
lmRNG: A Lightweight Pseudorandom Number Generator for Wireless
Sensor Networks

Anna Sojka and Krzysztof Piotrowski
System Design Department, IHP, Frankfurt (Oder), Germany

Keywords: Wireless Sensor Network, Pseudorandom Number Generator, Lightweight Security.

Abstract: Wireless sensor networks (WSN) are often used in the areas where the data security is very important. The
cryptographic protocols developed for WSN need to be as computationally inexpensive as possible due to the
energy and computational constraints of WSN. The same requirements concern also the elements of these
protocols, e.g. the random number generator. In this paper we present our work on a pseudorandom number
generator for wireless sensor networks. It uses a modification of the Logistic Map, which is adapted to be used
in the constrained environment of the WSN. In our approach we combine a non-deterministic seed source
with the deterministic function to get the pseudorandom number generator. We present the results of the
tests confirming that our approach fulfils the requirements of randomness and is a candidate to be used for
cryptographic purposes.

1 INTRODUCTION

Applications using wireless sensor networks (WSNs)
are becoming more and more popular. WSNs are
composed of multiple tiny devices–sensor nodes–
using radio communication. The most common WSN
application is monitoring of some environment, col-
lecting and processing the data and providing the re-
sults to a control center. WSNs are often used to mon-
itor some phenomena requiring the processed data to
be secured, e.g., in military or health applications.
And since a sensor node is a microcomputer with con-
strained energy and computational resources, these
constraints have to be taken into consideration, when
developing or choosing the protocols for securing the
exchanged data.

The cryptographic protocols for WSN often use
random numbers, e.g., in the key exchange proto-
cols or in the hashing algorithms. On the one hand,
the random number generators have to be lightweight
in terms of energy and time needed for computa-
tions and, on the other hand, according to the Na-
tional Institute of Standards and Technology (NIST)
the random numbers suitable for cryptographic pur-
poses have to be unpredictable (NIST, 2010). This
means that it shall be impossible to predict the next
random number on the basis of the previously gen-
erated ones and it shall be also not feasible to deter-
mine the seed having some random numbers gener-

ated from it. NIST provides a test suite helping in
evaluating a output of the random number generator.
The test suite consists of 15 statistical tests examining
the sequences and assessing their randomness.

There are two types of random number generators:
Random Number Generators (RNGs) that use non-
deterministic source for generating their outputs and
Pseudorandom Number Generators (PRNGs) that use
seeds to compute the random numbers. The results of
PRNG are deterministic and depend on the seed–the
input used to initialize the PRNG function. The se-
quence of pseudorandom numbers can be generated
by anyone knowing the seed and the PRNG function.
The proper design of the PRNG function ensures that
the criteria for randomness are fulfilled.

Since the RNGs not always seem to fulfil the ran-
domness requirements (e.g. time vector) and the seed
for a PNRG has to be random and unpredictable, the
output of a RNG can be used as a seed for the PNRG
(NIST, 2010). Thus, in ourlmRNGapproach, we use
a combination of both generator types, as suggested
by NIST, but without developing any additional hard-
ware. Our test platform was the IHPNode (K. Pi-
otrowski, 2010) equipped with a MSP430F5438A mi-
crocontroller (TI, 2010) that includes an ADC con-
verter. Thus, we use the ADC converter to produce
the seeds and a software implementation of modified
Logistic Map to generate the pseudorandom numbers.

Logistic Map as a chaotic map is very sensitive

358 Sojka A. and Piotrowski K..
lmRNG: A Lightweight Pseudorandom Number Generator for Wireless Sensor Networks.
DOI: 10.5220/0004016503580363
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 358-363
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



to initial conditions and can be used for generating
pseudorandom numbers (T. Stojanovski, 2001). In
(V. Patidar, 2009) the authors propose a pseudo ran-
dom generator based on chaotic Logistic Map. But
since the Logistic Map operates on real numbers from
the interval(0,1), the computations performed during
the generation of random sequences are computation-
ally too expensive for sensor nodes. Our modification
of the Logistic Map ensures our approach to be suit-
able for WSN, since it is based on integer computa-
tions, and the statistical tests showed that the random-
ness criteria are fulfilled.

