
A Semantic Formalization for Use Case Modeling

Marinos G. Georgiades and Andreas S. Andreou
Department of Electrical Engineering and Information Technologies, Cyprus University of Technology,

30 Archbishop Kyprianos Str., Limassol, Cyprus

Keywords: Use Cases, Formalization, Software Requirements, Semantics.

Abstract: It has been recognized that a certain level of formalization is needed to produce precise and well-defined use
case models, thus tackling problematic issues such as the lack of a specific, semantic classification of use
cases, the vagueness of the use case specifications written in free natural language (NL), and the limited tool
support that makes use case driven analysis a time-consuming and error-prone activity. This paper presents
a formal semantics for the basic use case model elements, including specific semantic types of use cases,
specific types of basic and alternative flow actions, and specific functional roles actors can play. To
maintain a high-degree of readability and understandability and to minimize ambiguity, the proposed
approach provides a semi-formal, NL-based specification syntax, tailored to each semantic use case type,
with a specific sequence of basic and alternative flow actions. The formalization is facilitated by utilizing
elements of a novel methodology named Natural Language Syntax and Semantics Requirements
Engineering.

1 INTRODUCTION

Use case driven analysis (UCDA) is very popular
among the many methods in requirements
engineering, due to the fact that it allows functional
requirements to be represented in an easy-to-use and
attractive style for both users and analysts (Dias et
al., 2008). UCDA helps to cope with the complexity
of the requirements analysis process; by identifying
and then independently analysing different use
cases, the analysts may focus on one narrow aspect
of the system usage at a time (Kim et al., 2004).

It has been admitted that a certain level of
formalization is needed to produce precise and
understandable use case models (Somé, 2005). This
paper presents a formalization approach, designed
for information systems (ISs) in general and with
particular focus on transactional business systems
(TBSs) which are ISs that maintain data, have
reporting capabilities, and use business rules to carry
the everyday transactions of a business/organisation.
A Hospital IS or a Library IS are examples of ISs
that could contain TBSs such as a billing IS, a salary
payment IS, and others. The proposed approach is
intended to provide use case formalization with (i) a
formal semantics for the basic use case model
elements, including specific semantic types of use

cases, specific types of basic and alternative flow
actions, and specific functional roles actors can play;
and (ii) a semi-formal, NL-based specification
syntax tailored to each semantic use case type,
including a specific sequence of basic and
alternative flow actions.

The rest of this paper is structured as follows:
Section 2 outlines related work, while section 3
describes the proposed formalization of the use case
model. Section 4 provides conclusions and
recommendations for future work.

2 RELATED WORK

A number of approaches and guidelines have been
proposed to provide some degree of formalization to
textual use cases, such as the CREWS Guidelines
(Salinesi, 2004) and the CS Rules (Cox and Phalp,
2003). However, the focus of these approaches is on
providing some NL semantic and syntactic
guidelines on specifying actions, but their guidelines
are too general and not linked to any semantic use
case types at a higher level, contrary to our approach
that provides a specific semantic classification of use
case types, each of which contains specific types and
sequence of actions.

172 G. Georgiades M. and S. Andreou A..
A Semantic Formalization for Use Case Modeling.
DOI: 10.5220/0004001301720175
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 172-175
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

A number of structured techniques for the
description of use cases have been proposed. In
Eriksson et al.’s work (2004), a tabular
representation is used, and in Leite et al.’s (1997), a
structured natural language is presented to describe
the use cases. These structured representations
provide a generic formalization of the use case (UC)
specification template, hence not a clear formalism
of the use case specification elements, and especially
the basic and alternative flow actions. Ochodek and
Nawrocki (2007) provide a semi-formal NL
representation of use case actions, however this
formalism is still generic, lacks several types of flow
actions as well as the use case elements (e.g., actors)
involved in each action.

