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Abstract: In this paper, the error dynamic equation of the ILC algorithm is derived with consideration of parameter 
uncertainties and noise. The H∞ frame work is utilized using the derived error dynamics to design the robust 
learning controller. The proper learning gain is designed based on an optimization process to ensure that 
both tracking performance and convergence condition can be achieved. Simulation and experiments are 
conducted to validate the robust learning algorithm and the system is stable ever under high payload 
uncertainty. 

1 INTRODUCTION 

Iterative learning control (ILC) is a technique to 
control the system when it operate same tasks 
repetitively. The ILC can be applied to robot 
manipulators (Tayabi and Islam, 2006), chemical 
batch process (Lee and Lee, 2007), and so on. Many 
schemes of the ILC including the 2D theory method 
(Geng et al., 1990), stochastic method (Wang and 
Afshar, 2009), inverse system (Ye and Wang, 2005), 
and feedback learning operators (Goldsmith, 2002; 
Chin et al., 2004) have been proposed. Technical 
review on the methodologies and applications of the 
ILC is referred to (Ahn et al., 2007).  

System robustness is generally a major concern 
in the implementation of ILC to either linear or 
nonlinear systems. The adaptive iterative learning 
control was proposed (French and Rogers, 2000). 
The Lyapunov method was adopted to prove the 
convergence of the algorithm. Other adaptive ILC 
algorithms were proposed to handle system with 
time-varying parameters using a positive-definite 
Lyapunov-like sequence (Kuc et al., 1991). Another 
approach to ensure system robustness is to utilize the 
H∞ theory to formulate the general design 
framework for the ILC algorithm (Padieu and Su, 
1990). In these papers, only the performance and 
robustness analysis of ILC schemes are considered. 

In this paper, two steps design process is 
proposed. The first step is to design the H∞ 
controller without consideration of the system 

uncertainty. But the noise effect is included in the 
design process. The second step is to iterate the 
learning gain such that the convergence condition is 
satisfied even under large system uncertainty. The 
learning gain served as the performance weighting 
which is the loop optimization variable to further 
minimize system performance. Simulations and 
experiments are conducted to demonstrate the design 
philosophy.  

2 MODELLING OF SERVO 
CONTROL SYSTEM  

In this paper, the command-based ILC is applied to a 
CNC milling machine tool (Tsai et al., 2006). The 
general servo control system as shown in Fig. 1 
which includes the linear dynamic model of the 
servo system, the velocity and position loops with a 
velocity feedforward controller F(s). The function 

)s(F  is designed as sK f  where fK  is the 
feedforward gain. The Js, Bs, Kt and hp are the 
moment of inertia, viscosity, torque constant and 
pitch of lead screw.  The parameters vpK  and viK  in 
the velocity loop can be designed by specifying the 
damping ratio and bandwidth of the closed-loop 
transfer function of the velocity loop. The position 
gain ppK  in the position loop is determined by the 
designed bandwidth of the position loop. The 
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