The design of a computationally inexpensive ran-
dom number generator that does not require any ad-
ditional hardware is a very important issue in the area
of the wireless sensor networks. In (Y.H. Wang, 2006)
the authors propose a random number generator based
on single-electron phenomena. It is built of a single-
electron transistor and a single-electron trap, thus, ad-
ditional hardware components are needed. A simple
logic operation is used in order to improve the statis-
tical properties of the generated output. The logic is
based on bit skipping and bit counting to reduce the
information redundancy. Another approach designed
for WSN is the tinyRNG (A. Francillon, 2007). The
random number generator presented in this paper uses
the transmission bit errors as the source of random-
ness. These bit errors are added to the cryptographic
entropy accumulator, which is built using CBC-MAC
function. The entropy is used to reseed the key of
the Cryptographic Pseudo-Random Number Genera-
tor. It is a block cipher encrypting the counter us-
ing the key provided at the programming time and
updated by reseeding with the value from the en-
tropy accumulator. The output is available to applica-
tions through the TinyOS Random interface (TinyOS,
2011). This approach works properly only in case the
radio transceiver is on. And one of the main trends
in WSN is to keep the sensor nodes in sleep mode
whenever possible, i.e., switching the radio off. An-
other solution is proposed in (G. Lo Re, 2011). This
random number generator uses the sensing properties
of the wireless sensor network. The main assump-
tion here is that every sensor node in the network is
able to perform sensing in order to generate random
numbers and these are generated using the ADC con-
verter, buffering and a CMAC algorithm. To avoid
possible manipulation attacks, the sensing task is per-
formed by randomly chosen node being the neighbour
of the node requesting the random number. Thus,
this approach requires additionally that nodes cooper-
ate and communicate to obtain the random numbers,
what significantly increases the costs.

In the rest of the paper we describe our approach

in detail. We sketch the mathematical background and
the requirements that have to be fulfilled by a random
number generator. Then we prove the suitability of
lmRNGfor WSN and the results of the tests evaluat-
ing the randomness, performed using the NIST suite.
Finally, we conclude the paper and draw on future im-
provements.

2 MATHEMATICAL
BACKGROUND

2.1 Dynamical Systems and
Mathematical Chaos

A dynamical system is a set of coupled ordinary dif-
ferential equations which determine how the state of
the system evolves over time (L. Kocarev, 2011). For
some parameters the dynamical system can exhibit
chaotic behaviour. Such a system is sensitive to initial
conditions, i.e., small changes of the input parameter
cause significant differences in the future values.

2.1.1 Logistic Map

Logistic Map is an example of chaotic map represent-
ing a population model and was introduced in (May,
1976). It is a simple recurrence relation of degree two
mathematically written as:

xn+1 = rxn(1− xn) (1)

where the real numberr is a control parameter and
the initial elementx0 is to be defined at the beginning
of computations. The elementsx0,x1,x2, ... are real
numbers lying in the interval(0,1).

The Logistic Map is very sensitive to the param-
eter r, which has to be chosen carefully. There are
some values ofr resulting in non-chaotic behaviour
of the Logistic Map, e.g., according to (L. Kocarev,
2011) for the numbers below 3.57 the chaotic map is
in periodic regime.

2.1.2 The Lyapunov Exponent

The Lyapunov Exponentλ is a quantitative measure
of the dependence on the initial conditions. We can
observe that the system is chaotic, when the value of
the Lyapunov Exponent is greater than 0. The Lya-
punov Exponent can be estimated using the following
expression:

λ = ln(r)+
1

N+1

N

∑
i=1

ln(1−2xi) (2)

lmRNG:�A�Lightweight�Pseudorandom�Number�Generator�for�Wireless�Sensor�Networks

359



where the real numberr is the control parameter in
equation 1 and the elementxi is a real number lying
in the interval(0,1) and is computed in thei− th iter-
ation of the Logistic Map.

2.2 NIST Test Suite

The NIST testing suite provides a set of statistical
tests assessing the randomness of an evaluated se-
quence. The sequence consists of zeros and ones that
represent the binary form of the numbers. The aim
of a statistical test is to assess the probability that
the null hypothesis (H0) is fulfilled, where H0 means
that the sequence is random. Each test is focused on
checking different properties of the sequence in or-
der to test H0 and either accept or reject it. For this
purpose in each test the randomness statistic is used.
The randomness statistic has a distribution of possi-
ble values, and mathematical methods determine the
reference distribution for it. The reference distribu-
tion allows computing a critical value, which deter-
mines the boundary between those samples resulting
in a randomness statistic that leads to rejecting the H0
and those that lead to accepting the H0. For a given
sequence the test statistic value is computed and when
it is bigger than the critical value, the H0 is rejected.
On the basis of the test statistic theP− valueis com-
puted. The method for computing theP− value is
chosen for each test independently and for this pur-
pose a special function is used. It can be for exam-
ple the error function or the gamma function. It is
the probability, that a perfect random number genera-
tor would have produced a sequence less random than
the sequence that was tested. If theP−value= 1 then
the sequence appears to be random. For the NIST test
suite theP−valuehas to be larger than 0.01 to accept
the null hypothesis. The numberα = 0.01 is called
the significance level.

