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Abstract: An energy company manages power stations, handles sales and purchases of electrical energy, CO2 emission
permits and other goods. The goal of such a company is to ensure energy safety of its clients and maximize
the profit. The problem is complex because of its structure and size therefore efficient automated approaches
for solving it are in demand. We have generalized the problem definition to account for any structure of the
power stations, market data and time scope. The definition describes a non-linear combinatorial optimiza-
tion problem. We have tested a number of approaches including: constraint/ logic/ dynamic/ integer/ linear
programming, local search and their hybrids using prototypes with input data from a real life process. We
present a hybrid solver to produce an acceptable, near optimal solution which satisfies the requirements of an
industrial application. Our research is a road-sign for development of similar software for the energy industry.

1 INTRODUCTION 2.1 Timing and Notation

The aim of the solver is to return a schedule of pro- The production, trade and constraint setup is per-
duction, sales and purchases of all the goods for aformed for discrete timgeriods h € [1,H] is the
given time horizonthat satisfies all théhard con- shortest period called, for convenience, haur.
straints and optimizes thebjective function Hard Each value ofh is categorized ageak or off-
constraints are these that cannot be violated in the so-peak  Furthermore, consecutive values bfare
lution. Satisfying them guarantees that technological grouped into period$Hm_1,Hm] = Mm indexed by
and marketing requirements are met and ensures then ¢ [1,M] where Hy = 0,Hm_1 < Hm,Huw = H ,
energy safety of the company’s clients. The objective which are, for convenience, calleshionths The
function is the company’s profit gained for a given period of [1,H] =y is, for convenience, called a
time horizon. Maximizing this profitis the maingoal. year An energy company handles the following
The optimization is performed for problem instances goods energy{en}, CO2 emission permitep,, p €
which consist of: technological capabilities and pa- [1,P]}, financial benefits{be,,b € [1,B]}. An en-
rameters of the power stations, market plans and es-ergy company handles the followirapjects power
timates supplied by marketing and financial experts, stations, production units, sales, purchases. Some
trade contracts, initial states for those goods that canobject-period pairs have corresponding control vari-
be accumulated. ablesv(object period). Numerical (unless otherwise
stated) attributes (ty pe ob ject/good period) are at-
tached to objects/goods, wheyeriod denotes the pe-

2 PROBLEM DEFINITION riod to which it applies. The term "volume” is used to
describe the quantity of some good.

We have obtained instances of the profit maximization .

problem during work on a commercial project. Bas- 2.2 Energy Production and Trade

ing on the problem instances, we have built a general-

ized problem definition that accounts for any structure An energy companyeq is divided intopower sta-
of the power stations, market data and time scope. Totions{ps;: s< [1,§}. Each power statiops; is di-
the best knowledge of the authors a definition of such vided intoproduction units{ pu® : i € [1,US]} which

a problem has never been published before. produce (electricalgnergy ec manages the volumes
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vpsh of energy supplied bys; in periodh. vps = 2.5 Control Variables

f pv&h(ziuzs1 v(pw’,h)) wheref pvs is apiecewise lin-

ear function fpwp includes a number of compo- The solution to the optimization problem is defined
nents: by values assigned to the control variables. The com-
plete seCV of control variables (seARPPENDIX A)

is (A.1)-(A.7) where (A.1) are energy production vari-
to regulate the energy market. These actions aredPles, (A.2)-(A.3) are energy trade variables, (A.4)-

: . L . “(A.5) are financial benefits trade variables, (A.6)-
?:;d'hc(tggsb\{ &Eer:;? as a piecewise linear function (A.7) are CO2 emission permit trade variables.
S, i=1 P .

e The actions of a regulatory body, which may in-
tervene with the production plans and are meant

e The error factoii(zo, ps;, h) associated with the 2 §  Constraints
imperfections of the energy distribution network

e The sales of energiv(se’,h) :i € [1,S€]} man- The formulas representing linear constraints are: vari-
aged privately by th@s; able unary (variable domains) (A.8), production gra-
The energy trade consists of purchages : i € dient (A.9), a technolog_ical c_onstraint_ of eapk?,

