
ADQL: A Flexible Access Definition and Query Language
to Define Access Control Models

Andreas Sonnenbichler and Andreas Geyer-Schulz
Karlsruhe Institute of Technology, Karlsruhe, Germany

Keywords: Access Control, ADQL, Formal Language, Meta Language, Access Control Service.

Abstract: We suggest a full specified formal language, the Access Definition and Query Language (ADQL). It has been
designed to define access control models, facts, policies, and queries. ADQL, therefore, has the features of a
meta language: It can be configured to act like known access control models e.g. as Bell-LaPadula, RBAC and
its extensions and applications (e.g. SAP R/3), but also it can implement new models. Because of this, ADQL
is highly flexible. Nevertheless, ADQL is not only a meta-language, but also allows to define facts, policies
and queries. It has been implemented as a software service. It can be used as external authorization component
for other applications and services. Through its flexibility many access control models can be supported.

1 INTRODUCTION AND
RELATED WORK

Since the inception of the first time-sharing and multi-
process operating systems, a large variety of access
control mechanisms has been designed and imple-
mented. When we look at the current landscape of
access control mechanisms, we have the impression,
that there are three major directions of development:

First, extremely flexible mechanisms with as
many ways to formulate, check, and monitor access
policies as possible, e.g. XACML (Rissanen, 2010)
which has been discussed in the literature of the
last years extensively (cf. (Gupta and Bhide, 2005;
Crampton and Huth, 2010)). The drawback of such
solutions usually is that the rule sets of a system can
become intransparent very fast (e.g. (Li et al., 2009;
Ni et al., 2009)).

Second, simpler models inspired by easily under-
standable concepts like the role-based access control
(RBAC). Many applications and services in the inter-
net make use of such generic RBAC-based models.
E.g. Oracle DBMS (Notargiacomo, 1996), SAP (AG,
2008), Amazon Web Services1, Drupal2, the acceler-
ator control for CERN (Geysin et al., 2007).

The drawback of these solutions is that the under-
lying concept of access control, the method or model,
is always hard coded and can only be extended with

1http://aws.amazon.com
2http://drupal.org

large efforts later.
Third, support for freely recombining internet ser-

vices in a privacy-aware and scalable manner requires
the flexibility to adapt access control mechanisms to
service interfaces, process and organization structures
and collaboration styles. Factoring out access control
mechanisms from internet services, considerably sim-
plifies service design and implementation (e.g. (Yuan
and Tong, 2005)).

Our hypothesis is that because the powerful mech-
anisms tend to be very complex and are often not un-
derstood by software engineers, administrators, and
users, the simple mechanisms are reused over and
over again. We see a huge gap between what really
is used when it comes to software development and
what is available. This gap is mainly caused by the
complexity of the powerful mechanisms.

The unification of access control models through
a meta-model has been researched by Barker (Barker,
2009). He demonstrated that such a meta-model can
be defined and can represent multiple access controls
as derieved special cases. ADQL’s approach aims in
the same direction.

Samarati and Vimercati provide a comprehensive
and well written overview on access control models,
mechanisms, and principles (Samarati and Vimercati,
2001).

Crampton and Huth (Crampton and Huth, 2010)
suggest a XACML-like policy language which is syn-
tactically simpler than XACML, but not less expres-
sive. In XACML (sub-) policies may not be resolv-

379Sonnenbichler A. and Geyer-Schulz A..
ADQL: A Flexible Access Definition and Query Language to Define Access Control Models.
DOI: 10.5220/0004023903790386
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 379-386
ISBN: 978-989-8565-24-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

able: XACML may return “not applicable” or “inde-
terminate”, which makes it difficult (impossible?) to
decide if access shall be granted or not. The suggested
language is resilient to such “failures”. This problem
especially arises, when the requested resolution has to
be done on distributed systems on sub-policies.

In (Damiani et al., 2002) Damiani et al. describe
a fine-grained access control system for XML docu-
ments. The access control model used is based on
subjects, objects, actions, and inheritance rules. Sub-
jects are defined as users, IP addresses, or hierarchies
of these. Objects are seen as URIs (see (Berners-Lee
et al., 1998)). Policies are applied on XML objects
identified through XPath.

A mechanism for access control for collaborative
groups is described in (Wang et al., 2009). Users can
tag each other. Based on these tags access control
policies can be defined.

