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In this paper, the error dynamic equation of the ILC algorithm is derived with consideration of parameter

uncertainties and noise. The H,, frame work is utilized using the derived error dynamics to design the robust
learning controller. The proper learning gain is designed based on an optimization process to ensure that
both tracking performance and convergence condition can be achieved. Simulation and experiments are
conducted to validate the robust learning algorithm and the system is stable ever under high payload

uncertainty.

1 INTRODUCTION

Iterative learning control (ILC) is a technique to
control the system when it operate same tasks
repetitively. The ILC can be applied to robot
manipulators (Tayabi and Islam, 2006), chemical
batch process (Lee and Lee, 2007), and so on. Many
schemes of the ILC including the 2D theory method
(Geng et al., 1990), stochastic method (Wang and
Afshar, 2009), inverse system (Ye and Wang, 2005),
and feedback learning operators (Goldsmith, 2002;
Chin et al., 2004) have been proposed. Technical
review on the methodologies and applications of the
ILC is referred to (Ahn et al., 2007).

System robustness is generally a major concern
in the implementation of ILC to either linear or
nonlinear systems. The adaptive iterative learning
control was proposed (French and Rogers, 2000).
The Lyapunov method was adopted to prove the
convergence of the algorithm. Other adaptive ILC
algorithms were proposed to handle system with
time-varying parameters using a positive-definite
Lyapunov-like sequence (Kuc et al., 1991). Another
approach to ensure system robustness is to utilize the
H,, theory to formulate the general design
framework for the ILC algorithm (Padieu and Su,
1990). In these papers, only the performance and
robustness analysis of ILC schemes are considered.

In this paper, two steps design process is
proposed. The first step is to design the Hoo
controller without consideration of the system

148 Tsai M., Yen C. and Yau H..
Development of Robust Learning Control and Application to Motion Control.
DOI: 10.5220/0004008601480152

uncertainty. But the noise effect is included in the
design process. The second step is to iterate the
learning gain such that the convergence condition is
satisfied even under large system uncertainty. The
learning gain served as the performance weighting
which is the loop optimization variable to further
minimize system performance. Simulations and
experiments are conducted to demonstrate the design
philosophy.

2 MODELLING OF SERVO
CONTROL SYSTEM

In this paper, the command-based ILC is applied to a
CNC milling machine tool (Tsai et al., 2006). The
general servo control system as shown in Fig. 1
which includes the linear dynamic model of the
servo system, the velocity and position loops with a
velocity feedforward controller F(s). The function
F(s) is designed as K,s where K, is the

feedforward gain. The J, B, K; and A, are the
moment of inertia, viscosity, torque constant and
pitch of lead screw. The parameters K, and K,; in

the velocity loop can be designed by specifying the
damping ratio and bandwidth of the closed-loop
transfer function of the velocity loop. The position
gain K, in the position loop is determined by the

designed bandwidth of the position loop. The
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feedforward gain K, is designed by using an

optimization approach, which minimizes the sum of
the magnitudes of the error transfer function at
various frequencies. According to Fig. 1, the transfer
functions between the output y,(s) and the

reference command r,(s) , and the sensor noise

ng(s) are givens as:
Yi($)=G(s)r(s)+G,(s)n(s) (1)

Because the learning process is implemented in
discrete-time domain, Eq. (1) is converted to the
discrete-time model using the zero-order hold
technique and is given as:

Yi(2)=G(2)n(2)+G,(z)n(z2) (2)

Velocity feed-forward controller

Krs

Position controller

Velocity controller

Figure 1: Architecture of servo control system with
measurement noise.

3 OPTIMIZATION PROCESS

In the previous section, the general model of the
servo control system is developed. In this section,
the error dynamics equation is derived and design
methodology is proposed.

3.1 Error Dynamics Equation

Figure 2 illustrates the architecture of command-
based ILC where r; and ry.; are the input commands
at the " and the (k+1)" iteration, respectively. yq is
the desired trajectory, m,(z), ¥(z) and €.(z)
denote the measurement noise, the output signal and
the tracking error with measurement noise. The
tracking error ¢, processed by a learning control

L(z) and learning gain @ is added to the reference
command ry to obtain the new updated command
r+1. The complete learning process shown in Fig. 2
can be represented by the following equations.

