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Abstract: The performance shaping method is addressed as a statistical optimal control problem. In statistical control,
we shape the distribution of the cost function by minimizingn-th order cost cumulants. Then-th cost cumu-
lant, Hamilton-Jacobi-Bellman (HJB) equation is derived as the necessary condition for the optimality. The
proposed method provides an approach to control a higher order cost cumulant for stochastic systems, and
generalizes the traditional linear-quadratic-Gaussian and Risk-Sensitive control methods. This allows the cost
performance shaping via the cost cumulants. Moreover, the solution of generaln-th cost cumulant control is
provided by numerically solving the HJB equations using neural network method. The results of this paper
are demonstrated through a satellite attitude control example.

1 INTRODUCTION

We shape the performance of the system through the
statistical properties of the cost function. In linear-
quadratic-Gaussian (LQG) control, the performance
is optimized by minimizing the mean of the cost func-
tion (Fleming and Rishel, 1975). In statistical opti-
mal control, we minimize any cost cumulant to im-
prove the performance of the system. So far the first
mean (LQG) and denumerable sum of all the cumu-
lants (risk-sensitive) of the cost function are inves-
tigated (Lim and Zhou, 2001). However, there are
other statistical parameters that we can vary to shape
the performance. This is achieved by minimizing n-th
cost cumulants. The study of cost control cumulant
was initiated by (Sain, 1966). The authors extended
the theory of cost cumulant control to third and fourth
cumulants for anonlinearsystem withnonquadratic
cost and derived the corresponding HJB equations
(Won et al., 2010). HJB equation was derive, but
the solution was not determined. In fact, most HJB
equations do not have analytical solutions except for
the special cases of linear systems with quadratic cost
functions. Thus, numerical approximate methods are
needed to solve HJB equation. For the first two cu-
mulant case, we solved the HJB equation using neu-
ral networks in (Kang and Won, 2010). In this paper,
we extend this result ton-th cumulants. This is not a
simple extension of the results in (Won et al., 2010).

There, we developed a procedure to solve higher or-
der cost cumulant problem using the results of the mo-
ments. In this paper, we use induction to deriven-th
cumulant HJB equation, which was not a trivial task.
This n-th cumulant HJB equation corresponds to the
performance shaping idea. Then we solve this HJB
equation using a neural network method.

A power series expansion to approximate the
value function for an infinite-time horizon determin-
istic system was given in (Alberkht, 1961). Apply-
ing Galerkin approximate method to solve the gen-
eralized Hamilton-Jacobi-Bellman (GHJB) was given
in (Beard et al., 1997). (Chen et al., 2007) proposed
using neural network methods to solve the optimal
control problem of a nonlinear finite time system. If
we define the weighting and the basis functions as
polynomials, the neural network is in fact equivalent
to power series expansion in that we use coefficients
of the power expansion as the weights in neural net-
works. However, neural network method has the po-
tential to be more than simple power series expansion
by adding additional layers of neurons. In this work,
we extend the system dynamics of (Chen et al., 2007)
to stochastic systems. Then we solve the HJB equa-
tions for then-th cost cumulant control problem using
neural network approximation method.

Section 2 states the problem and defines the nota-
tions used in this paper. Section 3 develops the HJB
equations for then-th cost cumulant control of the
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system. The induction is utilized in the derivation. In
order to solve the statistical optimal control problem,
we use neural network approximations for HJB equa-
tions in Section 4. The simulation results for the satel-
lite attitude control application is presented in Section
5. Finally conclusions are given in the last section.

2 PROBLEM FORMULATION

Consider a stochastic differential equation:

dx(t) = f (t,x(t),u(t))dt+σ(t,x(t))dw(t), (1)

wheret ∈ [t0, tF ], x(t0) = x0, x(t)∈R
n, u(t)∈U ⊂R

m,
anddw(t) is a Gaussian random process of dimension
d with zero mean and covariance ofW(t)dt. The sys-
tem control is given as

u(t) = k(t,x(t)), t ∈ T. (2)

The system cost function is given as:

J(t,x(t);k) = ψ(x(tF))

+

∫ tF

t

[

l(s,x(s))+ k′(s,x(s))Rk(s,x(s))
]

ds,
(3)

whereψ(x(tF )) is the terminal cost,l(s,x(s)) is a pos-
itive definite function,R is the positive definite matrix.
The goal is to find an optimal controller for system (1)
which minimizes then-th cumulant of the cost func-
tion (3), such thatVn(t,x,k(t,x)) = min

k∈KM
{Vn(t,x,k)}.