The interplay between access control and privacy,
namely privacy-aware access control is discussed in a
paper of Ardagna et al. (Ardagna et al., 2008).

2 STRUCTURE OF ADQL

The design of ADQL is structured in five layers de-
picted in figure 1.

Model

Access Rights

Meta Model

"Ann is a user"

"Ann m ay access all fi les"

"We have users,

perm issions and objects"

ADQL itself

"Ann can read fi le1.jpg"

Facts

Policies

Figure 1: Structure of the Access Definition Query Lan-
guage.

The access rights layeris a complete enumera-
tion of all atomic conditions. Atomic is defined in the
sense that no further elements of sets can be substi-
tuted to decide if access can be granted or not. The ac-
cess rights layer corresponds to the Harrison, Ruzzo,
and Ullman’s (HRU) access matrix model (Harrison
et al., 1976).

Access rights can not be managed practically in
such an atomic way: A combinatoric explosion oc-
curs. Thepolicy layer defines access conditions on
a more general level. Complex policies with condi-
tions beyond the typical triple (principal, permission,
object) can be defined.

The facts layerdescribes the facts which are ap-
plied on the policies to calculate the atomic access

rights. The policy “Ann may access any file” implies,
that we have to know which files actually are meant
(by an enumeration of the entities which are files cur-
rently present in the system) and what access means
(e.g. read, write, delete, ...).

In themodel layerof the concepts aof the access
control model are described. In contrast to the facts
layer, where existing entities and relationships are de-
fined, the model layer says, what entity types and re-
lationships between them are generally possible. E.g.
concepts like “users”, “permissions”, “files”, “file
owners”, and “days in a week” are defined. The pol-
icy and fact layers are heavily dependent on the model
layer: Every concept used in these layers must have
been introduced (and well defined) in the model layer.

The final layer of ADQL is themeta modelof
ADQL which describes the basic language elements
of ADQL itself.

3 CONCEPTS OF ADQL

ADQL relies on a small amount of concepts. We de-
fine anentityas any “object in reality” modeled in the
system.

Containerscorrespond to sets of entities. Contain-
ers can be used to form hierarchies (e.g. trees) or even
networks (e.g. circles, graphs). It can be decided if an
entity belongs to a container (hierarchy) or not. A
container can be flattened or decomposed. The de-
composition is a transformation of a hierarchical or
linked container structure to a flat container. The de-
composed container includes all entities being part of
any level/container of the container structure.

An n-ary ADQL relationsis define on the Carte-
sian product ofn containers. It allows to link entities
belonging to the underlying containers through the re-
lation. ADQL relations can be reflexive, symmetric
and transitive.

ADQL supportsprojections. In an ADQL projec-
tion n−1 elements of an-ary relation are fixed, the re-
sult is a container of all entities belonging to the pivot
container which are part of the relation. Example: Let
(f ile1,Alice) be a tuple of the relationowner. Then
pro jowner(.,Alice) is the projection of the relation
owner with the fixed entity Alice. The result is file1.
As a speciality in ADQL, projections always have to
have exactly one target element, the projection target,
and accordinglyn−1 fixed tuple elements.

ADQL variablesare always related to a specific
container or container hierarchy. A variable can be
bound to one or more container entities. Variables are
denoted by the containers symbol enclosed in square
brackets. [user] is the variable corresponding to the

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

380

container ”user”. Please note, that this definition is
no limitation of generality: In case two different vari-
ables are necessary for a single container, it is suffi-
cient to define a second container including the the
first and vice versa.

An ADQL scopeis a collection of different vari-
able bindings. E.g. ([user] = {Alice}, [f ile] =
{ f ile1, f ile2}) is a scope of two variable bindings.
The variable ”user” is bound to ”Alice” while ”file”
is bound to ”file1” and ”file2”. A variable binding is
only valid, if the bound entity belongs to the container
of the variable. A scope is only valid, if all variables
bindings are valid.

Testsare defined in ADQL as 2-argument logical
operations supporting flexible logical operators eval-
uating to true or false.

Finally, policiesare sets of tests. Logically a pol-
icy becomes true, if all tests are true. We immedi-
ately see, that a policy is a logical AND expression of
its tests. ADQL expresses its policies in conjunctive
normal form.