Within the context of transactional business
systems, Chalin et al. (2008) make a general
reference to three categories of use cases, including
transactional use cases – those associated with the
realization of the core business events/ business
rules; support use cases – those usually associated
with data maintenance (typical CRUD functions) or
system configuration; data extraction use cases –
those that do not modify the state of the system, and
are usually associated with reporting capabilities.

In contrast, our approach provides detailed
formal semantics for use case modeling of
transactional business systems, through a semantic
classification of use cases for creating, processing
and presenting/ reporting information, through
specific types of actors to identify business roles for
each type of use case, and through the definition of
actions for each use case type. The proposed
formalization builds upon work done by Georgiades
and Andreou (2010).

3 USE CASE FORMALIZATION

To provide formalization of the TBS use case model,
we utilize specific elements from the NLSSRE
methodology (Georgiades and Andreou, 2005,
2010). NLSSRE offers the means to engineer user
requirements concerned with the operational aspect
of an IS, that is a TBS, and building these
requirements with the use of the following IS
elements: people (usually end-users, clients and
trusted external users), processes related to the
creation, modification, transmission, storage and
presentation of information along with the
circumstances within which these processes are
performed, as well as data, constraints, and business
rules. In particular, NLSSRE focuses on formalizing
and automating the discovery, analysis and

specification of user requirements for the
development of TBSs. NLSSRE is designed so that
the analyst is guided in advance, through a step-by-
step approach, what specific types of data, functions,
business rules and functional conditions to use and
search for, what questions to ask, in what specific
way to analyse the answers to the questions, and
how to write them using formalized sentential
requirement patterns. The formalized requirements
are then easily transformed, with the use of specific
rules, into diagrammatic notations, including class
diagrams, data flow diagrams and use-case
diagrams. The formalization of NLSSRE is achieved
with the aid of NL elements such as verbs, nouns,
genitive case, adjectives and adverbials.

Two of the major elements of NLSSRE, which
we utilize in our use case approach, are the
Information Object (IO) and the CAREN functions.
According to NLSSRE, an IO is a digital
representation of a tangible or intangible entity —
described by a set of attributes — which the users
need to manage through Creating, Altering,
Reading, and Erasing its instances, and be Notified
by the messages each instance (IOi) can trigger (an
IO is conceived and processed at an abstraction
level, while an IOi is conceived and processed at a
factual level; instances of the same IO differ only in
the values of their attributes). In NLSSRE, the
Create, Alter, Read, Erase and Notify functions are
called CAREN functions.

In the proposed approach, use cases are derived
from the CAREN functions, therefore we call them
CAREN Use Cases (CUCs). CUCs are system use
cases, not business use cases. The formalization
concept is more easily applicable to the system use
cases, because they are applied on electronic
information, while it is hardly applicable to the
business level use cases, due to the complexity of
the business environment, in both size and
terminology. For example, Enroll in Seminar may be
represented and implemented as a business or a
system use case by conventional approaches (e.g.,
Cockburn, 2000), while in the proposed approach it
is represented through the CUCs under the IOs
Enrolment and Seminar. For the IO Enrolment, we
have the system use cases Create, Alter, Cancel,
Erase and Read Enrolment, and for the IO Seminar,
we have the system use cases Create, Alter, Cancel,
Erase and Read Seminar (often we consider that
Notify is contained as a set of main flow actions in
each of the rest CUCs–we will discuss this point
later). For an enrolment to be created, a seminar
needs to be already created, therefore the CUC
Create Enrolment is extended by the CUC Create

A�Semantic�Formalization�for�Use�Case�Modeling

173

Table 1: Part of the use case specification template for the CUC Create IO.

Basic flow 1. <Creator> selects create <IO>.
 2. System displays new <IO> creation form, including required and optional fields.
 3. <Creator>, <Accompaniment> enter(s) <IO><IO.attribute.value>.
 4. System must check <IO><IO.attribute.value>.
 5. <Creator> selects to submit the new <IO>.
 6. System saves the new <IO> in the database.
 7. System notifies <Creator>, <Accompaniment(s)>, <Intended Recipient(s)> that <IO> is created

via UC <UCin.ID>.
Alternative
flow

If <IO> <IO.attribute> is incorrect, then system returns: “Invalid <IO><IO.attribute>. <IO> cannot be
saved”.

