
Tampering with Java Card Exceptions
The Exception Proves the Rule

Guillaume Barbu1,2, Philippe Hoogvorst1 and Guillaume Duc1
1Institut Mines-Télécom / Télécom ParisTech, CNRS LTCI, Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France
2Oberthur Technologies, Innovation Group,

Parc Scientifique Unitec 1 - Porte 2, 4 allée du Doyen George Brus, 33600 Pessac, France

Keywords: Java Card, Java Exceptions, Software Attacks, Fault Attacks, Combined Attacks.

Abstract: Many publications have studied the various issues concerning Java Cards security regarding software and/or
hardware attacks. However, it is surprising to notice that the particular case of exception-related mechanisms
has not been tackled yet in the literature. In this article, we fill this gap by proposing several attacks against
Java Card platforms based on both exception handling and exception throwing. In addition, this study allows
us to point out that a weakness known by the web-oriented Java community for more than a decade still passes
the different steps of the state-of-the-art Java Card application deployment process (namely conversion and
verification). This appears all the more important as the Java Card 3Connected Editionspecifications have
started to bridge the gap between the two worlds that are Java Cards and Java web services.

1 INTRODUCTION

The Java Card technology is, as of today, the world’s
leading technology in the smart card field. This lead-
ership comes from the outstanding cost reduction in
terms of application deployment it allows. The fa-
mouswrite once, run everywheremotto of the Java
technology is therefore a key factor for this success.

As part of the Java language, the notion ofexcep-
tion appears important. As per (Chen, 2000),”an ex-
ception is an event that disrupts the normal flow of
instructions during the execution of a program”. In-
deed, exceptions are originally meant to handle errors
that might occur during the program execution. These
errors may come from the Java Card Virtual Machine
(JCVM) when internal errors occurs (a null pointer, or
an access out of the bounds of an array for instance) or
from the application itself. The latter case has lead to
an evolution of the use of exceptions. Many applica-
tions actually use this mechanism as a programmatic
trick to redirect the instruction flow to specific treat-
ments in various occasions.

Another important factor, and especially in the
smart card field, is the inherent security of the system.
This security is mainly achieved by the Java Card
language and the Java Card Runtime Environment
(JCRE) security properties. The strongly-typed prop-
erty of the Java Card language for instance ensures

that no pointer arithmetic is used in a Java Card ap-
plication and that objects behave according to a given
contract defined by their Java class, superclasses and
interfaces. The JCRE enforces other security rules,
ensuring, for instance, the isolation between the dif-
ferent applications running on the platform. The com-
plete list of these requirement can be found in the
specifications (Gosling et al., 2005; Lindholm and
Yellin, 1999; Sun Microsystems Inc., 2009b; Sun Mi-
crosystems Inc., 2009c).

The Java Card 3Connected Editionhas brought
the Java Card platform really close to standard ones,
introducing notions and facilities related to standard
Java applications and web services in particular. The
literature on the security of Java and web services is
relatively vast and several studies, security breaches
and security guidelines have been published (Dean
et al., 1996; Ladue, 1997; Princeton University, De-
partment of Computer Science, Secure Internet Pro-
gramming Group, ; Last Stage of Delirium Research
Group, 2002; Cholakov and Milev, 2005; Hubert
et al., 2010; Long et al., 2011; Oaks, 2001; The
Open Web Application Security Project (OWASP),
2012a; The Open Web Application Security Project
(OWASP), 2012b; Mehta and Sollins, 1998; McGraw
and Felten, 2000; Caromel and Vayssière, 2001; Gut-
terman and Malkhi, 2005; Livshits and Lam, 2005).
It appears then all the more interesting to reconsider

55Barbu G., Hoogvorst P. and Duc G..
Tampering with Java Card Exceptions - The Exception Proves the Rule.
DOI: 10.5220/0004018600550063
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 55-63
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

these studies in the Java Card context. In this article,
we focus our study on the security of the exception-
related mechanisms of the Java Card platform. This
concern comes from the observation that attackers of-
ten try to avoid an exception throwing, but rarely to
take advantage of it.

This article is organized as follows. Section 2 in-
troduces more precisely the notion of exception and
the related mechanisms. In Section 3, we present sev-
eral new attacks against Java Card platforms taking
advantage of the exception-related mechanisms. Sec-
tion 4 analyses those attacks and outlines their conse-
quences. Finally Section 5 concludes this article.

2 EXCEPTIONS IN JAVA CARD
PLATFORMS

This section aims at introducing the notion of excep-
tion, the evolution of its use in a program and the re-
lated mechanisms on Java Card platforms, namely ex-
ception throwing and exception handling. Although
we get relatively specific concerning certain proper-
ties, we do not intend to give an exhaustive descrip-
tion of the ins and outs of exceptions. Readers wish-
ing to learn more should definitely refer to (Chen,
2000, §6), (Gosling et al., 2005, §11) and (Lindholm
and Yellin, 1999, §2.16).