4 LANGUAGE INTRODUCTION

ADQL’s syntax is divided into four major parts: cre-
ation statements, deletion statements, query state-
ments, and access check statements. We will not de-
scribe deletion statements further in this section, but
focus on creation statements. Nevertheless, consis-
tency restrictions apply, so that entities can only be
deleted, if they are not used in another term of ADQL.
Query statements exist to provide information about
the current model, facts and policies. With these state-
ments the current definitions of the layers can be re-
trieved in order to manage model, facts and policies.
We will also omit them here.

Creation Statements. We provide examples:

CREATE CONTAINERS users , pe rm iss i ons ,
f i l e s ;

CREATE ENTITIES {Ann , Jim , Liz , read , w r i t e
, f1 } ;

CREATE ASSIGNMENTS u s e r s :{Ann , Jim , L iz} ,
p e r m i s s i o n s :{ read , w r i t e} , f i l e s :{ f1 } ;

The first statement creates three entities of the
type container. This creation statement belongs to the
model layer: We define, what types of entities may be
defined subsequently; e.g. users, permissions, files.

The second statement creates 6 entities with so far
no assignment to a container.

The third statement assigns Ann, Jim, and Liz to
the container “users”. The entities read and write

“are” permissions, the entity “f1” is a file. These def-
initions belong to the facts layer. While the model
layer defines that concepts like “users”, “permissions”
and “files” do exist, it is defined on the facts layer, that
“Ann” is an entity of the concept “users”.

ADQL supports container hierarchies: It is pos-
sible to assign entities in two ways, directly or indi-
rectly. If assigned directly, only the entity itself is
assigned. If assigned indirectly not the entity itself is
assigned but its value, the ”entity as a container“.

CREATE CONTAINERS usersA :{Ann , Jim} ,
usersB :{ L iz } ;

CREATE CONTAINERS
a l l u s e r :{ (usersA) , (usersB)} ,
u s e r s e t s :{ usersA , usersB} ;

The container alluser consists of two in-
direct assignments (note the round brackets).
If resolved in depth the containeralluser re-
solves to {Ann,Jim,Liz}. usersets resolves to
{usersA,usersB}.

CREATE RELATIONS owner (f i l e s , u s e r s) ;
CREATE LINKS ON owner :

{ (f1 , Ann) , (f1 , Jim)} ;

The 2-ary relation named “owner” is defined on
the container “files” and “users”. The first element
of any tuple of the relation “owner” has to be from
the container “files”, the second from the container
“users”. We define one or more owners for files. Ac-
tually, we define a n:m-relationship allowing that a
user is the owner of several (or no) files and the files
are owned by several (or no) users. Formally, the rela-
tion owner defines possible 2-tuples in the form(m,n)
with m∈ f iles,n∈ users. The creation of the concept
“owner” belongs to the model layer: It is defined there
that such a concept as an owner exists. It does not say,
who is the owner of which file.

The latter is defined by the second statement: “f1”
is owned by “Ann” and “Jim”. This statement belongs
to the facts base.

CREATE RELATIONS proxy (use rs , u s e r s) :
{ (Ann , Jim)} ;

Our last example is a relation defined onusers×
users. It says, that Ann is a proxy of Jim.

Let us now focus on the policy layer.

CREATE TESTS u s e ri s A n n :
([u s e r s] ,{Ann} , t h e t a) ;

A test is a boolean function. The definition of
a test has three arguments, the first two are manda-
tory. The first two are expressions which are evalu-
ated to a container. “users” (without any brackets) is
a valid container name, which is evaluated to all enti-
ties within the container ”users”. “{users}” is a fixed

ADQL:�A�Flexible�Access�Definition�and�Query�Language�to�Define�Access�Control�Models

381

container, namely the entity users itself. This term
does not evaluate any further. “[users]” is a reference
to the variable defined upon the container users. The
variable can be bound to any entity belonging to the
underlying container. A variable can be bound in the
context of a scope. Semantically, “[users]” can be in-
terpreted as “the current user, when a decision is made
to grant or deny access”.

The above test definition compares the current
binding of the variable of the container users with the
fixed container including entity “Ann”. As the third
operator of a testθ is used as operator by default.

We defineθ as a boolean function. LetC1 andC2
be containers.θ : C1×C2 → {true, f alse}

C1θC2 =

{

true, if C1∩C2 6= /0
f alse, otherwise

The operatorθ is a 2-ary boolean operator. It re-
turns true, if both containers have in common at least
one entity.