Tees(2)=1i(2)+PL(2 ek (z) 3)
ep(z)=ya(z)=yi(z) @)

After derivation, the error dynamic equation can
be simplified as:

eps; =(1-PLG, Je; + PLG,n; (5)

Equation (3) indicates that the tracking
performance is strongly influenced by the transfer
function @LG, . Using the multiplicative uncertainty

representation, the G, can be further represented by
the nominal plant G,y(z) and the weighting function
W(z) and given as:

Gi(2)= Gr2)(1+W(2) A(2) (6)
Here A\(z) is the small perturbation normalized
to be ||A||00 <1. The errors dynamics can be further

expressed as:
€yl =[1—Q)LG,0(1+WA)]ek +¢‘LG).0[[+WA]}1]‘ (7)

l ",

Closed-loop servo system

D «— L@

ka1

Figure 2: Architecture of command-based ILC with
measurement noise.

3.2 Robust ILC using H- Control

After developing the error dynamics, the H,, control
can be designed by first transforming the error
dynamics into a linear fraction transformation (LFT)
form (Zhou et al., 1996). Figure 3 shows the block
diagram corresponding to the error dynamic
equation (12). The block diagram can be represented
by the following LFT form given as:

Yy 0 -9G,y @G, 0 I “
et |=|0 0 I -r| *|=p,

e
YL W -oG, @G, 0 , ,
ur urp

S

®)

Q

where P, is the augmented plant, @ is the learning
gain which is the designed variable for the
optimization process, v, Vi, us and u; are the output
of the augmented plant, input to the learning
function L(z), input to the augmented plant and
output of the learning function L(z), respectively.
Equation (6) can be further represented by the
following form:

Z\| [P Po|w
LJ{PH Pzz}{w} ®

The relation between the y;; and u; is given as u;
= L(z)y;. The augmented system can be expressed as
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a standard form for designing the H, controllers
shown below:

~ Yy ~
z{ ! }=1’11W+sz (10)
€k+1
yi =Py +Pyyuy, (11)
Yi A(2) uy

_ e
D [« Gy(z) 0
Ck+1 + L

W(z)

L L(z) uy

Figure 3: Architecture of ILC synthesis problem with
considering measurement noise

With the developed models by Egs. (8) and (9), the
perturbed system model can be used for designing
the robust H,, controller can be designed by solving
the two Riccati equations. After designing the
learning function L, the closed loop between the Z
and W can be represented as the following:

0 - Q)Gr() a)Gr()
—LW @LG,, 1-®LG,,

T2~~ =

(12)
It is noted that the following equation provides a
design criteria in selecting the learning gain @ .

727, = koGl (13)

And the sufficient convergence condition of the
ILC algorithm (Roover, and Bosgra, 2000) is to
ensure that

[z < (14)

Equation (12) implies that the condition of & </
should be set in order to satisfy the convergence
condition.

3.3 Optimization Process

By observing the closed loop transfer function, it is
found that the stability and performances of the ILC
algorithm are strongly influenced by the
uncertainties. Before introducing the optimization
process, the H,, controller designed process without
considering the plant uncertainties is given as
follows.
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Z| [P P2 | W
2o 2] )
yr 21 22wy
P, P
where P, :{ 12 } is the augmented plant. The
Py Py

augmented system can be expressed as a standard
form for H,/H.,, controller design as shown below:

- y ~
z=| 7 =R W+ Py (16)
€r+l

With the designed controller, the closed loop
transfer function can be represented as the
following:

Tz,
=loLG,, 1-9LG,,]

D = Diisial

-
=P+ P(1—LPy ) LPy

(17)

k.

Design L(z)

change @

e

change @

Figure 4: The flow chart of designing learning gain and
learning controller.