2.1 The Role of Exceptions

As previously stated, exceptions are initially meant
to handle errors during the execution of a program.
In the following, we show that if this original pur-
pose is still in use today, exceptions have been totally
integrated in application’s programming and are now
widely used for more than ”just” handling errors.

Handling Abnormal Conditions. On one hand, we
find the traditional usage of exceptions, that is to say
error handling. In this scope, an exception is created
when an abnormal behaviour is detected, when the
execution of a program is deemed unsuccessful, or
when the system detects that pursuing the execution
will lead it to halt abruptly for instance. The excep-
tion handler is then in charge of handling the abnor-
mal conditions that have led to the exception raising,
and in the worst case to properly halt the system.

Handling Particular Conditions. On the other
hand, in certain modern programs, exceptions are
used as a way to break the control flow of an appli-
cation and not necessarily because an abnormal con-

dition has occurred. For instance, an exception may
be raised by a program when a given condition is sat-
isfied or not, regardless of the potential consequences
of this condition. The aim of such exception is only
to force a jump and execute specific lines of code that
are defined as the exception handler.

Good Practices. Several references (Long et al.,
2011; Oaks, 2001; The Open Web Application Secu-
rity Project (OWASP), 2012a; The Open Web Appli-
cation Security Project (OWASP), 2012b) detail the
importance of properly handling any exception that
might occur during the execution of a program. Con-
cerning the Java language, it is particularly important
to segregate the different exception types (classes) in
differentcatch-blocks in order to handle each and ev-
ery exception type in an appropriate way. Further-
more, it is also generally advised not to transmit too
much information within the exception, as it could be
useful to an attacker1.

2.2 The Syntax of Exception Handling

Java, as several programming languages, defines a
syntax associated to exception handling. For that pur-
pose, the Java language allows the definition oftry-
catch-blocks.

Listing 1: Exception syntax in Java and Java Card.

t r y {
/ / Code o p e r a t i n g a s e n s i t i v e
/ / p r o c e s s t h a t w i l l r a i s e an
/ / e x c e p t i o n i f deemed u n s u c c e s s f u l .
. . .

} catch (Except ionType1 e t 1){
/ / The o p e r a t i o n has f a i l e d i n a
/ / s p e c i f i c way , hand le i t
/ / a c c o r d i n g l y .
. . .

} catch (Except ionType2 e t 2){
/ / The o p e r a t i o n has f a i l e d i n
/ / ano the r s p e c i f i c way , hand le i t
/ / a c c o r d i n g l y .
. . .

} f i n a l l y {
/ / Code e x e c u t e d whether an
/ / e x c e p t i o n has been thrown or not ,
/ / caught or no t .
. . .

}

As described in Listing 1, the programmer has to

1The typical example of such a situation is that of an at-
tacker sending SQL requests to a database server and gain-
ing information on the structure of tables thanks to the mes-
sage contained in the returned exceptions.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

56

write the code that is likely to raise an exception in-
side atry-block and the code that will be executed
when a certain type of exception is raised in different
catch-blocks. In addition, thefinally-block allows to
define a code portion that will be executed whether an
exception was raised or not, caught or not.

2.3 The Exception Handler Table in
Java Card Binaries

In the binary format, either .CLASS files for standard
Java binaries or .CAP files for Java Card binaries, ex-
ception handlers are represented for each method into
a so-calledhandler table. In a .CAP file, for instance,
this table is represented in the method component as
specified in (Sun Microsystems, 2006) and described
below:

method_component {
u1 tag
u2 size
u1 handler_count
exception_handler_info

exception_handlers[handler_count]
method_info methods[]

}

exception_handler_info {
u2 start_offset
u2 bitfield {

bit[1] stop_bit
bit[15] active_length

}
u2 handler_offset
u2 catch_type_index

}

According to the specifications, the handlers
should be sorted according to their starting offset in
the method’s bytecode. For each handler, the excep-
tion handler table specifies the start- and end-offset of
the handler in the method’s bytecode array, as well as
the subtype ofThrowableit handles.
Therefore, when an exception is thrown at some point
during the execution of an application, the JCVM is
responsible for searching the appropriate exception
handler in the table, if any. The exception handler
searching is typically done as presented in Algorithm
1.

The present section has introduced the notions and
mechanisms related to exceptions and their handling
on Java Card platforms. The purpose of the following
section is to emphasize how various attacks on these
mechanisms can expose the platform, the hosted ap-
plications or sensitive data.