We see, the above test compares the current bind-
ing of the variable ”[users]“ with the fixed container
including Ann, if they have in common at least one
element. It is clear that this can be only the case if
“[users]” includes Ann. In other words: “Does the
container of the current user have at least one element
in common with Ann?” Is the current user Ann?

CREATE TESTS u s e ri s o w n e r : ([u s e r s] ,
owner ([f i l e s] , .) , t h e t a) ;

CREATE TESTS u s e rp r o x y :
(proxy ([u s e r s] , .) , owner ([f i l e s] , .)) ;

The first argument of the test ”useris owner“ is
the current user. The second argument is a projection:
The relation ”owner” is projected towards its second
argument. The relation ”owner” has been defined by
the Cartesian product of the containersf iles×users.
The point ”.” marks the target container of the projec-
tion while all other arguments have to be fixed entities
(we refer to section 3). The container ”files” is bound
by the variable ”[files]”. Within a context – see later
– a variable is always bound to certain entities. The
result of this projection are all users who are linked to
the current file (expressed by the variable file) by the
relation owner. In other words, the relation returns all
owners of the current file. The third argument is theta
again. The test ”useris owner” compares the current
user with the owners of the current file. It returns true,
if there is at least one match. In other words, the test
checks whether the current user owns the current file.

The test ”userproxy“ becomes true, if the current
user is the proxy of the file owner. These tests can
be used to allow the proxy of a user the same access
rights as the file owner.

Let us come to policies. ADQL represents poli-
cies as sets (containers) of tests, subsequently apply-
ing the same syntax. Logically, a policy is an AND-
combinations of all its tests. As each test can be eval-
uated true or false within a context, the same is true
for a policy. It evaluates true if all tests evaluate true,
it becomes false if at least one test becomes false.

CREATE POLICY p r o x y c a n w r i t e :
{ use r p roxy , ([p e r m i s s i o n s] ,{ w r i t e }) } ;

The above policy becomes true if (1) the test
userproxy evaluates true, which is the case, if the cur-
rent user is a proxy of the file owner. (2) the requested
permission is write. The latter test is defined on-the-
fly within the policy. In other words, write access is
granted for the proxy of a file owner.

Let P1,P2, ...,Pn all policies currently defined. Let
P be the set of all policies.P is then the policy set.

Access Check Statements.Access statements are
used to check whether access is granted or not. Ac-
cess checks are performed onP, thus on all policies
currently defined. If one policy is found allowing ac-
cess, access is granted. If no policy returns true, ac-
cess is denied.

Access checks need to be evaluated in the context
of a scope. Within a scope, variables can be bound to
fixed containers.

CHECK ACCESS: { [u s e r s]={Ann} ,
[p e r m i s s i o n s]={ r ead} , [f i l e s]={ f1 }} ;

The latter part within the curly brackets is the
scope definition: The variable users is bound to the
fixed single-element container holding the entity Ann.
”[users]” is bound to Ann, ”[permissions]” to read and
”[files]” to f1. We assume, that all bindings are valid.

The inference engine checks if an access condition
can be found, which evaluates to true. In our example
there is only one policy ”proxycanwrite”. It consists
of two tests. Both have to evaluate to true to allow
access.

The BNF of ADQL and further details
can be found on the project’s homepage:
http://iism.kit.edu/em/ref/adql.

5 EXAMPLE USE CASES OF
ADQL

To show the flexibility of ADQL we provide some
examples of standard access control models (Bell-
LaPadula, SAP/R3) and how they are modeled in
ADQL. We show the expressive power of ADQL with
a third example related to an extended RBAC model.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

382

5.1 Bell-LaPadula

The Bell and LaPadula model (Bell and LaPadula,
1975; McLean, 1988) assigns to principals (users) so-
called security levels. The same happens to objects.
A user may read (access) objects only, if his clear-
ance level (his security level) is not smaller than the
security level of the accessed object. This is called
the read-down principle. On the other hand, a prin-
cipal can write objects only, when assigning them a
clearance level not smaller than his own security level.
This rule is called write-up policy and prevents the
leaking of confidential information.