[1,Zd} and salegsq : i € [1,Sé} managed by thec energy balanqe (A._10), flnar_10|al benefit monthly bal-
The trade is further divided intoontractsandplans ance (A.12), financial benefits yearly balance (A.11),

The contract is a signed trade agreement, whereas th&€O2 permits nonnegativity (A.13), CO2 permits
trade plan is based on the expert predictions. This dis-Yearly balance (A.14). (A.12)-(A.14) are calleihg
tinction, however, is reflected in thariable domains ~ Period constraints The attribute namest explicitly

and is transparent for the solver. denotes the initial state, whenever indexation refers to
element 0 e.gv(pw’, 0) it signifies animplicit initial
2.3 CO2 Emission Permits state.

The formulas representing nonlinear constraints
are: minimal duration for which @u’ has to work
after startup (A.15), technological constraint for the
level of production (A.16), minimal number qiu®
turned on inpss (A.17), startup schedule of pu}
(A.18), relation between the production levelspmf

The CO2 emissions of thps; have to be covered
by permitsof {epy, p € [1,P]} types. Permits may
be traded, may be granted by the government, may
be consumed are limited by constraints depend-

ing on theep,. The permit trade is managed for X .
ezgch DS sepF;prately. VT:) € [LP,se L9 thg de- and energy provided to trexby ps; (A.19). Attribute

fined sales and purchases are respectifef°: i € a(startup puf,y) is an ordered set of values, #is a set
[L,SPS}, {zeP°:i € [1,ZpPS]}. The permits are ~ Cardinal number.
consumed to cover emissions which are relative to en-

ergy production. Consumption volume\pts, h) - 2.7 Elements of the Objective Function

a(co2, pu,h), wherea(co2, pu?,h), is the emission o .

ratio. The objective functiony(CV) represents the totaic
profit. Each control variable has a corresponding

2.4 Financial Benefits profit ratio represented by thgrofit attribute. For

production and purchases the profit ratio is negative
Financial benefitof type be,,b € [1,B] can be pro- and for sal_es the_pr(_)fit ratio is positive. The profit of
duced, purchased, sold or consumed. They are Ioro_control variables is linear apd represented by (A.20).
duced relatively to energy productiobg, produc- (A.21) and (A.22) are nonlinear elements of the cost
tion volume isv(pus,h) - o(bey, pus,h) . The ra- funcnon. The first represents the startup coqu? _
tios of production are dependent on the efficiency i.e. the cost of turning on a disabled production unit.
of, and resources used hy. Examples of fi- The latter corresppnds to costs related to components
nancial benefit types are type for energy produced ©f the fPvsh (Section 2.2).
from renewable resources, type for high efficiency
coal powered production, type for natural gas pow-
ered production, etc. Sales and purchases respec3d TESTED APPROACHES
tively, are denoted by{stf : i € [1,SB],b € [1,B]},
{zf :i € [1,ZbP],b € [1,B]}. Thebe, is consumed, The approaches have been tested on probiem
relatively to the volume of sold energy, to gain access stancesdenoted byinst(ecH) whereec is the def-
to certain energy marketsg, consumption volumeis inition of objects and typesH is the time hori-
v(sq,h)-a(be,sa,h). zon. In particulainst(ec ,H") denotes the industrial
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real life problem instanceinst(ec ,H") consists of
289’200 control variables, 411’838 linear non-unary
constraints and 490’560 nonlinear constraints for the
H" = 8760. Under the confidentiality agreement we
are not allowed to disclose the structuredf. For the
time cr(st) used to perform the optimization, the con-
dition cr(st) > 10minis called theimeout —timeout

is a requirement for the solver.