Algorithm 1: Exception Handler Searching.

input : E the exception being handled
input : H the exception handler table
output: -

1 while more handler left in Hdo
2 handler← next handler;
3 if jpc is covered by handler offsetsthen
4 if handler match E’s typethen
5 jump to handler;
6 end loop;
7 end
8 end
9 end

10 forward exception to previous frame;

3 SOFTWARE, FAULT AND
COMBINED ATTACKS: ON THE
SECURITY OF EXCEPTIONS
AND EXCEPTION HANDLING

Most of time, attackers only care about exceptions
because they wish to avoid the particular conditions
leading to an exception throwing. In this section we
start by introducing the notion of Fault Attack and de-
scribing two previous works taking advantage of an
exception throwing to mount an attack. Subsequently,
we expose the results of our study on the security of
exception-related mechanisms. This consists in the
description of new attacks grounded on both excep-
tion handling and exception throwing.

3.1 Previous Works

The case of exceptions has not been much investi-
gated in the literature related to Java Card security.
However we can outline the work of Barbuet al. pre-
sented at CARDIS 2010 (Barbu et al., 2010). On
the other hand, the standard Java security field has
shown much more interest for exceptions (Dean et al.,
1996; Ladue, 1997; Princeton University, Department
of Computer Science, Secure Internet Programming
Group, ; Last Stage of Delirium Research Group,
2002; Cholakov and Milev, 2005; Hubert et al., 2010;
Long et al., 2011; Oaks, 2001; The Open Web Appli-
cation Security Project (OWASP), 2012a; The Open
Web Application Security Project (OWASP), 2012b).
We briefly describe in particular here the work of
Dean et al. presented as soon as 1996 at the IEEE
Symposium on Security and Privacy (Dean et al.,
1996). But let us first briefly introduce the notion of
Fault Attacks and recall the widely used fault models.

Tampering�with�Java�Card�Exceptions�-�The�Exception�Proves�the�Rule

57

3.1.1 Fault Attacks on Smart Cards

Fault Attacksaim at disturbing the execution of an
application. Since the first published attack based on
an optical fault injection (Skorobogatov and Ander-
son, 2002), several means have been studied to pro-
voke errors in Integrated Circuit. Today, the principal
means to disrupt a component like a smart card are
light beams and electromagnetic pulses (Quisquater
and Samyde, 2002).In fine, the disturbance could
lead to obtain a faulty output or to execute the applica-
tion with granted privileges (Giraud and Thiebeauld,
2004; Bar-El et al., 2006). Attested fault models con-
sist for instance in stucking a byte to 0x00, 0xFF or a
random value, or in disrupting the native code fetch-
ing and thus jumping one or several instructions.
Such facilities have been mainly used against embed-
ded cryptosystems, but they actually are a threat to
any function implemented on embedded devices. The
idea of combining such physical attacks with mali-
cious applications was introduced in (Barbu, 2009).
TheseCombined Attacksallow for instance to dis-
obey certain rules stated by the Java Card specifica-
tions. The fault injection aims at disrupting mech-
anism enforcing these rules and the malicious ap-
plication exploits the provoked breach. Since then,
many Combined Attacks have been published to at-
tack several vital points of a Java Card such as the
APDU buffer, the application firewall or the operand
stack for instance (Vétillard and Ferrari, 2010; Barbu
et al., 2010; Barbu et al., 2011; Barbu and Thiebeauld,
2011; Barbu et al., 2012b; Barbu et al., 2012a).

3.1.2 Using an Exception to Attack a Java Card

In (Barbu et al., 2010), the authors propose an at-
tack on a Java Card 3 platform allowing to read and
modify the bytecode array of an on-card application.
This is achieved thanks to a type confusion involv-
ing the newly introducedjava.lang.Classclass of the
Java Card 3 Application Programming Interface (Sun
Microsystems Inc., 2009a). In this work, the authors
explain that thejava.lang.ClassCastExceptionthrown
by the virtual machine when an incorrect typecasting
is executed can be used by an attacker. The aim is
then to detect the execution of the exception throwing
by monitoring the power consumption of the card in
order to determine the precise moment when to apply
the laser pulse to disrupt the virtual machine’s execu-
tion during its type checking.

3.1.3 Using an Exception against a Java Client

In (Dean et al., 1996), the authors describe how
the exception throwing can lead to security breaches

allowing a privilege escalation on the client-side
through a web browser (Netscape Navigator for in-
stance) executing a Java applet. The article is based
on the fact that the incomplete execution of a class
constructor may lead to an object instance partially
initialized. In particular, they exhibit the example of
the abstract classClassLoaderfrom Sun’s Java Run-
time Environment (JRE). They provide a custom class
loader extending this abstract class (cf. Listing 2).

Listing 2: The incomplete class loader.

c l a s s CL exten d s ClassLoader {
CL () {

t r y { super () ; }
catch (Excep t i on e) {}

}
}

The partial initialization of the class loader leads
to a type confusion and eventually to a privilege el-
evation for the attacker’s application. The attack
described in this work is then completely based on
the exception throwing. This breach was then con-
cealed with updates of both the Netscape Navigator
and the Java Development Kit, respectively with ver-
sions 2.02 and 1.02.