CREATE CONTAINERS p r i n c i p a l s , o b j e c t s ,
pe rm iss i ons , s e c l v l s ;

CREATE ENTITIES p e r m i s s i o n s :
{ read , w r i t e} ;

CREATE RELATION
p l e v e l (p r i n c i p a l s , s e c l v l s) ,
o l e v e l (o b j e c t s , s e c l v l s) ;

CREATE POLICY readdown :
{ (p l e v e l ([p r i n c i p a l s] , .) ,

o l e v e l ([o b j e c t s] , .) , >=) ,
([p e r m i s s i o n s] ,{ r ead}) } ;

CREATE POLICY w r i t e u p :
{ (p l e v e l ([p r i n c i p a l s] , .) ,

o l e v e l ([o b j e c t s] , .) , <=) ,
([p e r m i s s i o n s] ,{ w r i t e }) } ;

The first command creates containers for “princi-
pals”, “objects”, “permissions”, and “security levels”.
The principals will hold all entities representing users,
the objects all protectable objects. The second com-
mand assumes two possible permissions, “read” and
“write”. The third and fourth command say that secu-
rity levels can be assigned to “principals” (“plevel”)
and “objects” (“olevel”). We introduce two policies:
First, we allow read down, that is, if the principals’
security level is larger or equal than the object’s secu-
rity level and the requested permission is read, access
is granted. Second, the write down permission is de-
fined in a similar manner.

We did not yet provide a definition for the opera-
tors<= and>=. LetC1 ∈C be a decomposed ADQL
container with entitiesc1, ...,cn, C being the set of all
containers. LetR∞ = R ∪{−∞,+∞} with R being
all real numbers in the usual way. It holds∀k ∈ R :
k>−∞ andk<+∞.

Let max: C→ R∞

max(C1) =

{

−∞, if C1 = {} or ∀ci /∈ R ,

ci , if ci ,c j ∈ R and∀ j : ci ≥ c j

Themaxfunctions selects the entity with the max-
imal value of a container. If no or no entity as a real
number is present,maxreturns−∞. A min function
is defined accordingly.

We define the ADQL operator<=: LetCi ,Cj ∈C
be two ADQL containers. The test(Ci ,Cj ,<=) eval-
uates the following way:

(Ci ,Cj ,<=) 7→

{

true, if max(Ci)≤ min(Cj),

f alse, else

An ADQL test with the<= operator returns true,
if the largest value of an entity of the first container
is at most of the same value as the lowest value of an
entity of the second container.

With these two policies, the whole Bell-LaPadula
model is modeled in ADQL.

5.2 SAP R/3

Our second example is SAP’s R/3 system. The R/3
system3 is an enterprise resource planning (ERP) sys-
tem which is widely used by companies. The design
of SAP R/3’s access control architecture is depicted
in figure 2. We refer to (AG, 2008).

plant

t ransact ion code

cont rolling area

Auth ObjectAuth Field

SAP_CGV_

MIC_DISPLAYP_PERNR

Role User

n:m n:m n:m...

Figure 2: Structure of the SAP R/3 access control model.
We provide some examples for possible object names (e.g.
P PERNR).

The related ADQL model is defined by the follow-
ing commands:

CREATE CONTAINERS a u t h f i e l d s ,
a u t h o b j e c t s , r o l e s , u s e r s ;

CREATE RELATIONS
o b j f i e l d (a u t h o b j e c t s , a u t h f i e l d s) ,
r o l e o b j (r o l e s , a u t h o b j e c t s) ,
u s e r r o l e (use rs , r o l e s) ;

CREATE POLICY a c c e s s :{ ([a u t h f i e l d s] ,
o b j f i e l d (r o l e o b j (u s e r r o l e ([u s e r s

] , .) , .) , .)
) } ;

We immediately see, that SAP R/3 requires only a
single policy. Containers are created for all entities of
the access control model, thus “authfields”, “authob-
jects”, “roles” and “users”. The following commands
link the container entities by relations and model the
n:m relationships. Then, only a single access con-
dition is required: If the required authfield value is
available in the user’s roles, which consists of authob-
jects, that consist of authfields, access is granted. A

3http://www.sap.com/solutions/business-
suite/erp/index.epx

ADQL:�A�Flexible�Access�Definition�and�Query�Language�to�Define�Access�Control�Models

383

SAP R/3 transaction – a transaction is a program in
R/3 – has to check the access rights for all its neces-
sary authorization fields. Please note the nested pro-
jections.