We now introduce a backward evolution operator
O (k), defined by

O (k) =
∂
∂t

+
n

∑
i=0

fi(t,x,k(t,x))
∂

∂xi
+

n

∑
i, j=1

(

σ(t,x)W(t)σ′(t,x)
)

i, j

∂2

∂xi∂x j
.

Then then-th cumulant of cost function, we in-
troduce then-th moments of cost function which is
defined as:

Mi(t,x,k(t,x)) = E
{

Ji(t,x,k(t,x))
∣

∣x(t) = x
}

Next, we introduce some definitions,
Definition 2.1. A function M j : Q0 → R

+ is an
admissible j-th moment cost function if there ex-
ists an admissible control lawk such thatM j(t,x) =
Etx

{

Ji(t,x,k(t,x))
}

for t ∈ T,x∈ R
n.

Definition 2.2. The admissible moment cost func-
tions M1, . . . , M j defines a class of control lawsKM
such that for eachk∈ KM, M1, . . . ,M j satisfy Defini-
tion 2.1.

Definition 2.3. A functionVj : Q0 →R
+ is an admis-

sible j-th cumulant cost function if there exists an ad-
missible control lawsk such thatVj(t,x) = Vj(t,x,k).

Now, we mathematically formulate the statistical
optimal control problem as follows. Under the as-
sumption thatM1, . . . , Mn−1 exist and are admissi-
ble, we find an optimal controlk∗ ∈ KM such that
V∗

n (t,x) = Vn(t,x,k∗) satisfiesV∗
n (t,x) ≤ Vn(t,x,k) for

all k(t,x) ∈ KM(t,x).
Then-th cumulant of the cost function is given by

the following recursion formula (Smith, 1995), where
we suppress the arguments for the sake of brevity.

Vn = Mn−
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

Mn−1−iVi+1. (4)

It is shown in (4) that then-th order cumulant
can be calculated from then-th order moment and the
lower order moments and cumulants. In the next sec-
tion, the above definitions and formulas will be used
to derive the HJB equations for then-th order cumu-
lant minimization.

3 n-th CUMULANT HJB EQ.

Before we derive then-th cumulant HJB equation,
we introduce then-th moment HJB equation. (Sain,
1967) derived then-th moment HJB equation given in
recursive form,
O (k) [Mn(t,x,k)]+nMn−1(t,x,k)L(t,x,k) = 0

(5)
Using (5) and theDefinition 2.1, we have the fol-

lowing theorem which gives the necessary condition
for the optimality. Consider on open setQ0 ⊂ (Q̄0).
Theorem 3.1.Let M j(t,x) ∈C1,2

p (Q0)∩C(Q̄0) be the
j-th admissible moment cost function, assume the ex-
istence of an optimal controllerk∗ ∈ KM such that

M∗
j (t,x) = M j(t,x,k

∗) = min
k∈KM

{

M j(t,x,k)
}

,

thenk∗ andM∗
j satisfy the following HJB equation,

O (k)
[

M∗
j (t,x)

]

+ jM j−1(t,x)L(t,x,k
∗) = 0, (6)

for t ∈ T, x∈ R
n and the terminal condition is given

asM∗
j (t f ,x) = ψ(x(t f )).