We have used the following criteria to compare
models: cr(nlin) are nonlinearities included in the
model,cr(gopt) is guarantee of optimality provided,
cr(long) are long period constraints included in the
model,cr(tef f) = cr(st)/H time efficiency. The ap-

proaches have been tested on personal computers witr}jl

2 x 2.2Ghz processors, 3GB of RAM and address
space.

3.1 Constraint (Logic) Programming

Constraint programming (CP) (Apt, 2009; Marriott
and Stuckey, 1998) is a programming paradigm with
the central notion of a constraint. A constraint states
relations between variable domains (allowed combi-
nations of domain values). CP is a form of declara-
tive programming where the program in the form of
constraint statemenis a description of the problem,
rather than a path to the solution (unlike in the case
of procedural programming). CP makes a distinction
between 3 components required to obtain a solution:
the declarative constraint statemecnstraint prop-
agationandsearch Historically CP has grown out of,
and has been embeddedagic programmingand of-

ten uses the LP based backtracking search, it is how-
ever possible to embed constraint programming in a
procedural language.

We have tested models written under two CP
systems (Schulte, 2010; Szymanek and Kuchcinski,
2010) and a CLP system (Cisco Systems, 2010) with
the result of obtaining optimal solutions for problem
instances wittH € [1,|H"/2000]]. Thecr(teff) €
[5s, 25s] depending on the CP system, constraint prop-
agation methods and search methods. However for
problem instances withl > |H"/100] we have been
unable to produce a solution without a timeout.

The advantages of the CP approach are that the
complete problem model can be taken into account
cr(long) = cr(nlin) = true, solution with the guar-
antee of optimality can be obtained(gopt) = true.

The major disadvantage is that the models are imprac-
tical for problem instances near the real life problem
size
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3.2 Dynamic Programming

Dynamic programming (DP) (Bellman, 1953; Cor-
men et al., 2001) is a mathematical and computer al-
gorithmic scheme for solving optimization problems.
The method builds the final solution by expanding ini-
tial conditions step by step into more complex cases
with cr(te f f) determined by the number of states and
the complexity of the step.

By means of DP it is possible to obtain a com-
plete solution withcr(gopt) = true in polynomial
time complexity by (i) calculating an initial solution
forh= 1 andpui and (i) expanding the solution upon
Il of the puandyear. Unfortunately, the complexity
of our problem generates a state-space too large for
any direct approach. However, a combined approach
of DP and local search can be derived if only we are
able to separate a simple subproblems for DP.

We have used a DP approach to determine, for a
fixed hourh, the costs of volumesol; € 3;v(pw,h)
for all pss € {ps} and generate the maximized to-
tal profit pry for hour h. 'In the basic version we
have determinegry, by managing costs of produc-
tion of eachpw. These costs included the joint
costs of maintaining the@u® on vol®, along with a
few other parameters (e.g. profit and cost associated
with bey production). In the first step of the algo-
rithm we have generated a lookup table of production
volumesvol? and minimal costs of achieving them
for eachps;. Assume that, for a fixeth and ps;,
v(pw,h) € [mn,mx]. We denote the cost giuf in
h with volumex € [mn, mx] asep(i,x). Letm[x](2,
wherex € [1,Ug andz € [, mn, 3 mx] be an
optimal cost of the production unitp; — pug) gen-
erating a total production equal i» The values of
m[x|[Z] are equal to: (ixp(1,z) for ze€ [mm, mx], (ii)
min(mx— 1][z—i]+cp(x,i)) fori € [mn, mx] or (iii)

o in all remaining cases. This relation gave us, for
eachh andps;, an optimal configuration ofolfh nec-
essary to produceoly. In the second step we merged
all obtained lookup tables (using DP) along with pur-
chaseszg modeled as an artificighu with its own
lookup table. In the following step we generated (us-
ing DP once again) a lookup table for hduand for
salessq, containing the optimal methods of selling
of particularen volumes. In the last step of the al-
gorithm we have compared the two obtained lookup
tables and greedily chosen the best, as the pro-
duction volume of thec

