
Discoverying Cloud Services by Preconditions and Effects
for Compositions

Lorena Erdens1, Daniela Barreiro Claro1, Denivaldo Lopes2 and Patrick Albers3

1FORMAS/LASID/DCC/IM, Federal University of Bahia (UFBA), Av. Adhemar de Barros, s/n, Salvador, Bahia, Brazil
2FORMAS/LESERC, Federal University of Maranhao (UFMA), Campus do Bacanga-CCET, Sao Luis, Maranhao, Brazil

3ESEO, 4 Rue Merlet de la Boulaye, BP 30926, 49000, Angers, France

Keywords: Cloud Services, Discovery, Semantic Web, Preconditions and Effects, Information Systems.

Abstract: Nowadays, most of companies deploy their services as a Web service format over the Internet. Additionally,
cloud environments are dealing with web services published on the Internet. The use of the services deployed
is subject to its discovery. Many techniques are being developed to increase the description of a web service,
thus automating their discovery and providing more significant results. Such techniques are based on semantic
concepts to provide more unambiguous information on describing such services. This paper proposes to
discover cloud services based on the semantic Web, especially on preconditions and effects. Several works
have been carried out on preconditions and effects, however we have achieved more accurate results using
service descriptions based on conditions. We present our approach examining three main aspects: (i) relevant
retrieved services (ii) complexity and (iii) execution time and we compare with other closely related work in
an attempt to position our work and our results.

1 INTRODUCTION

A great number of business processes in information
systems have been developed in a web service for-
mat because of their standard and loosely coupled fea-
tures. Most of these web services can be published
over a distributed environment, such as the Internet,
an enterprise (as a local network) or into a cloud.

The proliferation of such services is enabling the
creation of various types of web services. From a
global view, we can classify two types of services: (a)
a client-side service, developed in JavaScript, using
technologies such as AJAX and HTML 5 and handled
by customers in their respective browsers. We call
these services a light-weight service (b) a server-side
service, where connections are made between web
servers and their development environments. This
kind of service (b) can usually be used through a
proxy and allows interoperability between heteroge-
neous applications and can be considered as a heavy-
weight service. Both types of services are loosely
coupled and are immerged in a distributed environ-
ment, such as a cloud (Zhang et al., 2010).

Some of the services on the Internet are incorpo-
rated into cloud environments as a SaaS (Software
as a Service) (Höfer and Karagiannis, 2011). Some-

times, a single SaaS does not achieve a user request,
thus it has to be composed. These services are com-
bined on-the-fly inside their clouds as a CaaS (Com-
position as a Service)(Höfer and Karagiannis, 2011).
Nowadays, GoogleAppEngine (Höfer and Karagian-
nis, 2011) is a platform (PaaS) that can be used for
free of charge. Some other platforms need a valid
credit card number, even if it is not charged. This was
our main motivation for using this platform within
an academic research project. However, GoogleAp-
pEngine only supports heavy-weight services, that is
a server-side approaches. Thus in this work, we car-
ried out only heavy-weight services. As our SaaS is
being treated as heavy-weight services, our experi-
ments were carried out over a server-side service ap-
proach.

With the continuing increase in service availabil-
ity, a major challenge has been the automated discov-
ery for new services closer to user/machine require-
ments. Among other features that can be incorporated
into an automation process, the addition of a seman-
tic web is widely used. A semantic description of
web services can minimize the ambiguities and conse-
quently facilitate such automated discovery (Berners-
Lee et al., 2001).

One way to incorporate semantics into web ser-

264 Erdens L., Barreiro Claro D., Lopes D. and Albers P..
Discoverying Cloud Services by Preconditions and Effects for Compositions.
DOI: 10.5220/0004006302640270
In Proceedings of the 14th International Conference on Enterprise Information Systems (ICEIS-2012), pages 264-270
ISBN: 978-989-8565-11-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



vices is through the use of semantic description lan-
guages, such as SAWSDL (Kopecky et al., 2007),
OWL-S (Burstein et al., 2004) and WSMO(Roman
et al., 2005). Among these languages, OWL-S can
be coupled to an OWL(Mcguinness and van Harme-
len, 2004) domain ontology, which makes inferences
through its classes, properties and axioms, thus reduc-
ing the gap existing between a machine/user request
and the offered service.