Proof: See (Won et al., 2010).
The following Lemmas are used to obtain then-th

cumulant HJB equation.
Lemma 3.1.Consider two functionsMi(t,x), Vj(t,x)

∈C1,2
p (Q)∩C(Q̄), wherei and j are non-negative in-

tegers, then
O (k) [Mi(t,x)Vj(t,x)]

= O (k) [Mi(t,x)]Vj(t,x)+Mi(t,x)O (k) [Vj(t,x)]

+

(

∂Mi(t,x)
∂x

)′

σ(t,x)Wσ(t,x)′
(

∂Vj(t,x)

∂x

)

.
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Lemma 3.2. Let Vi(t,x), . . . , Vk−1(t,x) ∈ C1,2
p (Q)∩

C(Q̄) be admissible cost cumulant functions, then

1
2

k−1

∑
s=1

k!
s!(k− s)!

(

∂Vs

∂x

)′

σWσ′

(

∂Vk−s

∂x

)

=
k−2

∑
i=0

(k−1)!
i!(k−1− i)!

(

∂Vk−1−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

.

Proof: Omitted for brevity.
The main result of this paper is given in the fol-

lowing theorem. We use induction to prove the gen-
eraln-th cumulant optimal control.
Theorem 3.2. (n-th cumulant HJB equation)Let
V1(t,x),V2(t,x), . . . ,Vn−1(t,x) ∈ C1,2

p (Q0)∩C(Q̄0) be
an admissible cumulant cost function for the con-
trol. Assume the existence of an optimal control law
k∗Vk|M

∈ KM and an optimal value functionV∗
n (t,x) ∈

C1,2
p (Q0) ∩C(Q̄0). Then the minimaln-th cumu-

lant cost functionV∗
n (t,x) satisfies the following HJB

equation,

0= min
k∈KM

{

O (k) [V∗
n ]

+
1
2

n−1

∑
s=1

n!
s!(n− s)!

(

∂Vs

∂x

)′

σWσ′

(

∂Vn−s

∂x

)

}

,

(7)

for (t,x)∈ Q̄0, with the terminal conditionV∗
n (t f ,x) =

0.
Proof: The mathematical induction method is used
here to prove the theorem. We proved that whenn=2,
the second cost cumulant HJB equation satisfies (1).
The third and fourth cumulant cases were proved in
(Won et al., 2010). Thus, we assume that this theorem
holds for the second, third and (n-1)-th cumulant case.
We will show that the theorem also holds for then-th
cumulant case. Henceforth, the arguments ofM and
V are suppressed for brevity.

Let V∗
n be in the class ofC1,2

p (Q)∩C(Q̄). Apply
the backward evolution operatorO (k) to the recursive
formula (4), we have

0= O (k) [V∗
n ]−O (k) [Mn]

+
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

O (k) [Mn−1−iVi+1] .
(8)

FromTheorem 3.1, we have

O (k)[Mn]+nMn−1L = 0. (9)

Then, fromLemma 3.1, and lettingi = n− 1− i, j=
i +1, we obtain

O (k)[Mn−1−iVi+1] = O (k)[Mn−1−i ]Vi+1

+Mn−1−iO (k)[Vi+1]+

(

∂Mn−1−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

.

(10)

Substitute (9), (10) into (8), and we have

0= O (k)[V∗
n ]+nMn−1L

+
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

[

O (k)[Mn−1−i ]Vi+1

+Mn−1−iO (k)[Vi+1]+

(

∂Mn−1−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

.

(11)
Use (9) again forO (k)[Mn−1−i ] in (11) results in

0= O (k)[V∗
n ]+nMn−1L

+
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

[

− (n−1− i)Mn−2−iVi+1L

+Mn−1−iO (k) [Vi+1]+

(

∂Mn−1−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

.

(12)
Using the formula in (Stuart and Ord, 1987),
∂Mi

∂Vj
=

i!
j!(i − j)!

Mi− j , then

∂Mn−1−i

∂x
=

n−1−i

∑
j=1

(n−1− i)!
j!(n−1− i − j)!

Mn−1−i− j
∂Vj

∂x
.

Thus, using the assumption that the theorem holds,
from second order to (n−1)-th order cumulant case,
(12) becomes

0= O (k)[V∗
n ]−

n−2

∑
i=1

(n−1)!
i!(n−1− i)!

[

Mn−1−i

i−1

∑
j=0

i!
j!(i− j)!