The basic DP algorithm described above was fast
(cr(teff) = 5—8mg comparing to CP but did not
includecr(long) leading to a very complicated local
search with poor final result for the year. Thus, we
have refined the solution by introducing partial op-
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timization of goods to the DP algorithm. The best true, a relatively shortcr(teff) = 10ms(LP model
configuration we have obtained by introducing only with (A.24) even forinst(ec,H"). The main dis-
one hard constraint - CO2 emission permit, leading to advantage is that nonlinearities are accounted for in

cr(teff) =50ms a very limited scope. Therefore, an additional opti-
The main advantages of this approach are: (i) fast mization step has to be used to fully satisfy the non-
and always optimal solution for a fixddand (ii) in- linearities.

clusion of cr(nlin) without any additional time ef-
forts. Unfortunately, the overatir(long) manage- 3.4 Local Search
ment is poor leading to very complex local search that

need to be applied as a superior algorithm. Local search (LS) (Aarts and Lenstra, 1997) is a
meta-heuristic for solving computationally hard op-
3.3 Linear and Integer Programming timization problems. For the case et optimiza-

tion the LS algorithm is organized as follows: it
assumes an initial solution (step 1), repairs the vi-
olated nonlinear constraints (step 2) by applying a
set of repair_heuristics looks for a better solution
(step 3) using a set amprovementeuristics(step
3a). All value assignmen@V = vals(heutCV) (step
2a,3a), are performed by choosing a neighborhood
pu'j‘ and applying new values 0V such that all lin-
ear constraints are satisfied and that only the vari-
ables {v(pu,h) : h € [1,H]} in neighborhoodpuf
gare changed from all production variables pu’ h)}.

Linear programming (LP) (Dantzig, 1963) is a natu-
ral approach to solving linear problems but does not
apply directly to nonlinear problems. This drawback
can be partially overcome by including relaxations
of nonlinearities in the problem model, it however

comes at a cost of loosing accuracy and efficiency.
We have tested the LP model with a number of relax-
ations. First of all it has to be noted that the relaxation
of (A.19) is required for the model to be of any use be-

cause it relates the production to sales and is require : .
in the balance constraints (A.10). For any piece- LS performs backtrackingbécktrach in the cases

wise linear functionf p, defined as (A.23) a convex when constraints cannot be repaired to undo wrong

hull relaxation (Hooker, 2006) has been used (A.24) heuristic choices. A solution is returned in the form of
In the initial solution o% the LP model with (A.24), variable valuesaluegsolution) and the correspond-

(A.10) are not satisfied because they contain biasesing pro f_it. The details of particular heuristics shall

caused by the relaxation. To eliminate the bias the not be discussed becaus_e they are dependent onapar-

LP model is solved again with additional constraints ticular glasg of problem instances and are subject to

(A.25) that linearize thefpvs, around thesteady ~ cuStomization.

statesobtained from the first solution. To tighten the 1. CV = valueginit), profit = —c

relaxation, models of further nonlinearities can be in-

cluded: startup relaxation (A.26) of (A.16), startup _ _

cost relaxation (A.27), (A.28) of (A.21) (whestc (a) for all cstr € violatedheurCv) : CV =

is the total cost of startups) , minimupu$ enabled \I/alue:$heur(cstr),CV)

relaxation (A.29) of (A.17). Mixed integer/linear  (b) if ~#violatedheurCV) = 0 thenbacktrack

tpr?]%rar?;ningl(Mllt__P) ?)ppf?acdh, can ?"tso th_tused 10 3. for all heure improvementeuristics

ighten the relaxation by introducing integrality con- B

straintsinteger(ar;), integer(on; p). () CV = valuegheurCv) .
We have tested the LP and MILP approaches, for (P) if #violatedall,CV) = 0A w(CV) > profit

2. for allheure repair_heuristics

inst(ed,H") using the COIN-OR (IBM, 2010) CLP then valuegsolution) = CV, profit = w(CV)
and CBC solvers. The LP model with (A.24) and elsebacktrack
(A.25) had produced the solution wittr(teff) = The advantages of local search is that it can be