Table 2: Part of the use case specification for the CUC Create Prescription.

Basic flow 1. Doctor selects create Prescription by clicking on ‘create prescription’ button.
2. System displays new prescription creation form, including required and optional fields.
3. Doctor, Patient enter(s) Patient ID.

3.1. The System checks Patient ID.
12. The System notifies the Doctor, Pharmacist, and Patient that Prescription is created via UC 15.

Alternative
flow

3.1. If patient ID is incorrect, then system returns: “Invalid Patient ID. Prescription cannot be saved”.

Includes UC 15: Send Notification

Seminar, and it also includes the CUC Read Seminar
(fig. 1).

Figure 1: Conceptual representation of use cases through
the proposed approach.

A typical use case is essentially described as a
sequence of actions. To maintain a high-degree of
readability and understandability and to minimize
ambiguity, our approach formalizes the use case
actions by providing specific types of actions,
written in a structured form of NL. Apart from
making expression of requirements more
disciplined, understandable and organized, a
structured form of specification also facilitates the
automation procedures for building the use case
specification per se, and also for later
transformations into diagrammatic notations. The
formalization is facilitated by utilizing elements of
NLSSRE, such as the sub-functions of each CAREN
function (Georgiades and Andreou, 2010).

Table 1 presents a part of the template that
formalizes the actions of the CUC Create IO, and
table 2 gives a relevant example.

For all CUC types, actions are either of request
or response type. Normally, request actions are

executed by an actor, and respond actions are
executed by the system. Usually an actor’s action is
followed by a system’s action. Exception conditions,
which are part of the alternative flow of actions, are
easily defined by the use of data constraints.

To identify the actors involved in each use case,
we utilize the functional roles actor can play
provided by the NLSSRE methodology. By making
questions regarding the functional roles, we can
identify the actors. Indicatively, a Create use case
involves the functional roles Creator,
Accompaniment, Intended Recipient, and Notifiee.
The following are indicative question patterns for
identifying (i) the Creator: Who should create an
<IO> ?; and (ii) the Accompaniment: Who should
assist the <Creator> to create an <IO>?

4 CONCLUSIONS

This paper presented an approach to formalize the
use case model. The main motivation behind this
endeavour is that existing use case driven analysis
(UCDA) approaches often result in poorly defined
use case models due to: (i) lack of specific support
in identifying the basic use case elements, including
use cases, actors, and use actions (ii) use of generic
use case specification templates that do not guide the
analyst clearly how to identify each element of the
template; (iii) use of free natural language to
describe the UC specifications, which, often results
to inconsistencies and ambiguities in the use case
model.

Repeat 3,4

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

174

To address these weaknesses, we proposed (i) a
formal semantics of the use case model, including
the CAREN use cases, specific semantic/functional
roles actors can play, specific types of basic and
alternative flow actions for each CAREN use case,
and specific question patterns to identify the actors;
(ii) a semi-formal, NL-based syntax of the UC
specification including a specific sequence of
actions, for the basic and alternative flows of the
CAREN use case specifications.

To evaluate the effectiveness and efficiency of
the proposed formalization, we performed a short-
scale empirical study through which we compared it
to the classical UCDA approach, as described by
Cockburn (2000), by applying both of them during
the development of a subsystem of the Library
Information System (LIS) of the University of
Cyprus. Our evaluation tested the quality of the use
case model (that is, use case specifications and use
case diagrams) produced by the application of both
approaches. The results showed that in general the
proposed formalization performed much better than
the classical approach in the various objective
quality assessment metrics used, such as
completeness, correctness and consistency.
A detailed description of this comparative empirical
study may be found in Georgiades and Andreou’s
work (2011).