As we are dealing with composite services (CaaS),
it is important to analyze the semantic links between
each service in a composition. In the literature,
several approaches have focused on service discov-
ery, especially on semantic links. Some approaches
deal with inputs and outputs (Paolucci et al., 002b;
Amorim et al., 2011; Lécué, 2011). Others have
demonstrated that it is necessary to perform an ad-
ditional analysis on conditions in order to retrieve
more useful services (Bener et al., 2009; Bellur and
Vadodaria, 2008). In addition to these semantic-based
approaches, several authors have incorporated a syn-
tactic analysis complement of the semantic analysis,
such as (Amorim et al., 2011; Paolucci et al., 2003;
Klusch et al., 2006; Junior et al., 2009). Our previ-
ous work proposed a hybrid approach, combining a
semantic analysis based on inputs and outputs and a
syntactic analysis based on the class structure. This
work aims to extend our previous approach (Amorim
et al., 2011) to incorporate preconditions and effects
on semantic link analysis.

This paper is structured as follows: section 2
presents our proposed approach; section 3 presents
our experiments and results; section 4 compares our
work with related ones; section 5 shows our tool; and,
finally, section 6 discusses our conclusions and future
directions.

2 PROPOSED APPROACH

The basic idea behind our approach is to match the set
of IOPE (input, output, preconditions and effects) of
a request (user/machine) to the IOPE of a service. In
this work, we have concentrated our efforts in OWL-S
profile to describe services and requests because of its
relationship with a domain ontology and its ability to
be classified into a heavy-weight service, i.e. a cloud
service.

2.1 Problem Definition

Given a set of finite services S = fs1; :::;sng and
a machine/user request, the semantic matching be-
tween the request r and a service si 2 S can be de-

fined based on semantic similarities between its in-
puts, outputs, preconditions and effects. The se-
mantic similarity is analyzed based on a match-
ing function match(Ca;Cb) = d within two con-
cepts (Ca;Cb) inside the same ontology or knowl-
edge representation. The matching result is given
by a similarity degree d, where d 2 D and D =
fExact;Plugin;Subsumes;Sibling;Failg. Ideas of
this similarity degree were kept track of (Paolucci
et al., 002b; Samper et al., 2008).

Each service si, where i = [1::n] has a set of inputs
(Ii), outputs (Oi), preconditions (Pi) and effects (Ei).
Each set of inputs (Ii) has atomic inputs y j, where
y j 2 Ii. Each atomic input y j is matched through the
function match(Ca;Cb) = d as a concept Ca inside an
OWL ontology. The concept Cb corresponds to the
user/machine request’s input value. For the output set
the process is similar.

Concerning the preconditions and effects, some
minor differences need to be analyzed. In SWRL
(Horrocks et al., 2004), each precondition pk, where
pk 2 Pi of a service si is composed of a predicate and
attributes. SWRL rules extend OWL axioms to in-
clude some Horn rules, with an antecedent and a con-
sequent. For instance, the SWRL rule hasCard(User,
Account) means that if User and Account are true,
then hasCard is true. In SWRL, the predicate is the
consequent of a rule and the attributes are the an-
tecedents, i.e. hasCard is a predicate in SWRL and
User and Account are attributes in SWRL.

Our approach analyzes separately each predicate
and attributes. Thus, our function match(Ca;Cb) =
d firstly performs the comparison between a ser-
vice predicate (p j [predicate]) and a request predicate
(q [predicate]) as Ca and Cb respectively. Thus, we
can have a function similarity of predicates as fol-
lows:

simPredicate(p j;q) = match(p j [predicate] ;q [predicate])

As regards attribute matching, for each precondition
(p j) two attributes are analyzed. The semantic simi-
larity between these attributes is the maximum degree
of matching between the service attribute and request
attribute. For instance, if an attribute has a Subsumes
degree (d = Subsumes) and another semantic similar-
ity analyzes another attribute and it returns d =Exact,
thus the result attribute value is those with an Exact
degree of matching. Our semantic similarity function
of the attributes can be described as follows:

simAttribute(p j;q) = max(p j [attribute]�q [attribute])

The function similarity precondition is given by the
minimum degree of similarity between these func-

Discoverying�Cloud�Services�by�Preconditions�and�Effects�for�Compositions

265



tions. For instance, if the function simPredicate re-
turns d = Subsumes and the function simAttribute re-
turns d = Plugin and d = Sibling respectively, thus
the similarity function returns the minimum degree
d = Plugin. With this mechanism, we can ensure that
a minimum similarity degree between our semantic
approach occurs.

simPrec(p j ;q) = min(simPredicate(p j ;q)� simAttribute(p j ;q))

Finally, the overall semantic similarity function be-
tween a service and a request is given by the mini-
mum degree given by the above mentioned function
as follows: The function similarity analyzes the min-
imum degree between a service (si) and a request (q)
as follows:

similarity(si;q)=min(simIn;simOut�simPrec�simE f f )

In order to illustrate, suppose a service precondition
Ps and a request precondition Rs within the following
structure predicate(attribute;attribute).