3.2 Attacks on the Exception Handler
Research

In the following, we propose several ways an attacker
can take benefits from the Algorithm 1, searching the
proper handler for a given exception. We describe first
a new attack based on a fault injection that can be
either combined with a malicious application or not
depending on the attack scenario. Then we introduce
a software-only attack using an incorrect handler table
within a .CAP file.

3.2.1 Jumping in the Wrong Exception Handler

In the attack presented here, we consider a fault injec-
tion targeting one of the conditional branch instruc-
tions of Algorithm 1 (i.e. lines 3 or 4). The physical
perturbation consists in jumping a given (set of) in-
struction(s) by disrupting the code fetching in the im-
plementation of this algorithm in the Java Card Vir-
tual Machine. Such a fault model is widely accepted
in the literature (Skorobogatov and Anderson, 2002;
Giraud and Thiebeauld, 2004; Bar-El et al., 2006) and
was put into practice in (Barbu et al., 2010) against the
checkcast implementation.

Provided the attacker meets success with the fault
injection, she can then force the jump in an excep-
tion handler that was meant for another type of ex-

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

58

ception, or for the same type of exception but at a
different time (i.e. covering another part of the code).
The following code sample (Listing 3) is definitely
far-fetched, but is a perfect illustration of the type of
code likely to be targeted by such an attack.

Listing 3: Attacked code example.

t r y {
/ / MyOwnPIN . check method throws a
/ / T ryAga inExcep t i on when an i n v a l i d
/ / PIN i s s u b m i t t e d .
i f (myOwnPin . check (submi t t ed , 0 , 4)){

e x e c u t e P r i v i l e g e M e t h o d () ;
}

} catch (N u l l P o i n t e r E x c e p t i o n npe){
/ / myOwnPin i s no t y e t i n i t i a l i z e d ,
/ / do i t and r e t u r n
myOwnPin = new MyOwnPIN(TRY LIMIT ,

PIN SIZE) ;
myOwnPin . upda te (PINARRAY, PIN OFFSET ,

PIN LENGTH) ;
re tu rn PIN NOT INIT ;

} catch (T ryAga inExcept ion t a e){
p r o c e s s I n v a l i d P I N S u b m i t t e d E v e n t () ;
re tu rn INVALID PIN ;

}

In this particular case, a successful perturbation
allows to reinitialize the PIN object, by executing the
code in thecatch(NullPointerException)-block. An
attacker reaching a good fault injection repeatabil-
ity is then likely to brute-force the PIN, although
it is supposed to be protected by a counter limit-
ing the number of tries and decremented within the
MyOwnPIN.checkmethod. Note that in the general
case, by forcing a jump in the wrong handler, the at-
tacker always creates a type confusion between the
actual exception type and the exception type that is
caught. The consequences of the execution of the
wrong catch-block are on the other hand totally de-
pendent on the application.

3.2.2 Handler Table Corruption

As described in Section 2.3, the .CAP file contains a
handler table defining where to jump when a given
exception occurs at a given offset in the bytecode ar-
ray. We explore here the possibility for an attacker to
achieve the same kind of attack as just described by
the mean of a sole .CAP file manipulation.

When an exception is thrown, Algorithm 1 leads
to jump at the offset defined within the handler table.
It is therefore obvious that corrupting the handler ta-
ble will eventually result in a jump at an incorrect off-
set in the bytecode array. However, before being able
to execute the application on-card, the attacker would
most likely have to make it pass the bytecode verifi-

cation. It is then necessary to study how the bytecode
verifier ensures the correctness of the handler table.
The rules used by the verifier can be deduced from
the rules defined in the JCVM specification. These
rules are the following:

• handlers are sorted according to theirstart-offset,

• handlers do not ”partially intersect”,i.e. they are
either disjoint or nested,

• handlers point to valid offsets in the current
method,

• the stop-bit defines when to stop searching for
other handlers.

We then tested several modifications of the handler ta-
ble versus both the Java Card converter and the byte-
code verifier present in the JCDK 3.0.4. It turns out
that only one manipulation was not rejected. This
manipulation consists in the manipulation of the end-
offset of atry-block so that it englobes the handler of
the associatedfinally-block. This is depicted in the
.JCA file obtained from the conversion of the applet
(after the .CLASS file has been modified) in Listing 4.
Note that a modification of thebit-stopof the finally
handler was also necessary.

Consequently, when an exception is thrown within
the try-block, it is handled by thefinally-block which
in turn re-throws the exception. This exception is sub-
sequently handled by the samefinally-block again,
etc... As a matter of fact, the applet is stuck in an infi-
nite exceptionthrow-and-catchloop. Indeed a binary
file manipulation can allow to break the infinite loop
by using a counter incremented in the loop and con-
ditioning the exception throwing. Also, thefinally-
block can be manipulated in order to use the local
variable created by the compiler to store the excep-
tion before throwing it at the end of the block. We
believe this last point should be very tricky to handle
for the bytecode verifier, although we have not been
able to find any explicit breach.

