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Abstract: In 1989, (Shamir, 1989) proposed a new zero-knowledge identification scheme based on a NP-complete prob-
lem called PKP for Permuted Kernel Problem. For a given primep, a given matrixA and a given vectorV , the
problem is to find a permutationπ such that the permuted vectorVπ verifiesA ·Vπ = 0 modp. This scheme
is still in 2011 known as one of the most efficient identification scheme based on a combinatorial problem.
However, we will see in this paper that it is possible to improve this scheme significantly by combining new
ideas in order to reduce the total number of computations to be performed and to improve very efficiently the
security against side channel attacks using precomputations. We will obtain like this a new scheme that we
have called SPKP. Moreover, if we use precomputed values in the scheme SPKP, then the prover will need to
perform no computations (i.e. only selection and transmission of precomputed values). This is very interest-
ing for security against side channel attacks because our scheme is zero-knowledge and we don’t perform any
computations using the key during the identification so we prove that any attacker (even using side channel
attacks) being successfully identified implies that he has a solution to the NP-complete problem PKP.

1 INTRODUCTION

The articles published on PKP after Adi Shamir’s ar-
ticle of 1989 focussed on the study of various attacks
on PKP. In 1992, (Georgiades, 1992) introduced sym-
metric polynomials equations. The symmetric poly-
nomial equation of degree 1 is very useful and will
be used by every other attacks. The symmetric poly-
nomial equations of bigger degrees seems to be very
difficult to exploit though. The same year, (Bari-
taud et al., 1992) attacked PKP using a time-memory
trade-off. In 1993, (Patarin and Chauvaud, 1993)
combined the previous attacks and used a few new
ideas. In 1997, (Poupard, 1997) created a program to
find the best attack’s parameters improving the pre-
vious techniques. In 2001, (Jaulmes and Joux, 2001)
used a new time-memory trade-off technique, divid-
ing equations in 4 parts, to further improve the attack.

However, these attacks didn’t break Shamir’s PKP
scheme: they are all exponential and PKP is still
very efficient. For example, the best attack known
from (Jaulmes and Joux, 2001) is in 2106. Nev-
ertheless, they show that the initial parameters of
Shamir PKP(16,32) are too weak, specially with to-
day’s power computation.

Some articles (Girault, 1990), (Courtois et al.,
2001) compared the PKP scheme with other identi-
fication scheme like CLE (Stern, 1989) (Stern, 1994)

and SD (Stern, 1993), PPP (Pointcheval, 1995) and
MQ (Sakumoto et al., 2011). These papers show that
PKP scheme is one of the most efficient in terms of
computations needed and bits transferred.

In this article, we will try to describe variants of
PKP that could make it even more efficient. It seems
like this subject has not been studied so far. In fact,
as we will see, the simplest variants don’t give very
good results. In this way, we could say that Shamir’s
PKP scheme seems quite ”stable”. Nevertheless we
will see that, combining some simple ideas, we can
create a scheme, named SPKP, that seems to be really
more efficient.

For example, standard parameters PKP(37,64)
needs 215 multiplicationsof 8 bits numbers and 215

additions of 8 bits numbers (for a 2106 security and
a 2−30 impersonation probability) and the number of
operations remains the same with a 32 bits micropro-
cessor.
Our new version SPKP needs 214.4 additionsof 8 bits
numbers (still for 2106 security against the best known
attacks) and 212.4 additionsof 32 bits numbers if we
use a 32 bits microprocessor.

On modern microprocessors, 8 bits additions and
8 bits multiplications cost about the same but it may
be interesting to use additions instead of multiplica-
tions on very cheap RFID, or when the modulop be-
comes large.
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We will also see that our scheme SPKP is per-
fectly safe against SCA (side channel attacks). With
PKP, we need 223.4 bits of precomputed values to be
perfectly safe against SCA, this is not realistic. With
SPKP, we need 217 bits of precomputed values to be
perfectly safe against SCA, this a major improvement.

2 DEFINITIONS OF PKP AND
THE CORRESPONDING
IDENTIFICATION SCHEME

Let p be a prime,V a vector ofZn
p, A a matrix of

Z
m×n
p . For each permutationσ ∈ Sn, we noteVσ the

vector defined byVσ = (vσ(i))i andAσ the matrix de-
fined byAσ = (ai,σ( j))i, j. We can notice that, for each
permutationσ, we haveAσRσ = AR.