Service: Ps(A1s;A2s), where Ps is the predicate and
A1s and A2s are two attributes of a service.

Request: Pr(A1r;A2r), where Pr is the predicate and
A1r and A2r are two attributes of a request

Each function simPredicate and simAttribute is
executed separately. There is no comparison between
predicates and attributes, only within a service pred-
icate and request predicate. The simPrec function is
executed and returns a set of 3-tuple with a term of
a service, a request and the degree of match (Gi), as
described below:
f(Pr;Ps;G1);(A1s;A1r;G2);(A1s;A2r;G3);(A2s;A1r;G4);
(A2s;A2r;G5)g

Suppose G2 > G3 and G4 > G5, this means G2’s
similarity degree is higher than G3, i.e. G2 is Exact
and G3 is Subsumes. Thus the precondition function
returns (A1s;A1r;G2) and (A2s;A1r;G4), because of
their major degree.

It is important to understand that an attribute could
be used twice if it has a higher degree of similarity
than other attributes.
8Pi;9(Pi

s;P
i
r;Gi)jGi 6= Fail, where Pi

r and Pi
s are

the preconditions of a request and a service respec-
tively.

Thus, we can ensure that for the execution of a
service, it is important that at least one degree of sim-
ilarity be different from Fail.

3 EXPERIMENTS AND RESULTS

Despite the rapid growth of semantic services, there
has been little work in experimental tests and com-
parison among discovery methods. A public collec-
tion of currently available tests is called OWL-S Test
Collection 2, but it does not include pre-conditions
nor effects. Authors in (Bener et al., 2009) modified
this collection by adding preconditions and effects de-
scribed in SWRL (Horrocks et al., 2004). Despite the
fact that they incorporate SWRL preconditions and
effects into this dataset, the version used is not com-
patible with OWL-S API 1.2, thus no preconditions or
effects can be actually retrieved. Thus, we enhanced
this test set adapting it to the latest version of OWL-S
1.2 files that can be read automatically by an algo-
rithm. This means that a machine can automatically
interpret each condition described.

3.1 Relevant Retrieved Services

In order to compare our approach with the algorithm
proposed by (Bener et al., 2009) we developed two
case studies:

First: Reuse of preconditions and effects.

Second: Predicate of service preconditions and
the predicate of request preconditions are not exactly
equal.

In the first test, suppose we have a service and a
request with the following preconditions:

Service: buyAutomobile(User, Model) and
buyCar(User, Model)

Request: buyAutomobile(User, Model) and
buyFood(User, Type)

Suppose as well an ontology with buyCar and
buyBus as descendant of buyAutomobile.

The algorithm proposed by (Bener et al., 2009)
performs the matching between the service precon-
dition buyAutomobile(User, Model) and the given re-
quest. However, if it tries to find a request pre-
condition that matches the service precondition buy-
Car(User, Model), such an algorithm returns Fail be-
cause the request precondition buyFood(User, Type)
is not similar to buyCar(User, Model), unlike our ap-
proach that re-uses preconditions. Thus, our proposed
algorithm matches the service precondition buyAuto-
mobile(User, Model) with a similar request precon-
dition buyCar(User, Model). Additionally, trying to

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

266



match a similar precondition buyCar(User, Model)
our approach retrieves the same precondition once
again buyAutomobile(User, Model), as we have simi-
lar preconditions buyCar and buyAutomobile as pre-
sented in the ontology. In this case our approach is
able to retrieve a similar service precondition where
the algorithm proposed by (Bener et al., 2009) does
not retrieve the service; their approach fails.

The second experiment carries on the service pre-
condition buyCar(User, Model) and the request pre-
condition buyBus(User, Model). Suppose the exis-
tence of the predicate buyAutomobile. The algorithm
proposed by (Bener et al., 2009) defines the similar-
ity degree between such preconditions as Fail because
it does not analyze the semantic similarity between
predicates through an ontology. Thus, they conclude
that buyCar(User, Model) and buyBus(User, Model)
are different, because these preconditions are not the
same, thus the algorithm discards this useful service.
In our approach, we analyze each predicate and at-
tributes, thus these predicates match as Sibling and
can return the potential service.