5.3 e-Science for Students’ Thesis

Our next example shows the access control model
for an e-Science environment which supports students
in writing their Bachelor or Master Thesis. Univer-
sities organize the writing of a Bachelor or Master
Thesis as a joint university-company project under
the joint supervision of a professor, the professor’s
assistants and company employees. A project usu-
ally lasts 3 months. After a project’s official end the
state of the project (and all related documents) should
be frozen. After a grace period of normally addi-
tional four weeks non-university members loose ac-
cess to all project resources. For competitive reasons,
project related documents should only be accessible
to project-related members, and only project mem-
bers may upload project documents. On the other
hand, some of the company documents are restricted
to company members and the student. With regard
to his own documents, the student initially keeps
his documents private. However, as the project pro-
gresses, he makes documents accessible either to all
project members or to university or company mem-
bers. In any case, the owner of a document can always
read it and change the document’s visibility.

The Model Layer. In figure 3 we define several
containers to group the users: university staff, stu-
dents, and company employees.

univ_sta

students

company_employees

roles
read

upload

perm issions

changedocgrp

t ime

pjs

docs

users

company_employeesstudentsuniv_sta

docgroup

pjend

gracet ime

owner

pjrole

Figure 3: Graphical representation of the model layer for
the e-Science scenario. Containers are depicted as ellipses,
relations as lines. “pj” is an abbreviation for project.

Further, we need a container for projects, docu-
ments, and permissions. To model the end date and

the grace period we need a time container and two re-
lations. The grace time could also be expressed by
adding four weeks to the project end date. Neverthe-
less, we model it explicitly which allows grace times
to vary. As every document has an owner, we define
such a relation. Because a user may have a role de-
pendent on the project, we model a project role as 3-
tuple. This allows us to assign users in different roles
for each project. Alternatively, one could identify the
role of a user in a project by the user’s group member-
ship, which would then be fixed for all projects. Doc-
uments can be visible to students, university staff, the
company or the author only. We model a document
group for this reason.

CREATE CONTAINERS users , u n i vs t a f f ,
s t u d e n t s , companyemployees ;

CREATE CONTAINERS pjs , t ime , docs ;
CREATE CONTAINERS p e r m i s s i o n s :{ read ,

upload , changedocgrp} ;
CREATE CONTAINERS r o l e s :{ u n i v s t a f f ,

s t u d e n t s , companyemployees} ;
CREATE RELATIONS p jend (p js , t ime) ,

g r a c e t i m e (p js , t ime) ,
owner (docs , u s e r s) ,
docgroup (docs , r o l e s) ,
p j r o l e (use rs , pj , r o l e s) ;

CREATE ASSIGNMENTS u s e r s :
{ (u n i v s t a f f) , (s t u d e n t s) ,

(company employees)} ;

All commands are self-explanatory, but the last:
The container users gets assigned univstaff, students
and companyemployees indirectly. When evaluating
the entities in “users” all entities of the three sub-
containers are returned.

The Policy Layer. We define the tests and policies.

CREATE TESTS permread :
([p e r m i s s i o n s] ,{ r ead}) ;

CREATE TESTS i n g r a c e :
([t ime] , g r a c e t i m e ([p j] , .) ,<) ;

CREATE POLICY r e a d i f p j r o l e :
{perm read , i ng race ,

(p j r o l e ([u s e r s] , [p j] , .) ,
docgroup ([docs] , .) , t h e t a)

} ;

The policy permits access, if (1) the current vari-
able binding of permission has a non-emtpy intersec-
tion with {read}, in other words, the requested per-
mission is read, (2) the current variable binding for
time is less than the value of the relationgracetime,
projected by the current project:gracetime([p js], .)
is resolved to the assigned grace period(s) of the cur-
rent project, (3) the assigned project role of the cur-
rent project and user matches the document group of
the current document.p jrole([users], [p js], .) is the

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

384

projection of the relation pjrole by the current project
and user to the assigned roles.docgroup([docs], .) is
the projection of the relation docgroup by the current
document to the assigned role(s).

CREATE TESTS permup :
([p e r m i s s i o n s] ,{ upload}) ;

CREATE POLICY upload :
{perm up ,

([t ime] , endt ime ([p j s] , .) ,<) ,
(p j r o l e ([u s e r s] , [p j s] , .) , r o l e s)} ;

Uploads are permitted, if (1) the requested permis-
sion is upload, (2) the project has not been finished,
(3) the user in the project has at least one role. More
in detail: If the projection of the relation pjrole by the
current project and user (which is resolved to all roles
the users has in the project), matches any element in
the set role. Please note the missing square brackets
with the expression role.