(

∂Vi− j

∂x

)′

σWσ′

(

∂Vj+1

∂x

)

]

+
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

[

n−1−i

∑
j=1

(n−1− i)!
j!(n−1− i− j)!

Mn−1−i− j

(

∂Vj

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

.

(13)
From (13), we notice that both the second and third
term on the right hand side contain the moment from
{Mx}, wherex = 1, 2, . . . , n− 2. Therefore, it is
feasible to combine two summations with respect to
Mx and simplify the equation. For derivation conve-
nience, we usep andq instead ofi and j within the
bracket of the second term of (13),

Mn−1−i

i−1

∑
j=0

i!
j!(i − j)!

(

∂Vi− j

∂x

)′

σWσ′

(

∂Vj+1

∂x

)

,

to distinguish the notations of the second and third
term in (13). Note that the notationsp, q andi, j are
indeed equivalent. Therefore, (13) is rewritten as
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O (k)[V∗
n ]−

n−2

∑
p=1

(n−1)!
p!(n−1− p)!

[

Mn−1−p

p−1

∑
q=0

p!
q!(p−q)!

(

∂Vp−q

∂x

)′

σWσ′

(

∂Vq+1

∂x

)

]

+
n−2

∑
i=0

(n−1)!
i!(n−1− i)!

[

n−2−i

∑
j=1

(n−1− i)!
j!(n−1− i− j)!

Mn−1−i− j

(

∂Vj

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

+

n−2

∑
i=0

(n−1)!
i!(n−1− i)!

[

(

∂Vn−1−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

= 0.

(14)
Now, let us focus on the second and third terms of
(14). We consider the second and third terms as func-
tions with respect toMx. We will compare the coef-
ficients of the sameMx on second and third terms,
i.e whenMn−1−p = Mn−1−i− j . When k− 1− p =
k−1− i− j, thenp = i+ j, then we will determine the
corresponding coefficients associated withMn−1−p =
Mn−1−i− j via the following procedure. In the second
term of (14), the coefficient associated withMn−1−p
is

−
p−1

∑
q=0

(n−1)!
q!(n−1− p)!(p−q)!

[

(

∂Vp−q

∂x

)′

σWσ′

(

∂Vq+1

∂x

)

Mn−1−p

]

.

(15)

For the third term in (14) becausep = i+ j, then for
eachp in [1, n-2], there are combinations ofi and j,
such that the summation of which are equal top such
as p=0+p, p=1+(p-1), . . . andp=(p-1)+1. Because
the range for indexi is i = 0, 1, 2, . . . ,p-1, when we
look for the coefficient ofMn−1−i− j whenMn−1−i− j =
Mn−1−p, we must find summation of the coefficient of
Mn−1−i− j for all combinations ofi and j. Therefore,

the corresponding coefficient is
i=p−1

∑
i=0, j=p=i

CMn−1−i− j ,

whereCMn−1−i− j is the coefficient for eachi and j
which lead to the samek-1-i- j. Substitutep = i +
j, i = 0, 1, 2, . . . ,p-1, j = p-i back to the third term of
(14), then the coefficient associated withMn−1−i− j is

p−1

∑
i=0

(n−1)!Mn−1−p

i!(n−1− i)!
[

(n−1− i)!
(p− i)!(n−1− p)!

(

∂Vp−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

]

=
p−1

∑
i=0

(n−1)!
i!(n−1− p)!(p− i)!

[

(

∂Vp−i

∂x

)′

σWσ′

(

∂Vi+1

∂x

)

Mn−1−p

]

.

(16)

Compare (15) and (16), we notice that sincep is
equivalent toi and q is equivalent toj, it is obvi-
ous that they have exactly format except for the signs.
Thus they will cancel with each other when they are
summed up. Therefore, the summation of the sec-
ond and third term on (14) will be zero. Then we
applyTheorem 3.1, (14) becomes (7). The theorem is
proved. �

4 NEURAL NETWORK APPROX.

Neural network method based on series expansion ap-
proximate concept for HJB equations is applied to
solve the value function of the HJB equations gen-
erated in the Section 3.