Future work will involve the extension of the
approach and the CASE tool in order to support the
requirements design phase, with the creation of
sequence, collaboration and state diagrams. The
construction of such diagrams may be facilitated
with the application of specific rules on the use case
elements, such as the use case actions. Furthermore,
we will work towards the enhancement of current
types of actions (e.g., study of the circumstances
within an action is performed) and identification and
formalization of new ones. Additionally, alternative
flow types of actions will be thoroughly explored, in
addition to the exception condition types which are
currently formalized. Moreover, although the
proposed approach produced encouraging empirical
results, it remains to be tested on real-world projects
of a larger scale.

REFERENCES

Chalin, P., Sinnig, D., Torkzadeh, K. 2008. Capturing
Business Transaction Requirements in Use Case
Models. In Proceedings of ACM Symposium on
Applied Computing, pp. 602-606.

Cockburn, A. 2000. Writing Effective Use Cases. Reading,
Massachusetts: Addison Wesley.

Cox, K., Phalp, K. 2003. Exploiting Use Case
Descriptions for Specifications and Design. In
Proceedings of EASE, UK.

Dias, G., Schmitz, A., Campos, M. Correa, A., Alencar, A.
2008. Elaboration of use case specifications: an
approach based on use case fragments. In ACM
Symposium on Applied Computing (SAC), Fortaleza,
Ceara, Brazil, pp. 614-618.

Eriksson, M., Börstler, K., Borg, K. 2004. Marrying
Features and Use Cases for Product Line
Requirements Modeling of Embedded Systems. In
Proceedings of the Fourth Conference on Software
Engineering Research and Practice (SERPS'04),
Sweden, pp.73-82.

Georgiades, M., Andreou A., Pattichis, C. 2005. A
Requirements Engineering Methodology Based On
Natural Language Syntax and Semantics. In
Proceedings of the 13th IEEE International
Conference on Requirements Engineering (RE'05),
Paris, France. IEEE Computer Society, Washington,
pp.73-74.

Georgiades, M., Andreou, A. 2010. A Novel Methodology
to Formalize the Requirements Engineering Process
with the Use of Natural Language. In Proceedings of
the IADIS Conference on Applied Computing,
Timisoara, Romania. IADIS Digital Library, pp.11-18.

Georgiades, M., Andreou, A. 2011. Formalizing and
Automating Use Case Model Development, The Open
Software Engineering Journal. Accepted.

Kim, J., Sooyong, P., Vijayan, S. 2004. A Linguistics-
Based Approach for Use Case Driven Analysis Using
Goal and Scenario Authoring. In Proceedings of
Applications of Natural Language to Data Bases, pp.
159-170.

Leite, J., Rossi, G., Balaguer, M., Kaplan, G., Hadad, G.,
Oliveros, A. 1997. Enhancing a Requirements
Baseline with Scenarios. In Proceedings of
Requirements Engineering, Annapolis, USA.

Ochodek, M., Nawrocki, J. 2007. Automatic Transactions
Identification in Use Cases. In Second IFIP TC 2
Central and East European Conference on Software
Engineering Techniques, CEE-SET 2007, Poznan,
Poland, October 2007, pp. 55-68.

Pooley, R., Stevens, P. 1999. Using UML - Software
Engineering with Objects and Components, Harlow:
Addison Wesley Longman.

Salinesi, C. 2004. Authoring Use Cases. Chapter in
Scenarios, Stories, Use Cases: I. Alexander and N.
Maiden, John Wiley.

Somé, S. 2007. Petri Nets Based Formalization of Textual
Use Cases, Tech. Report in SITE, TR2007-11, Uni. of
Ottawa.

Sybase, 2002. PowerDesigner. Object Oriented User's
Guide. Sybase.

A�Semantic�Formalization�for�Use�Case�Modeling

175