CREATE POLICY u n i v g r a c e t i m e :
{perm up , i ng race ,

(p j r o l e ([u s e r s] , [p j s] , .) ,
{ u n i v s t a f f } , t h e t a)

} ;

The above access condition allows uploads within
the grace period if the project role of the user is uni-
versity staff.

CREATE POLICY o w n e r a s s i g n :
{ ([p e r m i s s i o n s] ,{ changedocgrp , read}) ,

i ng race , (owner ([docs] , .) , [u s e r s]} ;

The last access conditions allows to change the
visibility for the owner of a file as long as the project
is in its grace period.

Some Example Facts for the Facts Layer. We pro-
vide some sample facts to be able to check access re-
quests. There is one professor called Herb who has
assistants Tom and Ulrick. The students Mark and
Ann do their Bachelor thesis with Tom, respectively,
Ulrick as their supervisor. Mark writes his thesis with
the CRM Ltd. At the company his boss is Ben. Ann
cooperates with the EM AG, where Jim is her boss.
Mark creates two documents A and B. The first one
is a working document and, therefore, private. The B
document is visible for his complete project. Ann has
uploaded one document C which shall be visible to
her and the company only.

CREATE ENTITIES
u n i v s t a f f :{ Herb , Tom, U l r i c k} ,
s t u d e n t s :{Mark , Ann} ,
company employees :{Ben , Jim} ,
p j s :{CRM1,EM1} ;

CREATE LINKS p j r o l e :
{ (Mark ,CRM1, s t u d e n t s) ,

(Ben ,CRM1, companyemployees) ,

(Tom,CRM1, u n i v s t a f f) ,
(Ann ,EM1, s t u d e n t s) ,
(U l r i ck ,EM1, u n i v s t a f f) ,
(Jim ,EM1, companyemployees)} ;

CREATE ENTITIES docs :{A, B ,C} ;
CREATE LINKS

owner :{ (A, Mark) , (B , Mark) , (C , Ann)} ,
docgroup :{ (B , s t u d e n t s) , (B , u n i vs t a f f) ,

(B , company employees) ,
(C , companyemployees)} ;

Check Access Requests.With the above model,
policies, and facts a check access requests can be per-
formed:

CHECK ACCESS:
([u s e r s]={Tom} , [p j s]={CRM1} ,

[docs]={B} , [p e r m i s s i o n s]={ r ead} ,
[t ime]={1300700213}) ;

With this access request Tom is asking for docu-
ment B by read access in the context of project CRM1
on the given date. We assume that this date is before
the project’s official end.

We evaluate the policy ”readif pjrole”:
The test permread is true, ingrace is
true. p jrole([users], [p js], .) evolves to
p jrole([Tom], [CRM1], .) = {univ sta f f}.
docgroup([docs], .) is docgroup([B], .) =
{univ sta f f,students,companyemployees}. The
θ-operator evaluates to true.

As all tests of the access condition are true, access
is granted. Further access conditions need not to be
checked.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we suggested a formal language called
Access Definition and Query Language. ADQL is lo-
cated on the meta-model of an access control model:
It allows to configure the model to behave like well-
known access control models. We have shown this
for Bell-LaPadula, SAP R/3, and an example of an
extended RBAC-like model for e-science.

The model layer of ADQL distinguishes ADQL
from other access control mechanisms: It provides the
capability of freely defining the entities and their re-
lations used by the access control mechanisms. We
designed and implemented ADQL as a software ser-
vice which allows to be used as external component
for software engineers.

ADQL has been implemented as software service
using Java v1.6. It can be managed by an ADQL web
interface allowing to communicate with the ADQL

ADQL:�A�Flexible�Access�Definition�and�Query�Language�to�Define�Access�Control�Models

385

core. The ADQL core can currently be accessed by
REST, SOAP, OSGi, Thrift, string literal IP inter-
face, and a serialized objects IP interface. The net-
work server layer sends all commands received to the
parser. From there, the API layer is called. The API
layer communicates with the ADQL core layer, where
the logic and internal processes are done. Persistence
is realized by standard relational database compo-
nents. We currently use Hibernate, Hibernate Cache
and Postgresql. Further details about ADQL can be
found at http://iism.kit.edu/em/ref/adql.

Our future work will focus on extensions for
ADQL and its exploitation.