2.2.1 The Testing Strategy

For a single generator a set of binary sequences is
generated and evaluated by the set of tests. After the
binary sequences have been tested, there are two ap-
proaches for interpreting the empirical test results. In
the first approach the proportion of the sequences that
passed the test, i.e. havingP− value> 0.01 is com-
puted. The proportion is computed on the basis of the
number of sequences to be tested and the sequences
that passed the test. Let 1000 be the first number, and
998 the second one. Then the proportion is equal to
0.998 and the range of acceptable proportions is com-
puted using the formula:

(1−α)±3

√

(1−α)α
m

(3)

wherem is a sample size andα is the significance
level. Thus, for 1000 sequences the proportion should
be larger than 0.9805607.

In the second approach the distribution of the
P− valuesis determined in order to check the uni-
formity. For that thePU − valueof all theP− values
is computed. ThePU − value is computed using the
special function as defined in the NIST suite. If
PU −value≤ 0.0001, then theP−valuescan be con-
sidered to be uniformly distributed.

3 OUR APPROACH

The lmRNGwas developed for wireless sensor nodes
to be used in lightweight cryptographic protocol:
shortECC (A. Sojka, 2010), that operates on 32-bit
long numbers.

3.1 Modification of the Logistic Map

Due to its simplicity and chaotic behaviour, the Logis-
tic Map is a perfect candidate for a function generat-
ing random bits (May, 1976), (L. Kocarev, 2011). The
main disadvantage of the Logistic Map is that it oper-
ates on real numbers, what is computationally expen-
sive for resource constrained devices. Computations
on integers are performed faster than those performed
on real numbers (see Section 4). Additionally, on our
microcontroller, the representation of real numbers is
restricted to 7 digit precision, what can cause period-
icity and lead to loss of chaotic behaviour of the Lo-
gistic Map. Thus, for our approach we used a modi-
fied Logistic Map with integers instead of real num-
bers. We proved that for this modification the Lya-
punov Exponent is greater than 0. Our chaotic func-
tion is given by the following equation:

xn+1 = (xn(1+ xn) mod 232)+1 (4)

And since the computations are performed on the in-
tegers greater than 0, the following special case has to
be considered:

if (xn(1+xn) mod 232)+1= 0 then xn+1 = 1.
(5)

3.2 The Seed

According to the NIST recommendation (NIST,
2010) we decided to use a non-deterministic source
for generating the seeds for thelmRNGand we have
chosen the ADC module. The ADC module is fed
with the on-chip temperature sensor and we use this
integrated hardware combination to generate the seed.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

360



The seed consists of 32-bits and each bit is generated
using an independent measurement of the temperature
sensor. To generate the seed we take the least signif-
icant bit of each measurement, because it is the most
sensitive bit, i.e., even small oscillation of the tem-
perature influences its value. We have also evaluated
such a sequence of bits to check if it passes the NIST
tests–not all the tests were passed. Thus, we decided
to use the source of bits only for the non-deterministic
seed. To improve the quality of the seed, the en-
tropy distillation process can be performed (Pareschi,
2006), but this issue is out of scope of this work.

3.3 lmRNG Pseudorandom Number
Generator

The lmRNG pseudorandom number generator uses
two modified Logistic Maps that need to have differ-
ent seeds as input.

xn+1 = xn(1+ xn) mod 232+1 (6)

yn+1 = yn(1+ yn) mod 232+1 (7)

In order to generate a n-bit long numberz, n iterations
of both maps are performed. In each iteration the out-
puts of both maps are compared and on the basis of
this comparison the i-th bit of the numberz is gener-
ated as follows:

if (xi > yi) then zi = 1, otherwise zi = 0. (8)

Our experiments have shown that using only a single
modified Logistic Map to reduce computations and
generating the bit streams by taking from the itera-
tion results different combinations of bits, caused the
generated bit sequences to have poor quality and, as
a result, to fail the NIST tests. Additionally, the final
method for determining the value of the i-th bit was
proposed after a number of experiments. The com-
bination of two maps with the decision based on the
result of the comparison of their outputs causes the
approach to have the desired properties, i.e., the out-
put is random. Further, using two maps, each using
a 32-bit seed as input increases the number of possi-
ble PRNG sequences. This reduces the chance of a
brute force attack to recover the seed on the basis of
the generated numbers.