3.3 Attacks on Exception Throwing

In this section, we focus our interest on the exception
throwing itself. We can therefore isolate two differ-
ent kind of attacks whether we intend to force an ill-
behaviour of this mechanism or simply to bypass it.
The following introduces attacks in both categories.

3.3.1 Throwing a Non-throwable

In (Barbu et al., 2011), the authors studied the pos-
sible impacts of a perturbation of the values pushed
onto the operand stack of a Java Card platform. Some

Tampering�with�Java�Card�Exceptions�-�The�Exception�Proves�the�Rule

59

Listing 4: JCA file after modification.

. method p u b l i c t e s t E x c e p t i o n ()V 8{
. s t a c k 2 ; . l o c a l s 2 ;

L0 : a c o n s t n u l l ;
a s t o r e 1 ;

L1 : a l o a d 1 ;
a l o a d 1 ;
i n v o k e v i r t u a l 11 ;
/ / e q u a l s (L java / lang / Ob jec t ;) Z
pop ;
new 12 ;
/ / j ava / lang / Ob jec t
dup ;
i n v o k e s p e c i a l 3 ;
/ / j ava / lang / Ob jec t .< i n i t >()V
a s t o r e 1 ;
goto L4 ;

L2 : a s t o r e 2 ;
/ / l o c a l v a r i a b l e c r e a t e d by t h e
/ / comp i l e r t o s t o r e t h e
/ / e x c e p t i o n .

L3 : new 12 ;
/ / j ava / lang / Ob jec t
dup ;
i n v o k e s p e c i a l 3 ;
/ / j ava / lang / Ob jec t .< i n i t >()V
a s t o r e 1 ;
a l o a d 2 ;
a throw ;

L4 : re tu rn ;
. e x c e p t i o n T a b l e {

/ / s t a r t b l o c k , end b lock ,
/ / h a n d l e r b l o c k , c a t c h t y p e i n d e x
L1 , L4 , L2 , 0 ;
/ / hand le r c o v e r s f i n a l l y−b lock ’ s
/ / athrow !
L2 , L3 , L2 , 0 ;

}
}

of their use cases are based on the attacker’s instanti-
ating as many objects of a given classC as possible in
order to enhance the probability that a random error
affecting an object’s reference transform it into one of
the reference of an instance of classC .

We tackle here an issue that was not treated in their
article: the perturbation of a thrown exception’s refer-
ence. The possible consequences are twofold depend-
ing on the nature of classC :

1. C extends the API’s classThrowable. Then the
execution will continue in the wrong exception
handler, provoking, for sure, a type confusion be-
tween the two exception classes and potentially
bypassing some exception-dependent operations,
including security-related ones.

2. C does not extendThrowable. In this case,
the JCVM should not find an exception handler
matching the type of the exception. The exception

should therefore not be caught and cause the sys-
tem to halt. However, considering a malicious ap-
plication, the attacker may have created afinally-
block taking this possibility into account, which
would at least provoke a type confusion between
two object instances.

Indeed, in the latter case, even jumping in thefinally-
block is not obvious on all platforms. Thefinally-
block being meant to handle any kind of exceptions,
it is associated in the application’s binary file to a
type referred to asANY in the specifications. Yet, ev-
ery platform is responsible for testing that the object
thrown can be casted to the typeThrowablebefore
jumping in thefinally handler.

3.3.2 Prevent Exception Throwing

Another interesting option from an attacker’s point
of view is simply to prevent the throwing of an ex-
ception. In the context of Java Cards, this can be
achieved on two different circonstances, by two dif-
ferent means.

The first one concerns the case where the excep-
tion is thrown by the JCRE. The typical example for
such a situation is when an application invokes a vir-
tual method on an object that turns out to be null. As
per the specifications, the JCRE then throws aNull-
PointerException. The code responsible for the ex-
ception raising is obviously part of the JCRE/JCVM
implementation, we can therefore expect it to be writ-
ten in native language (i.e. in the card’s assembly lan-
guage). Therefore, an attacker willing to skip the ex-
ception throwing will have to disrupt the execution of
native code, which is generally done by perturbing the
fetch of the code either in the ROM or the NVM.

The second one concerns the case where the ex-
ception is thrown by a Java Card application. In this
case, it is the bytecode instructionathrowwhich is re-
sponsible for the exception throwing. An attacker can
then work two different attack angles. The first one is
the same as previously stated. Since theathrowis also
a part of the JCVM implementation, a similar attack
on the appropriate code fetching shall allow to bypass
the execution throwing. The second angle consists in
an attack of the bytecode instruction reading in the ap-
plication’s bytecode array. This bytecode is basically
a byte read and processed by the JCVM’s interpreter.
A fault attack stucking this byte to 0 will then force
the execution of thenop instruction, on platforms us-
ing the standard instruction set, and therefore bypass
the exception throwing. This is one of the basic ex-
amples introducing mutant application in (Séré et al.,
2010).