10ms LP model with (A.24), (A.25) and (A.29) had  applied to large and nonlinear problems. The disad-
cr(teff) = 40ms the model with additional relax-  vantage is that any LS algorithm is custom tailored
ations (A.27) and (A.28) produced a solution af- for a specific problem definition and class of problem

ter cr(st) = 1853 with the timeoutand cr_(tef f) = instances. It is typical that LS is highly dependent on
211ms A model with integrality constraints did not  the quality of the initial solutiorCV = valueginit)
produce a solution within 1h. (how many constraints, and of which classes, are vi-

To summarize, the LP relaxation approach has a olated, are those difficult for LS to handle satisfied
number of advantages: taking into account all the etc.)
long period constraintsr(long) = true, producing
an optimal solution for the defined model(gopt) =
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Table 1: Execution times of the hybrid solver (CP+LP+LS)deveral problem instances derived framst(ec ,H").

Nr || Problem instancerfst(ec H)) | CP+LP | CP+LP+LS
1 || Original problem instance for a yeansgt(ec,H")) 46.8s 161.8s
2 || 3 quarters of the yeair(st(ec?,H" - 3/4)) 31.3s 111.1s
3 || 2 quarters of the yeair(st(ec?,H" - 2/4)) 19.8s 74.2s
4 || 1 quarters of the yea(st(ec>,H" - 1/4)) 9.4s 41.3s
5 || Higher costs of energy productiomgt(ec? H")) 12.7s 121.9s
6 || Unconstrained sales and purchasest(ec”, H")) 183.9s 295.5s
7 || Unconstrained sales and purchases, higher energy producist | 448.2s 614.2s
(inst(ec® H"))
8 || Unconstrained sales and purchases, heavier constraiogdqtion| 372.4s 490.7s
gradient {nst(ec”’,H"))

3.5 Hybrid Approach dependent on the size of the problem (time horizon
modifications in row 1 to 4) and is strongly depen-

Due to the fact that a single method approach is in- dent on the problem structure i.e. the types of con-
sufficient to time-efficiently account for all the com- straints (tightened or relaxed) and profit ratios for con-
ponents of thesc profit optimization problem a hy- - trol variables. This vulnerability to modification of
brid approach (solver) has been developed compris-Problem structure is a feature of LP.
ing of CP+LP+LS. The hybrid solver takes advantage
of the interactions and key strengths of the methods
included. 4 CONCLUSIONS AND RELATED
The function of CP has been reduced to perform- WORK
ing bound propagation (Dechter and van Beek, 1997)
on the constraints (A.8)-(A.14)(A.19) in order to de- - S
termine correction variabled for the equality con-  Hybridization is an approach to optimization prob-
straints in the LP model and determine infeasible con- 18ms that often yields shorter computation times than
straints at the outset without time consuming proof of Single method approaches. The relative advantage of
infeasibility by the LS. hybrid solvers can range up to a few orders of mag-
The LP model with (A.24) and (A.25) has been nNitude. This means that for applications with time-
used as described in Section 3.3 to obtain an initial OUtS imposed on optimization it may be the only ap-
solution for the LS. The LP model is preferred to Plicable solution. Furthermore, real life problems of-
DP because it accounts for all long period constraints {€n contain heterogeneous constraints and hybridiza-
(A.12)-(A.14), these constraints are "difficult” to sat- tion allows to choose techniques best suited for par-
isfy by the LS (which leads to LS timeouts) if they are ticular classes of constraints and let them exchange
not accounted for in the initial solution. Secondly the information. A survey of computational results per-
LP model outperforms DP with respectd¢o(teff). ~ formed by John N.Hooker in (Hooker, 2006) lists
The final optimization stage is LS which uses the so- Some applications of hybrid solvers and their advan-
lution provided by the the LP model as the initial vari- {2ges over single method approaches to problem such
able assignment. LS is meant to account for the non-2S: "Scheduling with earliness and tardiness cost”
linearities, find a feasible solution (repair phase) and (Beck and Refalo, 2003) solved 5 times more prob-
optimize it (improvement phase). lem instances, "Polyprophylene batch scheduling”
The hybrid approach is supreme because it is (TIMPe, 2002) solved previously insoluble problem
the only one that accounts for the complete prob- !N 10min, "Lesson tlmet?b[lng (Focacci et al., 1999)
lem model and produces an acceptable solution for 2 0 50 times faster, "Min-cost multiple machine
inst(ec,H") without a timeout. The hybrid solver ~Scheduling (‘fa'” and Grossmann, %001) 20 to 2000
was tested for several problem instances, derived byimes faster, "Product configuration” (Thorsteinsson
modification from the industrial real life problem in- ~ &nd Ottosson, 2002) 30 to 40 times faster. _
stance, and the results are presented in Table 1. The For theecoptimization problem, on the basis of
results show that the solver execution time is linearly OUr experiments (Section 3 and Table 2), we believe
that a hybrid approach (Section 3.5 and Table 2 entry
Lcorrection variables are used to compensate rounding 7) is the only one that can achieve performance suffi-
errors performed by the LP solver cient to meet the requirements of an industrial appli-
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Table 2: Comparison of experimental results for differqaraaches tinst(ec ,H").

