ?Sem, ?Group, ?Sub);

In the expressions above, ?X represents a variable.
The rule labelled as <new> specifies that when a
student with registration number, ?Regno; year of
study, ?Year; semester and group as ?Sem and
?Group respectively is assigned grades for points,
?Point in subject, ?Sub, then status of his grades

would be new. The rule labelled as <cdn> specifies
that grade status changes to coordapproved on
approval by coordinator. Similarly, the rules labelled
<hod> and, <dean> indicate the grade status on
approvals by the department head and the dean
respectively.

We observed the expected behaviour of the
system by subjecting the courteous logic
representation of this use-case to reasoning engine of
courteous logic. We first collected observation in the
absence of any prioritization rules as that
information was not explicitly mentioned in the
given use-cases. This use-case presented us with the
case of implicit inconsistency present in the
consequences of the above rules. We took three
sample given facts for a student with registration
number 2008CSY2658:

assignGrades(2008CSY2658, 2009,
even, 4, ai, c);

approvedby(2008CSY2658, 2009, even,
4, ai, c, new, coordinator);
approvedby(2008CSY2658, 2009, even,

4, ai, c, new, hod);

Corresponding to these facts and the given labeled
rules, the consequences inferred for grade status of
this student was found to be taking three distinct
values at one point in time:

valStatus(hodApproved, 2008CSY2658,
2009, even, 4, ai);

valStatus(new, 2008CSY2658, 2009,
even, 4, ai);

valStatus(coordApproved,
2008CSY2658, 2009, even, 4, ai);

Since this is not practical for any status term to have
multiple values assigned, it represents an
inconsistent state of the world. For all practical
purposes, we can safely say that above specification
is an inconsistent reflection of the real-world system.
This is an implicit inconsistency, having occurred
owing to the consequences of the requirements
expressed as labelled rules. Since our specification is
an executable model of the real-world, we could
validate the specification against expected behaviour
of the system and, reach the conclusion of
inconsistency at an early stage of software
development. Next, this observation pointed to the
presence of some knowledge which is not yet put
into words, i.e. presupposition. Further investigating
and refining the requirements based on this
observation and enriched knowledge, we added
following rules:

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

98

overrides(cdn, new);
overrides(hod, new);
overrides(dean, new);
overrides(hod, cdn);
overrides(dean, cdn);
overrides(dean, hod);

MUTEX

valStatus(?Status1, ?Regno,
?Year, ?Sem, ?Group, ?Sub)
AND
valStatus(?Status2, ?Regno,
?Year, ?Sem, ?Group, ?Sub)

GIVEN
 notEquals(?Status1, ?Status2);

The overrides clause establishes the prioritizing
relationship between the grade approval rules where
the first argument holds higher priority above the
second argument. The MUTEX specifies the scope
of conflict, which is the grade status in our case. The
overrides clause takes care of the possible conflict in
the student’s grade status. Validating the updated
specification against the observable expected
behaviour of the grade approval processing, we
found our specification consistent as the
consequence obtained was the expected one:

valStatus(hodApproved, 2008CSY2658,
2009, even, 4, ai);

The above example illustrates how conflicting
information can be expressed with well-formed
semantics of courteous logic. We present one more
example below that illustrates expressing some
default operation in a domain as well as exceptions
to that processing.
Example 2 – Representing Default and Exceptional
Scenario Processing (Saving and Current Account
Processing):
Consider the account processing part of a bank
customer where he can have more than one account.
Let’s consider that a bank customer can have a
current account and a saving account. The customer
can choose one of these accounts as default account
for any transaction that he wants to carry out. The
usual choice is current account but to keep the use-
case generic, let us assume that customer has marked
one of the accounts as default. The customer is free
to select the other account for some of his
transactions. In that case, the selected account
processing should override the default processing.
The natural language expression for such default
operation and associated exception can be easily
understood by the involved stakeholders as well as
developers. But what is often overlooked by
developers is the implicit interpretation here – the

account chosen for default processing should remain
unaffected in case selection is made for the non-
default account and often, this is uncovered till
testing phase. Such overlooked implicit
interpretation results in implicit internal
inconsistency. Such a defect can be easily detected
during RE phase if we have an executable model or
representation of requirements that can sufficiently
express the domain knowledge.