REFERENCES

AG, S. (2008).ADM940 - Berechtigungskonzept AS ABAP
Schulungshandbuch. SAP, Walldorf, Germany.

Ardagna, C. A., Cremonini, M., De Capitani di Vimercati,
S., and Samarati, P. (2008). A privacy-aware access
control system.J. Comput. Secur., 16(4):369–397.

Barker, S. (2009). The next 700 access control models or
a unifying meta-model? InProceedings of the 14th
ACM symposium on Access control models and tech-
nologies, SACMAT ’09, pages 187–196, New York,
NY, USA. ACM.

Bell, D. E. and LaPadula, L. J. (1975).Secure Com-
puter Systems: Mathematical Foundations and Model.
M74-244. Mitre Corporation, Bedford, MA, USA.

Berners-Lee, T., Fielding, R., Irvine, U., and Masinter, L.
(1998). Uniform resource identifiers (URI): generic
syntax. http://www.ietf.org/rfc/rfc2396.txt. last ac-
cessed: 2011-02-26.

Crampton, J. and Huth, M. (2010). An authorization frame-
work resilient to policy evaluation failures. In Gritza-
lis, D., Preneel, B., and Theoharidou, M., editors,
Computer Security ESORICS 2010, volume 6345 of
Lecture Notes in Computer Science, pages 472–487.
Springer Berlin / Heidelberg. 10.1007/978-3-642-
15497-329.

Damiani, E., di Vimercati, S. D. C., Paraboschi, S., and
Samarati, P. (2002). A fine-grained access control sys-
tem for XML documents.ACM Transactions on In-
formation and System Security (TISSEC), 5:169–202.
ACM ID: 505590.

Geysin, S., Petrov, A., Charrue, P., Gajewski, W., Kain, V.,
Kostro, K., Kruk, G., Page, S., and Peryt, M. (2007).
Role-Based access control for the accelerator control
system at CERN. InInternational Conference on
Accelerator and Large Experimental Physics Control
Systems, pages 90–92, Knoxville, Tennessee, USA.

Gupta, R. and Bhide, M. (2005). A Generic XACML
Based Declarative Authorization Scheme for Java. In
di Vimercati, S. d. C., Syverson, P., and Gollmann, D.,
editors,Computer Security ESORICS 2005, volume
3679 of Lecture Notes in Computer Science, pages
44–63. Springer Berlin / Heidelberg.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976).
Protection in operating systems.Communications of
the ACM, 19(8):461–471.

Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo,
J., and Lin, D. (2009). Access control policy combin-
ing: theory meets practice. InProceedings of the 14th
ACM symposium on Access control models and tech-
nologies, SACMAT ’09, pages 135–144, New York,
NY, USA. ACM.

McLean, J. (1988). The algebra of security. InIEEE Sym-
posium on Security and Privacy, Oakland, CA.

Ni, Q., Bertino, E., and Lobo, J. (2009). D-algebra for com-
posing access control policy decisions. InProceedings
of the 4th International Symposium on Information,
Computer, and Communications Security, ASIACCS
’09, pages 298–309, New York, NY, USA. ACM.

Notargiacomo, L. (1996). Role-based access control in OR-
ACLE7 and trusted ORACLE7. InProceedings of
the first ACM Workshop on Role-based access control,
RBAC ’95, New York, NY, USA. ACM.

Rissanen, E. (2010).eXtensible Access Control Markup
Language (XACML) Version 3.0 Committee Draft 03.
OASIS eXtensible Access Control Markup Language
(XACML) TC.

Samarati, P. and Vimercati, S. D. C. d. (2001). Access
control: Policies, models, and mechanisms. InRe-
vised versions of lectures given during the IFIP WG
1.7 International School on Foundations of Security
Analysis and Design on Foundations of Security Anal-
ysis and Design: Tutorial Lectures, pages 137–196.
Springer-Verlag.

Wang, Q., Jin, H., and Li, N. (2009). Usable access
control in collaborative environments: authorization
based on people-tagging. InProceedings of the 14th
European conference on Research in computer secu-
rity, ESORICS’09, pages 268–284, Berlin, Heidel-
berg. Springer-Verlag.

Yuan, E. and Tong, J. (2005). Attributed based access con-
trol (ABAC) for web services. InWeb Services, 2005.
ICWS 2005. Proceedings. 2005 IEEE International
Conference on, pages 569–578.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

386