The behavior of our approach is advantageous be-
cause it retrieves more useful services, avoiding the
wrong elimination of services. In some cases, it is
better to retrieve more and leave the decision to a final
user, instead of wrongly eliminating a potentially in-
teresting service. For instance, in criminal investiga-
tions suspicious, it is better to retrieve more suspects,
instead of wrongly discarding a criminal.

3.2 Complexity Analysis

We analyzed the complexity of our algorithm within
semantic filters on preconditions and effects. We con-
sidered that for each service precondition, our algo-
rithm compares each request precondition, and for
each request effect, our algorithm compares each ser-
vice effect.

Based on (Cormen et al., 2001), we can conclude
that, in the worst case, the complexity involved in our
algorithm is O(n2). Our algorithm analyzes the ef-
fects that work just like the pre-conditions, then its
complexity is also O(n2). On the other hand, our algo-
rithm analyzes inputs and outputs and has complexity
O(n2) as stated by (Amorim et al., 2011).

The flow of the algorithm has the following order:
Input analysis (O(n2)) ! Output analysis (O(n2))
! Preconditions analysis (O(n2)) ! Effects analy-
sis (O(n2)).

Thus, the total complexity of our algorithm is:
O(n2)+O(n2)+O(n2)+O(n2) = 4(O(n2))

3.3 Execution Time

In order to evaluate the execution time of our algo-
rithm, we carried out an experiment within 20 re-
quests and a repository with 100 services adapted
from the Test Collection 2 (Bener et al., 2009). All
20 requests were created within the same input and
output sets so as to ensure that preconditions and ef-
fects were the only variable factors between requests.
Thus, we can concentrate in a single factor to analyze,
i.e. runtime.

We performed two experiments. The first exper-
iment was to analyze inputs and outputs, calculating
the average execution time. The second experiment
dealt with inputs, outputs as well as preconditions
and effects. With these two measures, it was possible
to calculate the overhead between our new approach
(with IOPE) and other works with only (IO).

Table 1: Comparative of runtime analysis between an IO
algorithm and our IOPE algorithm only for requests r3, r4,
r7 and r8.

Request IO(s) IOPE(s) IO/IOPE Precond Effects Total P/E
r3 2,38 40,07 16,86 1 0 1
r4 2,49 40,73 16,39 1 0 1
r7 1,84 14,61 7,95 0 1 1
r8 2,40 19,36 8,08 0 1 1

Considering the requests r3, r4, r7 and r8 specifi-
cally on Table 1, we can observe that the relation be-
tween the execution time (in ms) values of IO and
IOPE taking the requests r3 and r4 (i.e. 16;86 and
16;39 respectively) is considerably higher than the re-
lation of execution time values between the requests
r7 and r8 (i.e. 7;95 and 8;08 respectively).

Despite the fact that all four requests contain the
same total number of preconditions and effects, the
difference between the requests r3 and r4 is that they
have preconditions but no effects. On the other hand,
we can observe that requests r7 and r8 have an effect
but no precondition. The difference between the com-
putational time of r3, r4, r7 and r8 can be justified by
the algorithm flow analysis of preconditions and ef-
fects. Suppose a service s1 has a precondition and an
effect. To make the comparison between s1 and r3,
the algorithm first examines whether r3 has precondi-
tions. If there is a positive result, an analysis is per-
formed on the preconditions between s1 and r3. Then
the algorithm verifies that r3 has effects, obtaining a
negative result. Thus, the algorithm stops its execu-
tion. The same applies to the request r4. Now sup-
pose the comparison between r7 and s1. First the al-
gorithm checks that r7 has preconditions. If the result
is negative, the algorithm stops its execution immedi-
ately. The same happens with the request r8. Thus,

Discoverying�Cloud�Services�by�Preconditions�and�Effects�for�Compositions

267



we can conclude that for requests r3 and r4, the al-
gorithm performed the comparison on preconditions,
but fails to compare the effects. In the case of requests
r7 and r8, the algorithm does not compare the precon-
ditions nor the effects. This explains why the runtime
for requests that have pre-conditions is greater than
the runtime for requests that do not have precondi-
tions.