The courteous logic specification of the
requirements as stated in the given account
processing for deposit and withdrawal transactions
by the customer translates to following rules:

<def>
if deposit(?Txn, ?Client, ?Amount)
and holds(?Client, ?Acct)
and default(?Acct)
then addAmount(?Client, ?Acct,

?Amount);
<sel>
if deposit(?Txn, ?Client, ?Amount)
and holds(?Client, ?Acct) and
option(?Client, ?Txn, sel, ?Acct)
then addAmount(?Client, ?Acct,

?Amount);
<def>
if withdraw(?Txn, ?Client, ?Amount)
and holds(?Client, ?Acct) and
default(?Acct)
then subAmount(?Client, ?Acct,

?Amount);
<sel>
if withdraw(?Txn, ?Client, ?Amount)
and holds(?Client, ?Acct) and
option(?Client, ?Txn, sel, ?Acct)
then subAmount(?Client, ?Acct,
?Amount);

The rule with label <def> indicates transaction
processing from default account whereas the rule
with label <sel> indicates processing from the
selected account. For deposit type of transaction, the
default rule (the first rule in the above expressions)
indicates that if a client, ?Client is holding an
account, ?Acct marked as default and he initiates a
deposit transaction with a certain amount, ?Amount
then that amount will get credited or added to his
default account. Similar is the case with withdrawal
transaction. The client can choose another account
provided he is holding that account and chooses it
for some transaction as expressed through rule
labeled as <sel>. In this case, any deposit or
withdrawal transaction would affect the selected
account only. To verify that any such transaction
will not affect the default account, we first tested the
rules without any override clause using some sample

Handling�Inconsistency�in�Software�Requirements

99

data as:
holds(abc, acctabc10);
holds(abc, acctabc11);
default(acctabc10);
deposit(t1, abc, 1000);
deposit(t2, abc, 5000);
withdraw(t3, abc, 2000);
withdraw(t4, abc, 4000);
option(abc, t2, sel, acctabc11);
option(abc, t3, sel, acctabc11);

Corresponding to these facts and the given labeled
rules, the consequences inferred for each of the
transactions t1, t2, t3 and t4 were found to be:

addAmount(abc, acctabc10, 1000);
addAmount(abc, acctabc10, 5000);
addAmount(abc, acctabc11, 5000);
subAmount(abc, acctabc10, 2000);
subAmount(abc, acctabc11, 2000);
subAmount(abc, acctabc10, 4000);

The results obtained indicate that deposit to and
withdrawal from default accounts are adequately
expressed as the behavior of dummy transactions, t1
and t4 is same as the expected behavior. But on
account selecting, both the selected and the default
accounts are getting affected as transactions t2 and
t3 represent the outcome of the requirement
expression. Adding the clause for prioritizing the
selected account and making the default account and
the selected account mutually exclusive so that only
one of these accounts is impacted by some
operation, we got the desired output – one that
matches the expected behavior in real-time scenario:

overrides(sel, def);
MUTEX
addAmount(?Client, ?Acct1, ?Amount)
AND
 addAmount(?Client, ?Acct2, ?Amount)
GIVEN
 notEquals(?Acct1, ?Acct2);

MUTEX
subAmount(?Client, ?Acct1, ?Amount)
AND
 subAmount(?Client, ?Acct2, ?Amount)
GIVEN
 notEquals(?Acct1, ?Acct2);

As elaborated in detail in example 1, the mutex
clause in this case establishes the scope of conflict
over the two accounts and, the override clause
assigns priority to the selected account. This
example highlights two things:

a) The labels used as handle to some rule are not
mere tags that need to be different from each-

other. These can be repeated and reused in
same specification provided their intent is
same wherever used.

b) The expressions without ‘override’ and
‘mutex’ clause were consistent with natural
language specification of the requirements but,
were inconsistent with expected behavior. The
implicit presupposition that only the selected
account should be affected was uncovered at
requirements level owing to the executable
nature of our specification.

Let’s consider one more example to show that
multiple views of stakeholders can also be
conveniently expressed using courteous logic based
requirements specifications.