4 EVALUATION

First, in order to evaluate our approach, we measured
the time needed by the microcontroller for comput-
ing the iterations of the Logistic Map using different
data types, i.e., the float numbers as it is used in the

Table 1: Clock cycles needed for Logistic Map iterations
performed on MSP430F5438A.

Data Type 1 Iteration 32 Iterations
float 522 16165

uint32 282 8485
uint32+HM 83 2117

original form of the Logistic Map and for integers as
we proposed in our modification. Table 1 presents
the clock frequency independent results of our mea-
surements and shows that even without the support of
the hardware multiplier the computations on the inte-
gers need only the half of the clock cycles than those
performed on floats. The hardware multiplier (HM)
allows for six times faster integer computations than
in case of floats. In comparison to the approach pro-
posed in (V. Patidar, 2009), where the floats where
used, our approach is more suitable for WSN. And the
presented numbers of clock cycles required for inte-
ger multiplication can be optimized further, since the
multiplication result is divided modulo 232 and thus
only a partial 32-bit multiplication is needed.

4.1 Randomness Testing

For the randomness assessment oflmRNGwe have
generated 1000 binary sequences, each 1000000-bit
long. For each sequence we have computed the Lya-
punov Exponent, which was always greater than 0. It
proves that our modified Logistic Map behaves chaot-
ically as well. Further, all the sequences were tested
using the NIST testing suite.

4.1.1 Uniform Distribution of P-values

The Tables 2 and 3 present the results of NIST
tests performed on the random bit streams generated
by the lmRNG. As mentioned in Section 2.2.1, for
the 1000 tested sequences, the proportion of passed
tests should be larger than 0.9805607. All the tests
were passed, what means that thelmRNGgenerates
pseudorandom numbers. The approach presented in
(Y.H. Wang, 2006) was also tested using the NIST
tests and it has been shown that some of the tests
were not passed. Besides, the authors did not give
the clear information about the number of sequences
which were tested, what makes the two approaches
hard to compare.

4.2 lmRNG Versus TinyRNG

The Table 4 presents the comparison of thelmRNG
with TinyRNG. ThelmRNGgenerator does not need
any initialization, what in case of TinyRNG takes

lmRNG:�A�Lightweight�Pseudorandom�Number�Generator�for�Wireless�Sensor�Networks

361



Table 2: Results of Non-Parametrized Tests.

Statistical Test
Distribution
of P-Values

Proportion
of passed tests

Frequency (Monobit) Test 0.500279 0.9910
Cumulative Sums Test

forward sums 0.668321 0.9920
reverse sums 0.340858 0.9920

Runs Test 0.299736 0.9880
Test for the Longest Run of Ones in a Block 0.914025 0.9850
The Binary Matrix Rank Test 0.834308 0.9950
The Discrete Fourier Transform (Spectral) Test0.254411 0.9890
Random Excursions Test

x = -4 0.137669 0.9869
x = -3 0.287113 0.9869
x = -2 0.306059 0.9918
x = -1 0.613238 0.9918
x = 1 0.770642 0.9886
x = 2 0.825651 0.9902
x = 3 0.901436 0.9837
x = 4 0.256024 0.9806

Random Excursions Variant Test
x = -9 0.856548 0.9935
x = -8 0.899148 0.9951
x = -5 0.487035 0.9918
x = -2 0.552416 0.9821
x = 2 0.506324 0.9886
x = 5 0.275709 0.9951
x = 7 0.041549 0.9886
x = 9 0.773817 0.9886

Table 3: Results of Parametrized Tests.