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

60

3.3.3 The Incomplete Object Initialization on
Java Card

We explore here the possibility to somehow adapt
the incomplete object initialization attack described
in Section 3.1 on a Java Card. The point is that ac-
cording to the 2nd edition of the Java Virtual Machine
specification, the class file verification process should
prevent such a situation from occurring, as it speci-
fies:

”A valid instruction sequence must not have
an uninitialized object on the operand stack or
in a local variable during a backwards branch,
or in a local variable in code protected by an
exception handler or a finally clause.” (Lind-
holm and Yellin, 1999, §4.9.4)

In addition, the 3rd edition of the Java Language spec-
ification specifies that during an object initialization
calling a superclass construcor:

”If that constructor invocation completes
abruptly, then this procedure [object initializa-
tion] completes abruptly for the same reason.”
(Gosling et al., 2005, §12.5)

The possibility to load an application containing the
code depicted in Listing 2 is then subject to question
on recent platforms.

Is it Possible to Load such an Application on a
Java Card? We consider then the following con-
structor method, for a class extending a super-class
whose constructor throws a particular exception, say
MyExceptionin our case (Listing 5).

Listing 5: Potential incomplete initialization.

t r y {
super () ; / / th rows MyExcept ion
au thRequ i red =t ru e ;

}
catch (MyExcept ion me) {

/ / I n i t i a l i z a t i o n i s no t comp le te . . .
/ / au thRequ i red = f a l s e , t h e
/ / d e f a u l t va l ue f o r boo lean .

}

The fact is that trying to compile this code with
the Java compiler provided with the Java Develop-
ment Kit version 1.6.018-b07 result in the following
error:

call to super must be first statement in
constructor.

We then assume that this error is due to the restrictions
quoted above since the call to the superclass’s con-
structor is indeed the first statement in our construc-
tor. Getting a valid class actually representing this

constructor requires then the compilation of a slightly
different piece of code and a little .CLASS file tweak-
ing. The content of the two .CLASS files is given in
Listings 6 and 7.

Listing 6: Original constructor class.

p u b l i c void < i n i t >()
throws MyExcept ion {

/ / Ca l l supe r c o n s t r u c t o r
a l o a d 0
i n v o k e s p e c i a l void MySClass.< i n i t >()

try−b l o c k s t a r t (app . MyExcept ion)4 :
a l o a d 0
i n v o k e v i r t u a l void MyClass . no tS uper ()
a l o a d 0
i c o n s t 1
p u t f i e l d boolean MyClass . au thRequ i red

try−b lock end (app . MyExcept ion)13 :
goto l a b e l 1 7

e x c e p t i o n h a n d l e r (app . MyExcept ion)16 :
a s t o r e 1

l a b e l 1 7 :
re tu rn
}

Listing 7: Tweaked constructor class.

p u b l i c void < i n i t >() {
try−b l o c k s t a r t (app . MyExcept ion)0 :

/ / Ca l l supe r c o n s t r u c t o r
a l o a d 0
i n v o k e v i r t u a l void MySClass.< i n i t >()
a l o a d 0
i c o n s t 1
p u t f i e l d boolean MyClass . au thRequ i red

try−b lock end (app . MyExcept ion)9 :
goto l a b e l 1 3

e x c e p t i o n h a n d l e r (app . MyExcept ion)12 :
a s t o r e 1

l a b e l 1 3 :
re tu rn
}

Afterward, we successfully pass both the Java
Card converter and bytecode verifier that are provided
with the most recent Oracle’s development kit (Java
Card Classic Edition 3.0.4 Development Kit). These
two operations yields a verified .CAP file, ready to be
loaded and installed on-card, proving that the veri-
fier does not reject classes with potential incompletely
initialized objects. We can therefore be pretty confi-
dent on the success of the loading of an application
with the same behaviour on a Java Card 3 Connected
Edition endowed with an on-card bytecode verifier al-
though the lack of publicly available cards prevents us
from testing it.

Tampering�with�Java�Card�Exceptions�-�The�Exception�Proves�the�Rule

61

4 CONSEQUENCES AND
ANALYSIS

The previous section has shown that several possibil-
ities are offered to a potential attacker to take advan-
tage of the exception-related mechanisms of the sys-
tem. We intend here to analyse the consequences of
such attacks if they were to be achieved on the field.

4.1 Consequences

The consequences of the potential attacks described
in the previous section are various indeed. Concern-
ing the incomplete object initialization, the assets that
might be targeted by such attacks are still to be pre-
cisely identified. Unlike standard Java, the Java Card
3 Connected Editiondoes not support user-defined
class loaders, nor theObject.finalize()method evoked
in (Hubert et al., 2010) to extendDean et al.’s work
(Dean et al., 1996). Consequently, this seminal work
cannot be transferred in the Java Card world as is.
Furthermore, applications taking advantage of all the
facilities offered by the Java Card 3Connected Edi-
tion standard are not really widespread yet. How-
ever the example of the original attack is explicit and
should encourage every developer to keep this threat
in mind.