Example 3 – Representing and Prioritizing Views
of Multiple Stakeholders (Corporate Event
Processing):

Consider a corporate action event announced on a
security. If a client is holding the security on which
event is announced, then that client is eligible to get
the announced benefits of the event. These benefits
can either be in the form of cash or stock or both.
The types of benefits disbursed to the clients vary
from one event type to another; it also depends on
various other factors like base country of the
security on which event is announced, the country of
the customer; client opting for an option etc. Then,
there can be multiple stakeholders having differing
views like one particular stock market has rules that
do not allow client to opt any option announced on
event; whereas, clients from some other market can
opt for event’s announced operations, so on and so
forth. We took a small subset of this large set of
rules and gradually scaled the rules as well as the
data to find that results are consistent with the actual
observable expectations. This particular example
served towards claiming scalability of courteous
logic based requirements specifications. Our
expressions could not only be easily validated
against the real-world expected behavior but also
these were small and compact making them easy to
comprehend and verify against multiple real-world
scenarios as shown below:

 <cash>
if event(?EventId, ?Type, ?Security)
and holds(?Client, ?Security) and
opts(?Client, cash)
then distribute(?Client, ?EventId,

cash);
<stock>

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

100

if event(?EventId, ?Type, ?Security)
and holds(?Client, ?Security) and
opts(?Client, stock)
then distribute(?Client, ?EventId,

stock);

<both>
if event(?EventId, ?Type, ?Security)
and holds(?Client, ?Security) and
opts(?Client, both)
then distribute(?Client, ?EventId,

both);

<divMtk1>
if event(?EventId, dividend,
?Security) and holds(?Client,
?Security) and baseCntry(?Security,
Mkt1)
then distribute(?Client, ?EventId,

stock);

<divMkt2>
if event(?EventId, dividend,
?Security) and holds(?Client,
?Security) and clientCntry(?Client,
Mkt2)
then distribute(?Client, ?EventId,

nothing);

<divMkt1Mkt5>
if event(?EventId, dividend,
?Security) and holds(?Client,
?Security) and baseCntry(?Security,
Mkt1) and clientCntry(?Client, Mkt5)
then distribute(?Client, ?EventId,

cash);

The rule with label as <cash> indicates that if an
event, ?Event of some type, ?Type is announced on a
stock, ?Security and a client, ?Client is holding that
stock and he opt for ‘cash’ option then he will receive
the benefit of event in the form of cash as per the
announced rules of the event. Similarly, use-cases
with stock and both types of disbursements are
represented through rules labelled as ‘stock’ and
‘both’ respectively. These are generic rules. Next, we
have considered a hypothetical scenario where in
stakeholders from stock market, Mkt1 are of the view
that if ‘dividend’ type of event is announced on the
stock belonging to their nation, then all customers
shall get event’s benefits as stock only. This is
represented in the rule labeled as <divMkt1>. The
rule with label <divMk2> indicates that dividend
event announced will not entail any benefits to clients
from stock market Mkt2. The last rule is an exception
to rule <divMkt1> - it says that if client hails from the
stock market, Mkt5 then he is eligible for benefit in
the form of cash rather than stock.

The above-mentioned rules were then verified
against facts from real-world as below:

event(11, dividend, samsung);
event(22, dividend, dell);
baseCntry(dell, US);

holds(abc, samsung);
holds(abc, dell);
holds(xyz, dell);
holds(pqr, dell);
clientCntry(xyz,Mkt2);
clientCntry(pqr, Mkt5);
opts(abc, both);

In the absence of any kind of prioritization amongst
multiple views, we got the validation results as:

distribute(pqr, 22, cash);
distribute(pqr, 22, stock);
distribute(xyz, 22, nothing);
distribute(xyz, 22, stock);
distribute(abc, 11, both);
distribute(abc, 22, both);
distribute(abc, 22, stock);

These results are not in line with what actual
happens in the stock market as one conclusion
indicates no benefit to xyz for event 22; whereas
next conclusion points out stock benefit to the same
client on the same event. When the multiple views
from stakeholders of different stock market were
assigned priorities (that can be easily modified or
updated later on too), the results obtained were as
per the expected benefits disbursed to the client in
stock market abiding terms and conditions:

overrides(divMkt1Mkt5,divMkt2)
overrides(divMkt1Mkt5,divMkt1)
overrides(divMkt1Mkt5,cash)
overrides(divMkt1Mkt5,stock)
overrides(divMkt1Mkt5,both)

and similar rules for rest of the markets including
the generic ones:

overrides(both,stock);
overrides(both,cash);
overrides(stock, cash);
MUTEX
distribute(?Client,?EventId,Value1)
AND

 distribute(?Client,?EventId,?Value2)
GIVEN
 notEquals(?Value1, ?Value2);

Validating the facts gathered earlier against the set
of labeled rules and the prioritized information,
consistent and expected results were obtained as:

Handling�Inconsistency�in�Software�Requirements

101

distribute(abc, 22, stock);
distribute(pqr, 22, cash);
distribute(abc, 11, both);
distribute(xyz, 22, nothing);

3.3 Observations

Courteous logic based representations can
sufficiently express software requirements with
reasoning and inferring mechanism as shown in
(Sharma and Biswas, 2011). We have explored the
inconsistency and presupposition concern in detail in
this paper. The advantage of the courteous logic
based requirements specification lies in following
observations:

1. It supports expressing conflicting information
in a way that is subjected to prioritized
conflict-handling. Any modification to the
priority rules is a matter of changing the
priorities.

2. Adding any information or removing any
information during requirements evolution
ensures consistency of the requirements
specification.

3. Having inference mechanism based FOL, it
allows validating the specifications against the
expected observable behavior of the system.

4. It provides assistance in identifying
presuppositions (tacit knowledge) in the
specified requirements.

5. Earlier detection of defects as well as any
disconnect between the client’s intent and the
requirements analyst’s interpretation.

We also observe that courteous logic based
requirements specifications have the potential to
improve requirements elicitation, management and
evolution. Point 5 leads to further noticing that
earlier detection of problems can considerably
reduce cost and time effort of the project and help in
keeping project schedule on time. Further, courteous
logic based requirements specifications can be
helpful in identifying and preparing test-cases. The
test-cases can be easily mapped to the rules present
in the courteous logic based requirements
specifications. The validation data can serve as the
starting base to test data.

4 RELATED WORK

The use of logic for requirements representation and
resolving inconsistency issue in software

requirements has been acknowledged earlier too and
has found its place in several authors’ work. RML
(Greenspan, Borgida and Mylopoulos, 1986) is one
of the earliest logic-based formal requirements
modeling language. Revamping efforts on RML
gave way to two more related languages –
Conceptual Modeling Language (CML) (Stanley,
1986) and Telos (Mylopoulos et al., 1990). HCLIE
language (Tsai and Weigert, 1991) is a predicate
logic-based requirement representation language. It
makes use of Horn clause logic, augmented with
multiple inheritances and exceptions. HCLIE
handles non-monotonic reasoning by not reporting
any consequence in case any conflict arises.
Description Logic has also been used for
representing requirements in (Zhang and Zhang,
2007). Description logic is an expressive fragment
of predicate logic and is good for capturing ontology
whereas, Horn clause logic is useful for capturing
rules. Ordinary Logic Programming (OLP) lacks in
conflict-handling or non-monotonic reasoning.
Default Logic form of non-monotonic reasoning has
also been used to reason about inconsistencies in
requirements in (Gervasi and Zowghi, 2005). The
computational complexity of default logic is high
and the expressions are not too easy and convenient
to comprehend.

Business rules do present themselves with many
instances of conflicts and presuppositions around
them. Handling business rules along with constraints
and related events as well as the semantics of rules
are of paramount importance in business processes.
To capture business rules successfully, Horn clause
logic needs to be augmented with non-monotonic
reasoning as has been discussed in (Borgida,
Greenspan and Mylopoulos, 1985) and, here we
have presented courteous logic based representations
towards the cause. Syntactical presuppositions have
been addressed in (Ma, Nuseibeh and et.al., 2009).
We have presented logical expressions as a solution
towards addressing semantic and pragmatic
presuppositions. The underlying essence and rational
of requirements and the corresponding contextual
meaning can be understood via some executable
model of requirements. We have presented such a
model in the form of courteous logic based
requirements representation.

5 THREATS TO VALIDATION

The logical expressions do offer a mechanism to
reason with the requirements and resolve relevant
issues. Nevertheless, these formal logical

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

102

expressions might pose usability problems to the
stakeholders as well as those developers who are not
fluent with the formal logic.

Even though the courteous logic representations
are more English-like with less usage of arrows and
symbols, still accepting a new approach is not very
encouraging until its benefits are realized. Secondly,
some amount of training would have to be imparted
to the involved parties in requirements phase in
order to make them understand the syntax and the
querying mechanism. Third, translating the
requirements corpus to the courteous logic
expression would be time-consuming and would
depend on the individual’s expertise and skills.
Automated conversion from natural language to
these representations would certainly be an
advantage but doing that itself poses natural
language parsing challenge.