Statistical Test
Distribution
of P-Values

Proportion
of passed tests

Linear Complexity Test (block length 500) 0.452173 0.9910
Serial Test (block length 16) 0.208837 0.9870
Serial Test (block length 16) 0.647530 0.9850
Non-Overlapping Template Matching Test

template = 000110111 0.435430 0.9920
template = 001001101 0.191687 0.9940
template = 001011011 0.595549 0.9910
template = 101111100 0.755819 0.9850
template = 110111000 0.395940 0.9920
template = 111010100 0.325206 0.9930
template = 111101100 0.204439 0.9900

Overlapping Template Matching Test 0.672470 0.9900
Maurer’s Universal Statistical Test 0.508172 0.9870
Frequency Test Within a Block (block size 104) 0.666245 0.9870
Approximate Entropy Test (block length 10 bits)0.429923 0.9870

about 147 milliseconds. In case of TinyRNG the gen-
eration of seed is preceded by a number of entropy
accumulations, each taking about 2 milliseconds. The

generation of TinyRNG seed itself takes about 2 times
more time than in case oflmRNG. And the genera-
tion of 64 random bits takes about 1 millisecond in

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

362



our approach compared to about 440 microseconds in
TinyRNG. Altogether, the whole process of genera-
tion of the 64 random bits takes less time in case of
lmRNG, even if the initialization phase is not taken
into account. Additionally, the main advantage of
lmRNGwhen compared to TinyRNG is that our ap-
proach allows for generation of random numbers also
in case when the radio transceiver is turned off, e.g.,
the sensor node is in power saving mode. Keeping the
radio to be turned off as often as possible is one of the
main requirements for the wireless sensor networks.

Table 4: ComparisonlmRNGwith HM vs TinyRNG @
8MHz.

Operation lmRNG TinyRNG
Initialization 0 146 ms
Seed Generation 530µs 1.13 ms
Entropy Accumulation 0 2.16 ms
Generation of 64 bits 1 ms 440µs

5 CONCLUSIONS

In this paper we presented a new cryptographic
pseudo random generator for wireless sensor net-
works. ThelmRNG is based on a modified logistic
map equation and is adapted to the requirements of
sensor nodes. It is computationally efficient and does
not need any additional hardware to be built in on the
sensor node. It combines the non-deterministic seed
source with deterministic mathematical formulas to
produce the pseudorandom outputs. The pseudoran-
dom numbers obtained fromlmRNGwere tested us-
ing the NIST Test Suite containing 15 statistical tests
and all the tests were passed. Thus, thelmRNGis a
good candidate to be used in cryptographic protocols
for wireless sensor networks and this aspect will be
investigated in our future work.

REFERENCES

A. Francillon, C. C. (2007). TinyRNG: A Cryptographic
Random Number Generator for Wireless Sensors Net-
work Nodes. InWIOPT’07, 5th Intl. Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks, Limassol, Cyprus.

A. Sojka, K. Piotrowski, P. L. (2010). Shortecc: a
lightweight security approach for wireless sensor net-
works. In International Conference on Security and
Cryptography, SECRYPT. INSTICC.

G. Lo Re, F. Milazzo, M. O. (2011). Secure random number
generation in wireless sensor networks. InProceed-
ings of the 4th international conference on Security of

information and networks, pages 175–182, New York,
NY, USA. ACM.

K. Piotrowski, A. Sojka, P. L. (2010). Body area network
for first responders - a case study. InThe 5th Interna-
tional Conference on Body Area Networks, BodyNets.
ACM.

L. Kocarev, S. L. (2011).Chaos-based Cryptography, vol-
ume 354.

May, R. (1976).Theoretical ecology : principles and appli-
cations / edited by Robert M. May. Blackwell Scien-
tific, Oxford :.

NIST (2010). A statistical test suite for random and pseu-
dorandom number generators for cryptographic appli-
cations.

Pareschi, F. (2006). Chaos-based random number genera-
tors: Monolithic implementation, testing and applica-
tions. InPHD. THESIS.

T. Stojanovski, L. K. (2001). Chaos-based random number
generators-part i: analysis [cryptography].Circuits
and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, 48(3):281 –288.

TI (2010). Msp430x5xxx/msp430x6xxx family.
user’s guide. http://www.ti.com/lit/ug/slau208i/
slau208i.pdf.

TinyOS (2011). Tinyos web page. http://www.tinyos.net/.
V. Patidar, K. S. (2009). A pseudo random bit generator

based on chaotic logistic map and its statistical testing.
Informatica, 33:441 –452.

Y.H. Wang, H.G. Zhang, F. Z. B. W. (2006). An efficient
random number generator for ad hoc sensor network.
In Wireless Communications, Networking and Mobile
Computing, 2006. WiCOM 2006.International Con-
ference on, pages 1 –4.

lmRNG:�A�Lightweight�Pseudorandom�Number�Generator�for�Wireless�Sensor�Networks

363