Given a primep, a matrixA and a vectorV , the
Permuted Kernel Problem is to find a permutationπ
such thatA.Vπ = 0 modp.

This problem is NP-complete and has many ad-
vantages to be used in an identification scheme. In-
deed, the following identification scheme is Zero-
Knowledge (the prover doesn’t reveal anything about
the secret during the identification), it uses very basic
operations (multiplications mod p), it is very fast and
it differs from many other schemes by not depending
of the factorisation or discrete log problem. Since the
problem is NP-complete, it is expected to be secure
against quantum computers (unlike schemes based on
factorisation or discrete log).

The identification scheme is the following:

PKP 5 Rounds Identification Scheme
(Shamir, 1989)

The users agree on a matrixA and a primep. Each
user chooses a random vectorW in Ker(A), a random
permutationπ and computesV = Wπ−1. The public
key will beV and the secret key will beπ. V has been
defined such thatVπ is in Ker(A). Each user can now
prove their identity by proving they knowπ:

1. The prover chooses a random vectorR and a ran-
dom permutationσ. The prover computes the
hashed values of(σ,A.R) and(πσ,Rσ) and sends
both of them to the verifier.

2. The verifier chooses a randomc ∈ Z/pZ and
sends it to the prover.

3. The prover sendsW = Rσ + cVπσ.

4. The verifier sends a bitb.

5. The prover sendsσ if b = 0 and sendsπσ if b = 1.
In the first case, the verifier checks that the hash
of (σ,AσW ) is equal to the hash of(σ,AR).

In the second case, the verifier checks that the
hash of(πσ,W − cVπσ) is equal to the hash of
(πσ,Rσ).
An honest prover is obviously passing the test suc-

cessfully: in the first case, we verify that
AσW = Aσ(Rσ + cVπσ) = AσRσ + cAσVπσ = AR+ cAVπ = AR.

In the second case, we verify that

W − cVπσ = Rσ.

As shown in (Shamir, 1989), the scheme is Zero-
Knowledge and the probability of success for some-
one who doesn’t knowπ is less or equal top+1

2p . For
31 iterations, the probability of success is approxi-
mately 2−30.

3 PARAMETERS

The probability for a random vector to be in the Ker-
nel of A is p−m because there arem equations. The
cardinal of the orbit ofV under the permutations (ie
the set{Vσ}σ) is n! if V has distinct coordinates. In
order to have only one solution and to give the good
proportion of information, we need to haven! ≈ pm.
This is the first constraint.

Now, we have to care about security. The naive
attack is to choose the firstn−m coordinates of the
vectorVπ (using the coordinates ofV ) and use them
equations to find the lastm coordinates. The com-
plexity of this naive attack isn!

m! . We needn to be big
enough so thatn!

m! is big enough, this is the second
constraint.

Later, we will use the best known attack from Joux
but in the next sections, we’ll only need the naive at-
tack to understand that the simplest variants are not
efficient.

Shamir proposed to usep = 251 (the largest prime
number on 8 bits) so that we can use the scheme on
small devices like 8 bits microprocessors of smart
cards. This is a good choice and we’ll see in section
5 if we can choose other values forp (for example for
32 or 64 bits processors, are larger values ofp more
efficient ?). Considering the two constraints, val-
ues ofn andm were proposed:PKP(16,32) (which
gives a security in 246 against the best known at-
tack at present and therefore is not sufficient) and
PKP(37,64) (which gives a security in 2106 against
the best known attack).

4 PERFORMANCES

Let’s count how many multiplications we need to do
in the identification scheme.
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The matrix isA is public so everyone can use
Gauss elimination so we can assumeA is given by
A = [A′|I] whereA′ is a m× (n−m) matrix andI is
them×m identity matrix.

The prover has to computeA.R at step 1 andc.Vπσ
at step 3. This ism× (n−m)+ n multiplications of
8bits numbers and the same number of additions. For
PKP(16,32), after 31 rounds, this is 214.1 operations
(half of them are multiplications). For PKP(37,64),
after 31 rounds, this is 216 operations. This is very
fast compared to many other schemes.

In each round, we send two hashed values (128
bits for both), one vector (8n bits) and one permuta-
tion (log2(n!) bits). ForPKP(16,32), after 31 rounds,
this is 213.9 bits and forPKP(37,64) this is 214.8 bits.