Figure 1 depicts the behavior of the runtime vari-
ation by the number of preconditions and effects.

Figure 1: Number of preconditions and Effects X Runtime.

Concerning our execution time, as we are using
preconditions and effects from an OWL ontology, our
algorithm does not have good results to scale up when
there is a large number of preconditions and effects
inside a service. We also analyzed empirically that
in almost all tests sets experiments found in the lit-
erature, authors usually dealt with two preconditions.
Within two preconditions and effects we can consider
that our algorithm is working pretty well as other re-
lated approaches. However, we are working on an
improvement to our algorithm to scale up better in the
presence of more than two preconditions and effects.

4 ANALYSIS OF RELATED
WORK

The wide use of service has motivated some re-
searchers to develop discovery algorithms. This sec-
tion presents some related work and makes a compar-
ative analysis of these works and our approach.

The use of semantic filters were first introduced by
(Paolucci et al., 002b) with input and output parame-
ters. This is a flexible approach based on the similar-
ity degree, taking into account the distance between
two nodes in a tree (ontology). This work proposed
four degrees called exact, plugin, subsumes and fail.

Authors in (Amorim et al., 2011) have studied IO
(input and output) on semantic filters. However, they
proved that only semantic features were not sufficient
to achieve good accuracy; thus they proposed an hy-

brid approach in two steps: (i) functional semantic
based on semantic filters (Paolucci et al., 002b) over
their inputs and outputs parameters and (ii)structural
semantic that analyzes each neighbor concept inside
an ontology structure. The second step is only carried
out in case of failure on the first step due to perfor-
mance analysis. The major problem here is tackling
only inputs and outputs parameters.

As regards some closely related work, SAM+
(Bener et al., 2009) is an algorithm that deals with
preconditions and effects by using Paolucci filters
(Paolucci et al., 002b; Paolucci et al., 002a). Firstly,
their algorithm analyzes inputs and outputs and then
their preconditions and effects described in SWRL
(Horrocks et al., 2004). Their proposed approach uses
three methods: subsumption that uses semantic fil-
ters and gives an intermediate weight; semantic dis-
tance that calculates the semantic distance between
two concepts inside an ontology and the third method,
wordnet, that uses the wordnet as a database of syn-
onyms. Thus, a final weight is given for the overall
matching.

Work proposed by (Bellur and Vadodaria, 2008)
uses semantic filters (Paolucci et al., 002b) to analyze
the compatibility of web service parameters. They
also divide their approach into three steps: parame-
ter compatibility that uses the semantic filters within
IOPE parameters; condition equivalence that pro-
poses a structural analysis between two conditions;
condition evaluation that evaluate if such conditions
really satisfy each other.

Table 2 summarizes and compares previously re-
lated work with our proposed approach.

Table 2: A summary among semantic discovery algorithms
and their features.

Feature Paolluci Amorim Bener Bellur Our
Use of OWL-S 1.1 X X X X
Use of OWL-S 1.2 X

Analysis of preconditions
and effects X X X

Independency of the
quantity of parameter X

Re-use of preconditions
and effects X

Analysis of semantic
predicate X

The first column is the feature analyzed and the
following columns depict the presence (mark as X)
and absence (empty column) of each feature within
each approach: (Paolucci et al., 002b; Amorim et al.,
2011; Bener et al., 2009; Bellur and Vadodaria, 2008)
and our approach.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

268



5 OUR TOOL
IMPLEMENTATION

In order to spread and socialize our work, we devel-
oped a tool OWL-S Composer1. This tool was devel-
oped in Java language, with some additional features
such as Jena 2.6.3 (JENA, 2000), pellet 2.2.2 (Clark-
Parsia, 2010) and OWL-S API 3.1-SNAPSHOT
(OsirisNext, 2010), which was the lastest available
version of OWL-S API. These additional features
were necessary to read and analyze OWL and OWL-S
description of services.

In this project, Jena API was used for retrieving
OWL elements. Jena API also includes the Pellet in-
ference engine that was used to make semantic infer-
ences concerning the axioms inside an ontology.

The developed system also makes use of OWL-
S API 3.1-SNAPSHOT. This API transforms the ele-
ments of OWL-S document into Java objects and was
used to obtain the set of inputs, outputs, preconditions
and effects. This version of that API deals with OWL-
S 1.2, its latest version.