In our neural network approach, several neural
network input function are multiplied by their cor-
responding weights and then summed up to pro-
duce output which is the approximated value func-
tion. In this paper, polynomial series expansion
δ̄L(x) = {δ1(x),δ2(x), . . . ,δL(x)}′ is the neural net-
work input function while the weights of the series ex-
pansion iswL(t) = {w1(t),w2(t), . . . ,wL(t)}′. These
weights are time-dependent. Then-th cumulant value
function is represented asV∗

nL(x, t) = w′
L(t)δ̄L(x) =

∑L
i=1w′

i(t)δi(x). The subscriptL in the value func-
tion represents the order of the polynomial series. The
higher the order of the series, the closer the approxi-
mate value gets to the real value.

In Theorem 3.2, the HJB equation for then-th
cumulant case is given. We need to solve this HJB
equation to find the optimal controller. The optimal
controllerk∗ for then-th cumulant case has the form.

k∗ =−
1
2

R−1B′

(

∂V1

∂x
+ γ2

∂V2

∂x
. . .+ γn

∂V∗
n

∂x

)

,

(17)
with terminal condition V∗

n (t f ,x) = 0 where
γ2,γ3, . . . ,γn are the Lagrange multipliers. From
(1), we assume that

f (t,x(t),k(t,x(t))) = g(t,x)+B(t,x)k(t,x),

where the matricesR(t) > 0, B(t,x) are continuous
real matrices. We substitutek∗ back into the HJB
equation from the first ton-th cumulant cases, then
use neural network series expansion to approximate
each HJB equation. Assuming terminal conditions for
the value functionV1,V2, . . . ,Vn are zero.
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Then the neural network approximations are used.
We approximageV1 by V1L(x, t) = w′

1L(t)δ̄L(x), V2

by V2L(x, t) = w′
2L(t)δ̄L(x), etc. We obtain differen-

tial equations for the weigths. Then-th order one is
given as an example.

ẇnL(t) =

−〈δ̄nL(x), δ̄nL(x)〉
−1
Ω 〈∇δ̄nL(x)g(x), δ̄nL(x)〉Ωw̄nL(t)

+
1
2
〈δ̄nL(x), δ̄nL(x)〉

−1
Ω ALw̄nL(t)

+
n

∑
i=2

γ2
i

2
〈δ̄nL(x), δ̄nL(x)〉

−1
Ω BiLw̄nL(t)

−
1
2

n−1

∑
i=1

n!
i!(n− i)!

〈δ̄nL(x), δ̄nL(x)〉
−1
Ω FiLw̄(n−i)L

−
1
2
〈δ̄nL(x), δ̄nL(x)〉

−1
Ω GLw̄nL.

(18)
The terminal conditions ¯w1L(t f ),. . . , w̄nL(t f ) are

assumed zero and the quantitiesAL, BiL , CL, FiL and
GL are defined as follows,

AL =
L

∑
s=1

w1s(t)〈∇δ̄1L(x)BR−1B′∇δ̄1s(x)δ̄1L(x)〉Ω,

BiL =
L

∑
s=1

wis(t)〈∇δ̄iL(x)BR−1B′∇δ̄is(x)δ̄1L(x)〉Ω,

CL = 〈tr
(

σWσ′∇
(

∇δ̄′1L(x)w̄1L(t)
))

, δ̄1L(x)〉Ω,

FiL =
L

∑
s=1

wis(t)〈∇δ̄(n−i)L(x)σWσ′∇δ̄is(x)δ̄nL(x)〉Ω,

GL = 〈tr
(

σWσ′∇
(

∇δ̄′nL(x)w̄nL(t)
))

, δ̄nL(x)〉Ω.

To solve then-th cumulant neural network equation,
we need to simultaneously solve all then-th cumulant
equation by converting the PDEs to neural network
ODEs. Then, we solve the approximated ODEs with
the corresponding Lagrange multipliersγ2, γ3, γ4 to
γn.