5 FIRST VARIANT: DIFFERENT
VALUES OF P

5.1 Why 2≤ p < 251 is not a Good
Choice in PKP

p = 2 : There are many issues in usingp = 2. The
first one is that we don’t haven! different possible
solutions anymore because there are many equal co-
ordinates.

Moreover, if two public keysV1 andV2 have the
same number of ones and zeros, the user knowingπ1
can computeπ2 and inversely. The proof is in the
appendice of (Lampe and Patarin, 2011). This limits
the number of possible keys ton+1 at best but most
of them are weak.
3< p < 251 :For those values ofp, we have the same
problems that we had withp = 2. It’s difficult to build
public keys with different coordinates and there is a
limited number a possible public keys (specially for
small values ofp). All the details are in the appendice
of (Lampe and Patarin, 2011).

5.2 Why p > 251Improve the Number
of Operations Needed but not the
Transmissions

Nowadays, we have access to 32 and 64bits proces-
sor so we could use those to compute modulo prime
numbers of 32 or 64 bits. Therefore it is rather nat-
ural to consider PKP on computers (instead of 8 bits
smartcards) with values ofp of 32 or 64 bits instead of
p = 251 (8 bits). As we will see, we will improve like
this the number of computations (but not the number
of transmissions).

The equationn! ≈ pm tell us that, using 4 or 8
times more bits forp, dividesm by 4 or 8. We know
that all the attack heavily use thosem equations (for
example, the naive attack is inn!/m!).

Let see in the next array some parameters, the cor-
responding Joux’s attack complexity and the number
of multiplications modp needed. We can notice that
the extra equation of degree one of Georgiades (Geor-
giades, 1992) is used here in Joux attack and is not
negligible whenp is large. We made different arrays
for the various ranges of attack’s complexity (cf ap-
pendice of (Lampe and Patarin, 2011) for more de-
tails).

Table 1: Security in 280.

p m n Security Operations Transmissions
251 24 46 279 215.1 214.4

216 8 34 280 213.8 214.6

232 4 34 2104 213.2 215.3

264 2 34 280 212.5 216.2

Table 2: Security in 2100.

p m n Security Operations Transmissions
251 34 60 2102 215.8 214.7

216 10 40 2106 214.4 214.8

232 4 34 2104 213.2 215.3

264 3 46 2151 213.4 216.6

Those results tell us that using big values ofp per-
mits to reduce significantly the number of operations.
As shown above, with a 280 security, it needs 212.5 op-
erations forp with 64 bits,m = 2,n = 34 and needs
215.1 operations for the standard PKP(24,46). This is
6 times faster. However, the number of transmissions
are bigger with big values ofp.

6 SECOND VARIANT: 3 ROUNDS
PKP (INSTEAD OF 5 ROUND
PKP)

We found an identification scheme with 3 rounds (in-
stead of 5) based on the PKP problem:

PKP 3 Rounds Identification Scheme

1. The prover chooses a random vectorR and a
random permutationσ. He sends 4 hashed
values: h1 = H(σ),h2 = H(Rσ + (Vπ)σ),h3 =
H(AR),h4 = H(Rσ).

2. The verifier sends a challengeb = 1,2 or 3.

3. • If b = 1, the prover revealsσ andW1 = Rσ. The
verifier verifies thatH(σ) = h1,H(Aσ(W1)) =
h3 andH(W1) = h4.
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• If b = 2, the prover revealsσ and W2 =
R + Vπ. The verifier verifies thatH(σ) =
h1,H((W2)σ) = h2 andH(AW2) = h3.

• If b = 3, the prover revealsσπ andW3 = Rσ.
The verifier verifies thatH(W3+Vσπ) = h2 and
H(W3) = h4.

Theorem:
An honest prover will pass the test successfully all
the time while a dishonest prover has, at best, a
probability 2

3 to pass the test successfully. Indeed, if
someone can answer to the 3 questions then he has
a solution for the PKP problem.

Proof: See (Lampe and Patarin, 2011).
Considering this probability, we need 52 rounds to
have a 2−30 impersonation probability.

Theorem:
The PKP 3-rounds scheme is Zero-Knowledge.

Proof: See (Lampe and Patarin, 2011).
About performances, we need to computeAR and
Rσ + (Vπ)σ at step 1. This ism(n−m) multiplica-
tions andm(n− m) + n additions. About transmis-
sions, there are 4 hash (256 bits), one vector (8n bits)
and one permutation (log2(n!) bits).