6 CONCLUSIONS AND FUTURE
WORK

The cloud environment is facing some new challenges
for discovering SaaS (Software as a Service). In this
work, we can retrieve more relevant services using
preconditions and effects, thus minimizing the recov-
ery of useless services and consequently the time con-
figuring and finding services in a cloud. We also an-
alyzed the execution time with preconditions and ef-
fects to ensure that our approach is feasible.

We have incorporated this solution into a OWL-S
Composer plugin so as to discover in Google cloud
environments.

As future work, we are working on the scalabil-
ity of our solution and other PaaS, such as Amazon,
SalesForce.

ACKNOWLEDGEMENTS

Some of the authors would like to acknowledge the
Brazilian Government by CNPq (Grant 560231/2010-
5).

1http://homes.dcc.ufba.br/d̃claro/tools.html#owls3

REFERENCES

Amorim, R., Claro, D. B., Lopes, D., Albers, P., and An-
drade, A. (2011). Improving web service discovery by
a functional and structural approach. In IEEE ICWS
2011 - The 9th International Conference of Web Ser-
vices, pages 411–418.

Bellur, U. and Vadodaria, H. (2008). On extending seman-
tic matchmaking to include preconditions and effects.
In IEEE International Conference on Web Services,
ICWS ’08, pages 120–128.

Bener, A. B., Ozadali, V., and Ilhan, E. S. (2009). Seman-
tic matchmaker with precondition and effect matching
using swrl. An International Journal: Expert Systems
with Applications, pages 9371–9377.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.

Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., Mcil-
raith, S., Narayanan, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N., and Sycara, K.
(2004). OWL-S: Semantic Markup for Web Services.
Website.

ClarkParsia (2010). Pellet 2.2.2 release.
http://clarkparsia.com/pellet.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001).
Introduction to algorithms. MIT Press.

Höfer, C. N. and Karagiannis, G. (2011). Cloud comput-
ing services: taxonomy and comparison. Journal of
Internet Services and Applications, 2(2):81–94.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., and Dean, M. (2004). Swrl: A semantic
web rule language combining owl and ruleml. Tech-
nical report.

JENA (2000). Jena - a semantic web framework for java.
http://jena.sourceforge.net/.

Junior, J. G. S., Lopes, D., Claro, D. B., and Abdelouahab,
Z. (2009). A step forward in semi-automatic meta-
model matching: Algorithms and tool. In Interna-
tional Conference on Enterprise Information Systems
(ICEIS 2009), LNBIP, volume 24, pages 137–148.

Klusch, M., Fries, B., and Sycara, K. P. (2006). Auto-
mated semantic web service discovery with owls-mx.
In Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems,
pages 915–922, NY, USA. ACM New York.

Kopecky, J., Vitvar, T., Bournez, C., and Farrell, J. (2007).
SAWSDL: Semantic Annotations for WSDL and
XML Schema. Internet Computing, IEEE, 11(6):60–
67.

Lécué, F. (2011). Inferring data flow in semantic web ser-
vice composition. In IEEE ICWS 2011 - The 9th Inter-
national Conference of Web Services, pages 347–354.

Mcguinness, D. L. and van Harmelen, F. (2004). OWL web
ontology language overview. W3C recommendation,
W3C.

OsirisNext (2010). Owl-s api 3.1-snapshot.
http://on.cs.unibas.ch/owls-api/.

Paolucci, M., Kawamura, T., and Blasio, J. (2003). A pre-
liminary report of a public experiment of a semantic

Discoverying�Cloud�Services�by�Preconditions�and�Effects�for�Compositions

269



service matchmaker combined with a uddi business
registry. In 1st International Conference on Service
Oriented Computing (ICSOC 2003), Trento, Italy.

Paolucci, M., Kawamura, T., Payne, T., and Sycara, K.
(2002a). Semantic matching of web services capa-
bilities. Lecture Notes in Computer Science.

Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K.
(2002b). Semantic matching of web services capabil-
ities. In Proceedings of the 1st International Semantic
Web Conference (ISWC2002)/LNCS, volume 1, page
333347.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., and
Fensel, D. (2005). Web service modeling ontology
(wsmo). Applied Ontology, 1:77–106.

Samper, J. J., Adell, F. J., van den Berg, L., and Martı́nez,
J. J. (2008). Improving semantic web service discov-
ery. Journal of networks, 3(1):35–42.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud com-
puting: state-of-the-art and research challenges. Jour-
nal of Internet Services and Applications, 1(1):7–18.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

270