5 SIMULATION

In this section, we will use the neural network to cal-
culate the first, second third and fourth cumulant opti-
mal control for a satellite attitude control application
studied in (Won, 1999). This is a linear system with
quadratic cost function. We define the state variables
as follows: x̄ = [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] =
[φ,θ,ψ,ωx,ωy,ωz,Ω1,Ω2,Ω3,Ω4]. φ, ψ and θ are
the roll , yaw andpitch Euler angles of the satellite.
ωx, ωy andωz are the angular velocities of the satel-
lite. Ω1, Ω2, Ω3 andΩ4 are the reaction wheel ve-
locities. We consider the fourth cumulant control

and analyze the system state space form and derive
the HJB equations for the fourth cumulant control.
Let V1L(x, t) = w′

1L(t)δ̄L(x) to approximateV1(x, t),
V2L(x, t) = w′

2L(t)δ̄L(x) to approximateV2(x, t), etc.
The basis functionδ̄L(x) is chosen from the expan-
sion of a polynomial generating function(x1 + x2 +
x3+x4+x5+x6+x7+x8+x9+xa)

2 which contains
55 elements. Thus, the weights to be determined
are defined asw1L(t) = {w1,w2, . . . ,w55}, w2L(t) =
{w56,w57, . . . ,w110}, w3L(t) = {w111,w112, . . . ,w165},
w4L(t) = {w166,w167, . . . ,w220}. Using neural net-
work method, we solve for the approximatedV1L(x, t),
V2L(x, t), V3L(x, t) andV4L(x, t) .

Here we simulate the first four cost cumulant con-
trol, i.e n = 4. Because we use Lagrange multiplier
method to derive the second, third and fourth cost cu-
mulant HJB equations, we solve the HJB equations
by assigning different values for the Lagrange multi-
pliers γ2, γ3 andγ4. In all simulation, we fixγ2 = γ3
= 0.001, whileγ4 vary from 0 to 0.0001. In Fig. 1(a),
we observe that first cumulantV1 increases with in-
creases inγ4 and the smallestV1 is obtained whenγ4
is 0. For brevity we did not show second and third cu-
mulant value functions as a function ofgamma4. The
second cumulantV2 decreases with with increases in
γ4 and reaches a minimum whenγ4 = 0.0001. This is
related to the variance of the cost function. It is ob-
served thatV3 decreases with increases inγ4. Fig. 1(b)
shows the fourth cumulantV4 asγ4 varies in value. It
is observedV4 decreases with increases inγ4. Fig.
1(c) shows that the neural network weights converge
to constants when integrated backward in time.

Depending on the desired statistical properties of
the cost function, the engineer will choose the appro-
priate Lagrange multiplier values. In the satellite at-
titude control case, the mean and the variance are the
important factors. Thusγ4 equal to 0.0001 is a good
choice. From the value functions, the corresponding
optimal controllerk∗ is determined by substitutingV1,
V2, V3 andV4 back to the following equation,

k∗ =−
1
2

R−1B′

(

∂V1

∂x
+ γ2

∂V2

∂x
+ γ3

∂V3

∂x
+ γ4

∂V∗
4

∂x

)

.

(19)
The optimal controllerk∗(t,x) is the minimal

fourth cumulant controller. Similarly, the minimal
first cumulant controller (LQG control) is found by
letting γ2 = γ3 = γ4 = 0. Following similar approach,
we can determine higher order cumulant optimal con-
troller.

6 CONCLUSIONS

In this paper, we studied the statistical optimal control
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Figure 1: Value Functions and Neural Network Weights.

problem. Statistical control shapes the cost cumulants
to improve the performance of the controller. We de-
rived the necessary condition for minimizing then-th
cost cumulant for a given system. By shaping the den-
sity function, we improve the system performance.
The HJB equation for then-th cumulant minimiza-
tion is derived. The optimal controller for then-th
cumulant minimization problems is found by solving
the corresponding HJB equations. Then-th cumulant
HJB equation is numerically solved using neural net-
work method. In the satellite attitude control problem,
the performance is shaped using the Lagrange multi-
plier, which decreased the fourth cumulant, while the
first cumulant increased.
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