7 THIRD VARIANT: USING
MORE VECTORS AND SOME
SYMMETRY IN THE PKP
PROBLEM

What happens if we use more than one vectorV i.e.
with l ≥ 2 vectorsV instead ofl = 1 ? This is the ex-
act same thing to considerV as a matrix of sizem× l.
If we increase the number of vectors, we have to de-
crease the number of equationsm (becausen! ≈ pm·l)
which should increase the attack complexity. Here we
will explain why l = m (the maximal possible value
for l) is not more secure thanl = 1 (they actually have
the exact same security, using a symmetry argument).
However, in section 8 we will see thatl =

√
m is in-

deed interesting because, in this situation, there is an
equal number of equations and vectors which is the
fixed point of the following symmetry:

Theorem (Symmetry in PKP):
Given a primep and an integern, solving the PKP
problem withm equations andl vectors has the exact
same complexity that solving the PKP problem with
l equations andm vectors.

Proof: See (Lampe and Patarin, 2011).

As said before, decreasingm increase the attack’s
complexity but it slightly increase the number of op-
erations needed as well. Usingp of 8,16,32 or 64 bits
didn’t lead to interesting results.
Our New Idea. With one vector, as we have seen
above, we couldn’t use low prime numbers. How-
ever, with multiple vectors, we noticed that it is now
possible to use low prime numbers and we will see
that it can be interesting to considerp = 2. As longV
doesn’t have two equal lines, there aren! possibilities
for π.

8 DEFINITION OF SPKP

Our new scheme SPKP combines the three previous
ideas:

• 3 rounds (instead of 5 for PKP).

• p = 2 (instead ofp = 251 for Shamir’s PKP rec-
ommended parameters).

• multiple vectors (typicallyl = 9 instead ofl = 1
for PKP).

Considering multiple vectors, we studied what’s the
best choice forp and it seems likep = 2 gives the
best results. Using the 3 rounds scheme gives better
results as well. At step 1, to computeh2, we have to
do n× l additions. At step 1, to computeh3, we have
to computeA.R which hasm× l coordinates. For each
of them, we have to don−m

2 bits additions. Indeed, the
last m coordinates of each line ofA hasm− 1 zeros
and 1 one, half of the other coordinates are zeros.

At step 3, whenb = 2, we neednl
2 bits additions

to computeW2.

The total ism×l×(n−m)
2 + 3×n×l

2 bits additions.
We need 52 rounds to have a 2−30 impersonation

probability.
We need to compute the best parametersn,m and

l for SPKP and we’ll see the number of additions
needed and conclude on its potential efficiency. To
find those parameters, we have to analyze how SPKP
is resisting to the best attack known. This is the object
of the next section.

9 ATTACKS AND EFFICIENCY
OF SPKP

SPKP is NP-complete because PKP is NP-complete
and PKP is a particular case of SPKP. SPKP is Zero-
Knowledge, the proof is exactly the same we gave for
PKP 3 rounds. We think that all existing attacks are
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less efficient on SPKP. Indeed, for given valuesn and
p, we have the equation

n! = pm×l ,

wherem is the number of equations andl is the num-
ber of vectors. If we usel vectors instead of 1, we
have to divide the number of equationsm by l and ev-
ery attacks are very much dependent of the number of
equationsm.

The best attack on SPKP seems to be, as far as we
know, similar to the best attack on PKP such as Joux’s
attack (Jaulmes and Joux, 2001). It’d be too long
and complicate to describe the Joux’s attack there.
We adjusted it to SPKP by takingp = 2, changing
n−vectors inn × l−matrix and numbers (in theDi
sets) in 1× l−vectors. In the next arrays, we present
the PKP parameters and the SPKP parameters with
the corresponding attack’s complexity and the num-
ber of computations needed for a 2−30 impersonation
(31 rounds for PKP and 52 rounds for SPKP). Nowa-
days, recent smart cards use 32 bits microprocessor
so we combined bits operations together to divide the
number of operations needed.

Table 3: Security in 280.

Parameters Security 32 bits operations
SPKP(15,38,10) 279 211.9 additions

PKP(24,46) 279 215.1 operations

Table 4: Security in 2100.