Regarding the other attacks we have introduced
in this article, the consequences can be divided into
two categories. On one hand, the consequences of a
type confusion covers the access to private fields or to
data out of the bounds of an array, the jump of access
control checks, or even self-modifying applications in
certain contexts. Type confusion is indeed the core of
several attacks against Java and Java Card platforms
(Govindavajhala and Appel, 2003; Witteman, 2003;
Mostowski and Poll, 2008; Séré et al., 2009; Barbu
et al., 2010). On the other hand, the execution flow
disruption has been less studied but can lead to criti-
cal consequences. First, since it can be used to pro-
voke a type confusion, the same results can be ex-
pected. Second, preventing an exception from being
thrown can have even more dangerous consequences.
We can consider for instance the case of an access
across the application firewall enforced by the JCRE
that would not throw aSecurityException, although it
has been duely detected, which is an example given
in (Vétillard and Ferrari, 2010).

4.2 The Exception Proves the Rule

We outline in this work the potential weakness intro-
duction coming with the evolution of a system. For
instance, the integration of the Java Card in the web

ecosystem is a topic of interest from a security point
of view.

Although the Java Card platform can definitely
be considered as an inherently secured platform, it
is still potentially vulnerable to attacks. Both soft-
ware and combined attacks are then likely to threaten
the integrity of the platform and to a certain extent of
other applications. The implementors of the embed-
ded JCREs, as well as application developers must
therefore take this kind of threat into account when
coding and comply to the security guidelines. The
various attacks we have introduced along this arti-
cle against exception-related mechanisms allows us to
highlight this state of fact.

5 CONCLUSIONS

In this article, we have given an overview of the po-
tential attacks that can be built upon, and around, the
exception-related mechanisms of the Java Card tech-
nology. In particular we have exposed that attacks on
these mechanisms are likely to bypass certain opera-
tions contained incatch-blocks and to break the type
safety property of the Java Card Virtual Machine. In
addition, this study has allowed us to exhibit a resid-
ual weakness regarding the incomplete initialization
of objects which had already been pointed out in the
standard Java web applet context with serious conse-
quences on the client side executing the applet. This
leads to conclude on the necessity of establishing a
link between the various security fields. This neces-
sity is all the more urgent with the introduction of the
Java Card 3Connected Edition, bridging the gap be-
tween the Java Card world and the Java web-related
world.

REFERENCES

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and
Whelan, C. (2006). The Sorcerer’s Apprentice Guide
to Fault Attacks.IEEE, 94(2):370–382.

Barbu, G. (2009). Fault Attacks on Java Card 3 Virtual Ma-
chine. Ine-Smart’09.

Barbu, G., Duc, G., and Hoogvorst, P. (2011). Java Card
Operand Stack: Fault Attacks, Combined Attacks and
Countermeasures. In (Prouff, 2011), pages 297–313.

Barbu, G., Giraud, C., and Guerin, V. (2012a). Embedded
Eavesdropping on Java Card. InProceedings of the
IFIP International Information Security and Privacy
Conference 2012 – SEC 2012. Springer Verlag. to be
published.

Barbu, G., Hoogvorst, P., and Duc, G. (2012b).
Application-Replay Attack on Java Cards: When the

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

62

Garbage Collector Gets Confused. In Barthe, G. and
Livshits, B., editors,International Symposium on En-
gineering Secure Software and Systems – ESSoS 2012,
Lecture Notes in Computer Science. Springer.

Barbu, G. and Thiebeauld, H. (2011). Synchronized Attacks
on Multithreaded Systems - Application to Java Card
3.0 -. In (Prouff, 2011), pages 18–33.

Barbu, G., Thiebeauld, H., and Guerin, V. (2010). Attacks
on Java Card 3.0 Combining Fault and Logical At-
tacks. In (Gollmann and Lanet, 2010), pages 148–163.

Caromel, D. and Vayssière, J. (2001). Reflection on MOPs,
Components, and Java Security. InProceedings
of the Engineering C of Object-Oriented Programs
(ECOOP), volume 2072 ofLNCS. Springer-Verlag.

Chen, Z. (2000).Java Card Technology for Smart Cards,
Architecture and Programmer’s Guide. Addison-
Wesley.

Cholakov, N. and Milev, D. (2005). The Evolution of the
Java Security Model. InProceedings of the Inter-
national Conference on Computer Systems and Tech-
nologies (CompSysTech’2005).

Dean, D., Felten, E. W., and Wallach, D. S. (1996). Java
Security: From HotJava to Netscape and Beyond. In
Proceedings of the IEEE Symposium on Security and
Privacy.

Giraud, C. and Thiebeauld, H. (2004). A Survey on Fault
Attacks. In Quisquater, J.-J., Paradinas, P., Deswarte,
Y., and Kalam, A. E., editors,Smart Card Research
and Advanced Applications VI – CARDIS 2004, pages
159–176. Kluwer Academic Publishers.