Nr || Method | Comment | cr(gopt) | cr(nlin) | cr(long) | —timeout | cr(teff)
1 C(LP 3 approaches tested true true true false na
2 DP basic algorithm true true false true 8ms
3 DP with CO2 constraints true true false true 50ms
4 LP with (A.24)(A.25) true false true true 10ms
5 LP with (A.24)(A.25)(A.29) true false¢ true true 40ms
6 DP +LS false true true false na
7 || CP+LP+LS false true true true 58ms
+ partially taken into account.
cation. Dantzig, G. B. (1963)Linear programming and extensians
We have presented a generalized definition of the Princeton Univ. Press, Princeton, NJ.
ec optimization problem. We have also laid out the Dechter, R. and van Beek, P. (1997). Local and global rela-
overall structure and details of a hybrid solver de- tional consistencyrheor. Comput. S¢i173:283-308.

veloped for the generalized problem, indicating a Focacci, F., Lodi, A., and Milano, M. (1999). Cost-based

g f domain filtering. InProceedings of the 5th Interna-
promising area of research and leaving room for cus- tional Conference on Principles and Practice of Con-

tomization (especially in the LS area). We have also straint Programming CP 99, pages 189-203, Lon-
discussed approaches which have been discarded at  don, UK. Springer-Verlag.

an early stage of development because of their low Hooker, J. N. (2006)Operations research methods in con-

performance, indicating areas of development which straint programming pages 525-568. Handbook of
are unlikely to yield satisfactory results. To the best Constraint Programming. Elsevier, Amsterdam.
knowledge of the authors no other solution to #e IBM (2(_)10). Coin-or computational i_nfrastructure for oper
optimization problem has been reported. ations research. http://www.coin-or.org/ .

The presented hybrid CP+LP+LS approach is Jain, V. and Grossmann, |. E. (2001). Alg_orithms for hybrid
eneralizable because manv comblex optimization milp/cp models for a class of optimization problems.
9 y P P INFORMS J. on Computing.3:258-276.

problems (other thaacoptimization) can also be de- Marriott, K. and Stuckey, P. J. (1998ntroduction to Con-
composed into linear and nonlinear components and S Logic progrémming MIT Press, Cambridge,
then subjected to CP bound consistency, solved by LP MA, USA.

to produce an initial solution that is next extended to a Schulte, C. (2010). Gecode constraint programming sys-

feasible solution with respect to nonlinearities by LS tem. http://www.gecode.org/.
and improved by LS, in the same manner as describedSzymanek, R. and Kuchcinski, K. (2010). Jacop constraint
in this paper. programming system. http://jacop.osolpro.com/.
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