Parameters Security 32 bits operations
SPKP(15,42,11) 298 212.2 additions

PKP(34,60) 2102 215.8 operations

This results shows that SPKP needs less and sim-
pler operations so it seems to be more efficient than
the original PKP scheme. For a 2100 security, SPKP
needs 12 times less operations than PKP and all oper-
ations are additions compared to PKP using multipli-
cations and additions.

Now, we will compare SPKP with other combi-
natorial schemes. In this array, we’ll show bits oper-
ations for SPKP instead of combining them and we
give the number field used as well. We used parame-
ters for a 2−80 security and 2−30 impersonation prob-
ability.

This shows that SPKP is the scheme using the less
operations (if we combine bits operations together).

Moreover, using precomputations, we can make
this scheme even more efficient as we will see in the
next section.

Table 5: Number of operations for a 280 security and 2−30

impersonation probability.

CLE SD PP
215/F257 218/F256 221/F127

MQ PKP SPKP
226/F2 215/F251 217/F2

10 PRECOMPUTATIONS WITH
SPKP OR OUR PKP 3-ROUNDS

In the original PKP scheme (5 rounds, presented at
section 2), the prover has to computeW = Rσ + cVπσ
wherec is a value withp possibilities (p = 251 typ-
ically) chosen by the verifier then he will face one
of the two challenges. Therefore, for the 31 rounds,
if the prover want to precompute all the possible an-
swers to the prover questions in advance, he has to
prepare 62p answers, approximately 15000 values.
This is not very realistic.

However, in our scheme (PKP 3 rounds, section
6), the verifier will face one of the three challenges
at each round. Therefore, for the 52 rounds, the
prover has to prepare 104 answers for one identifi-
cation. This is realistic if we use devices with enough
memory.

Therefore, we see that all the prover’s computa-
tions can be precomputed so that the prover doesn’t
have to compute anything during the identification.
We can create a smart card which contains only the
datasRi,h1, ...,W1, .... The prover uses this card for
identification, his only need is to send and receive
datas from the verifier.

Precomputation with other Combinatorial
Schemes. This property is possible on every other
schemes as long the number of possible challenges
is limited. This is why our scheme is efficient for
precomputation: there are only 3 possible challenges
while the standard PKP has 502 possible challenges.
The memory needed for one identification is the
number of bits for transmission times the number of
challenges.

We see that SPKP is one of the most efficient
scheme if we want to use precomputation. In 2004,
Samsung realised a smart card with 256kbytes of
EEPROM which permits to save datas for about 16
identifications using SPKP.

In the next few years, the memory size augmenta-
tion could permit to create smart cards with more than
a thousand of identifications saved.
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Table 6: Memory needed for one identification using pre-
computations (with 280 security and 2−30 impersonation
probability).

MQ SPKP SD PP PKP CLE
216.4 216.9 217.5 218.6 223.4 223.8

11 SECURITY AGAINST SIDE
CHANNEL ATTACKS

Since a few years, very efficient physical attacks have
been discovered on smart cards and microprocessors,
for example: timing attacks, power attacks (SPA,
DPA (Kocher et al., 1999)), fault attacks (DFA), ...
Generally some ways to fix those problems was found
by the scientific community, but sometimes it is re-
ally difficult to design secure hardwares against some
physical attacks, and it is expected that new attacks
could be found. A lot of those attacks use the fact that
the microprocessor has to manipulate secret datas. In
the variants of PKP 3 rounds and SPKP that we pre-
sented, it is possible to precompute everything. That
way, no secret datas are manipulated by the micro-
processor which greatly simplifies the security against
physical attacks.

The precomputed datas have to be encrypted or
saved in protected areas because, even if a single data
doesn’t reveal anything about the secret, the combi-
nation of some datas could reveal the secret. The mi-
croprocessor needs to be able to transmit one of those
values but not all of them and eventually decrypt this
value with a key K. The other values have to be en-
crypted with different keys or saved in protected areas
to assure a good security. In fact, it seems to be much
easier to secure such a scheme from physical attacks
than to secure the traditional schemes that manipu-
late a secret datas in the computation of an identifica-
tion against physical attacks (wheres needs to be still
secret after the identification). That’s why we think
those schemes present a real interest for the security
against physical attacks.

We compared SPKP with other schemes that use
precomputations like GPS (Girault et al., 2006) or
Lamport (Lamport, 1981) and his variants. We give
more details in appendice of (Lampe and Patarin,
2011).
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