Gollmann, D. and Lanet, J.-L., editors (2010). volume 6035
of Lecture Notes in Computer Science. Springer.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005).The
Java Language Specification. Addiosn-Wesley, 3rd
edition.

Govindavajhala, S. and Appel, A. (2003). Using Memory
Errors to Attack a Virtual Machine. InIEEE Sympo-
sium on Security and Privacy, pages 154–165. IEEE
Computer Society.

Gutterman, Z. and Malkhi, D. (2005). Hold Your Sessions:
An Attack on Java Session-Id Generation. InProceed-
ings of the Cryptographer’s Track at the RSA Confer-
ence (CT-RSA), LNCS. Springer.

Hubert, L., Jensen, T., Monfort, V., and Pichardie, D.
(2010). Enforcing Secure Object Initialization in
Java. InProceedings of the European Symposium on
Research in Computer Securiy, ESORICS’10, pages
101–115. Springer-Verlag.

Ladue, M. D. (1997). When Java was One: Threats from
Hostile Bytecode. InProceedings of the 20th National
Information Systems Security Conference, pages 104–
115.

Last Stage of Delirium Research Group (2002). Java
and Java Virtual Machine Security Vulnerabilities and
their Exploitation Techniques. InBlackHat Confer-
ence.

Lindholm, T. and Yellin, F. (1999).Java Virtual Machine
Specification. Addison-Wesley, Inc., 2nd edition.

Livshits, B. and Lam, M. S. (2005). Finding Security Vul-
nerabilities in Java Applications with Static Analysis.
Technical report, USENIX.

Long, F., Mohlndra, D., Seacord, R. C., Sutherland, D. F.,
and Svoboda, D. (2011).The CERT Oracle Secure
Coding Standard for Java. Carnegie Mellon Software
Engineering Institue (SEI) series. Addison-Wesley.

McGraw, G. and Felten, E. W. (2000).Getting Down to
Business with Mobile Code. John Wiley & Sons.

Mehta, N. V. and Sollins, K. R. (1998). Expanding and Ex-
tending the Security Features of Java. InProceedings
of the 7th USENIX Security Symposium.

Mostowski, W. and Poll, E. (2008). Malicious Code on
Java Card Smartcards: Attacks and Countermeasures.
In Grimaud, G. and Standaert, F.-X., editors,Smart
Card Research and Advanced Applications, 8th Inter-
national Conference – CARDIS 2008, volume 5189
of Lecture Notes in Computer Science, pages 1–16.
Springer.

Oaks, S. (2001).Java Security. O’Reilly, second edition.
Princeton University, Department of Computer Science, Se-

cure Internet Programming Group. Reports on Secu-
rity Flaws in Commercial Available Softwares.

Prouff, E., editor (2011). volume 7079 ofLecture Notes in
Computer Science. Springer.

Quisquater, J.-J. and Samyde, D. (2002). Eddy Current for
Magnetic Analysis with Active Sensor. Ine-Smart
2002.

Séré, A. A. K., Iguchi-Cartigny, J., and Lanet, J.-L. (2009).
Automatic Detection of Fault Attack and Countermea-
sures. InProceedings of the 4th Workshop on Embed-
ded Systems Security, WESS ’09, pages 1–7.

Séré, A. A. K., Iguchi-Cartigny, J., and Lanet, J.-L. (2010).
Checking the Paths to Identify Mutant Application on
Embedded Systems. InFGIT, pages 459–468.

Skorobogatov, S. and Anderson, R. (2002). Optical Fault
Induction Attack. In Kaliski Jr., B., Koç, Ç., and Paar,
C., editors,Cryptographic Hardware and Embedded
Systems – CHES 2002, volume 2523 ofLecture Notes
in Computer Science, pages 2–12. Springer.

Sun Microsystems (2006). Virtual Machine Specification –
Java CardTM Plateform, Version 2.2.2.

Sun Microsystems Inc. (2009a). Application Programming
Interface, Java Card Platform, Version 3.0.1 Con-
nected Edition.

Sun Microsystems Inc. (2009b). Runtime Environment
Specification, Java Card Platform, Version 3.0.1 Con-
nected Edition.

Sun Microsystems Inc. (2009c). Virtual Machine Specifica-
tion – Java Card Plateform, Version 3.0.1.

The Open Web Application Security Project (OWASP)
(2012a). Information Leakage.

The Open Web Application Security Project (OWASP)
(2012b). Uncaught Exceptions.

Vétillard, E. and Ferrari, A. (2010). Combined Attacks and
Countermeasures. In (Gollmann and Lanet, 2010),
pages 133–147.

Witteman, M. (2003). Java Card Security. InInformation
Security Bulletin, volume 8, pages 291–298.

Tampering�with�Java�Card�Exceptions�-�The�Exception�Proves�the�Rule

63