The design process is to start by selecting the
learning gain @ and ensure the stability condition is
satisfied. The procedure starts by first choosing an
initial value of ® and then apply the H,, theory to
design the controller L(z) based on the augmented
plant. The second step is to ensure that the designed
controller L(z) should satisfy the sufficient condition
of the convergence where the plant uncertainty is
included.
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4 EXPERIMENTAL VALIDATION

To validate the design process, simulation analysis
and experiments are performed using a three-axis
machine tool system. The x, y, and z axes of the
machine tool are driven by Panasonic
MHMDO042S1S servo motors and MHMDO042S1S
servo drives. The resolution of the linear scale for
each axis is equal to 1um. The real-time extension
(RTX) (VenturCom Inc., 2006) is used to ensure the
control system with real-time performance. The
output data from the linear scale are processed by
the Advantech 1784 encoder card. The plant
parameters are identified using a frequency domain
approach. The nominal plant G,,(s) is measured with
a linear swept-frequency signal at the magnitude of -
1 Volt to 1 Volt and the frequencies from 0.1 Hz to
1000 Hz, and identified by using the Empirical
Transfer Function Estimate (ETFE) method (Ljung,
1999). The damping ratio and the bandwidth of the
velocity closed-loop transfer function are chosen as
1.0 and 502.65 rad/sec, respectively. The bandwidth
of position closed-loop transfer function is chosen as
251.33 rad/sec and the velocity feedforward gain
K is selected to 0.95.

To ensure that the proposed algorithm can be
applied to a complex trajectory, a butterfly NURBS
curve is used as a working example as shown in
Fig.5. Three payloads given as 0, 10, and 20 Kg are
tested in the moving platform. The 10 and 20 Kg
payload changes can cause the moment of inertial J;
to deviate about 8% and 16%, respectively. The
corresponding weighting function W(s) to cover the
uncertainty bounds is given as:

0.5s

Wis)= "0 (18)

20

y-axis (mm)

50 .40 30 200 -10 0 10 20 30 40 50
X-axis (mm)

Figure 5: The butterfly curve.

After applying the design process shown in Fig. 4, it
is found that the learning gain @ should be in the
range of 0.3 and 0.53 to satisfy the convergence

condition. The optimal learning gain is determined
to be 0.53.

Experiments are conducted on the machining
tool with the payload equal to 0, 10 kg and 20 kg,
respectively. The comparisons of tracking error
between the cases of without learning and the
learning after the 10th iteration are shown in Figs. 6
and 7. From the results, the tracking performances of
the x-axis and the y-axis are much improved under
the conditions of different loadings. The RMS
values of x-axis output tracking errors under the
conditions of that without loading, loading 10kg
weight and loading 20 kg weight reduce 99.40%,
99.40% and 99.41% after 10 iterations. The RMS
values of y-axis output tracking errors under the
conditions of that without loading, loading 10kg
weight and loading 20 kg weight reduce 99.33%,
99.30% and 99.12% after 10th iteration. The
maximum values of the x-axis output tracking errors
under the conditions of that without loading, loading
10kg weight and loading 20 kg weight reduce
98.16%, 98.71% and 98.77% after 10th iteration.
The results illustrate that not only the controller
satisfies the system robustness but also the trends of
output tracking errors are similar under different
loadings.

X-Axis Tracking emror (Without loading)

Y-Axis Tracking emror (Without loading)

2 3 4 50 1 2 3 4
Time (5)

X-Axis Tracking error (Weight: 10 Kg)

o 1 2 3 4 5 0 1 2 3 4
Time (5) Time (5)

X-Axis Tracking emror (Weight 20 Kg)

1 3 4 5 0 1

2 2 3
Time (5) Time (5)

Figure 6: The comparisons of tracking error between the
cases of without learning and the learning.
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RMS value of X-Axis Trac

o 10 ) 78 o 10

T s 6
Iteration number

Figure 7: The trends for the RMS and maximum values of
the tracking errors.

5 CONCLUSIONS

A modified H,, optimization process is proposed in
this paper to provide a systematic. methodology in
choosing the learning gain and designing the
learning  function. According the proposed
methodology, the appropriate learning gain and
learning function can be designed simultaneously.
Experiments are conducted on the machining tools
with different loading conditions. It is shown that the
reduction of tracking error is over 97% after 10
iterations for the nominal plant. Furthermore, the
comparisons between the plants with different
payloads demonstrate that system robustness can be
achieved.
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