We still hope that benefits drawn from using
non-monotonic formal representations of
requirements will outweigh the threats.
Requirements of varying domains are of varied
nature and not one kind of model is able to
sufficiently express all the aspects of the system. A
domain which is rule-intensive and has multiple
conflicting views and requirements would certainly
be benefitted by courteous logic based
specifications.

6 CONCLUSIONS

In this paper, we have successfully addressed the
problem of identifying and analyzing the logical
inconsistency in the software requirements using
courteous logic based requirements specifications in
our work. We have shown that these specifications,
being an executable model of the system’s
requirements, not just identify implicit
inconsistencies but also help in identifying and
specifying presuppositions explicitly. The results
from the case-studies are encouraging. Tractable
inferencing and scalability of the representations are
some of the motivating factors towards using
courteous logic based specifications. We have also
demonstrated that fixing the inconsistency by rule-
prioritization does not entail a major change in the
existing requirements specification. This aspect
makes these expressions a suitable choice from
software maintenance point of view. Though the
requirements analysts might not find the idea of
using courteous logic comfortable, but since these
representations are relatively simpler; easy to
comprehend and natural language like, we hope that

with small amount of training these could be well-
taken by the practitioners as well.

We further aim to refine the current proposed
requirements representations and incorporate the
second interpretation of inconsistency – traceability;
and then develop a semantic framework for
automated analysis of requirements. We see our
framework as a foundation towards integrated
framework for semantic software engineering.

REFERENCES

IEEE Computer Society, 1998. IEEE Recommended
Practice for Software Requirements Specification,
IEEE Std 830 – 1998(R2009).

Zowghi, D., 2003. On the Interplay Between Consistency,
Completeness, and Correctness in Requirements
Evolution. In Information and Technology, Vol 45,
Issue 14, 2003, pp 993-1009.

Ma, L., Nuseibeh, B., Piwek, P., Roeck, A.D. and Willis,
A., 2009. On Presuppositions in Requirements. In
Proc International Workshop on Managing
Requirements Knowledge, pp.68–73

Tsai, J. J. P., Weigert, T. and Jang, H.,1992. A Hybrid
Knowledge Representation as a Basis of Requirements
Specifciation and Specification Analysis. In IEEE
Transaction on Software Engg, vol. 18, No 12, 1992,
pp. 1076–1100.

Gervasi, V. and Zowghi, D., 2005. Reasoning about
Inconsistencies in Natural Language Requirements. In
ACM Transactions on Software Engg and
Methodology, Vol 14, No 3, 2005, pp. 277-330.

Levinson, S. C., 2000. Pragmatics, Cambridge University
Press.

Sharma, R. and Biswas, K.K. 2011. Using Courteous
Logic based representatiosn for Requirements
Specifications. In International Workshop on
Managing Requirements Knowledge.

Grosof, B.N., 1997. Courteous Logic Programs:
prioritized conflict handling for rules. IBM Research
Report RC20836, IBM Research Division, T.J. Watson
Research Centre.

Grosof, B.N., 2004. Representing E-Commerce Rules via
situated courteous logic programs in RuleML.
Electronic Commerce Research and Applications, Vol
3, Issue 1, Spring 2004, pp 2-20.

Greenspan, S., Borgida, A. and Mylopoulos, J.,1986. A
Requirements Modleing Language and its logic,
Information Systems, vol 11, no 1, 1986, pp 9-23.

Stanley, M., 1986. CML: A Knowledge Representation
Language with Applications to Requirements
Modeling, M.Sc. Thesis, Dept Comp. Sc., University
of Troronto.

Mylopoulos, J., Borgida, A. and Koubarakis, M.,1990.
Telos: Representing Knowledge about Information
Systems, ACM Transactions on Information Systems,
1990.

Handling�Inconsistency�in�Software�Requirements

103

Tsai, Jeffrey J.-P. and Weigert, T.,1991. HCLIE: a logic-
based requirement language for new software
engineering paradigms, Software Engineering, vol 6,
issue 4, July 1991, pp 137-151.

Zhang, Y. and Zhang W., 2007. Description Logic
Representation for Requirement Specification, Proc
International Confernce on Computational Science
(ICCS 2007), Part II, Springer-Verlag, pp 1147 –
1154.

Borgida, A., Greenspan, S. and Mylopoulos, J., 1985.
Knowledge Representation as the basis for
Requirements Specifications, Computer, vol 18, no 4,
Apr. 1985, pp 82-91..

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

104

