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Abstract: This paper proposes a set of nonlinear deterministic methods derived from chaos theory that can serve as 
computed aided diagnosis tools for kidney diseases based on computer topographies (CT). These procedures 
target the classification of the analyzed tissue samples in normal, malign and benign affected and also 
enhanced visualization of the CT images. The classification methods consist in estimating the fractal 
dimension of the kidney tissue and, respectively, the correlation dimension of the attractor obtained from the 
spatial series associated to the kidney image. The enhanced visualization method associates a fractal map to 
the analysed image. The methods are tested on 120 CTs presenting normal and modified tissue.  The degree 
of trustworthiness of the methods while dealing with classifications is discussed based on statistical results 
and samples of fractal maps associated to the images are also presented.  

1 INTRODUCTION 

In order to increase the life expectancy and improve 
the overall quality of life for patients with kidney 
diseases, a critical stage in the medical process is to 
employ a suitable protocol for delivering the 
diagnostic, establish a treatment and, when needed, 
to design an appropriate follow up procedure. 
Usually, the first investigations and the follow up 
consist in noninvasive or minimally invasive 
procedures, in order to obtain the biological data for 
proposing an accurate diagnostic. In this context, 
any improvement in interpreting the patient’s data is 
highly important. 

When considering such data, at least two main 
problems of tremendous importance have to be 
solved: capturing and storing the considered medical 
signals, on one hand and, on the other hand, 
analyzing and interpreting the stored signal. In order 
to capture 2D signals of the kidneys the most used 
procedure is computer tomography (CT). The 
obtained signals (grey level images) are usually 
highly nonlinear, rather noisy and due to close 
values of radio densities of the tissues, sometimes 
difficult to interpret. 

Analysis and interpretation of the captured 
medical signals is almost exclusively subjected to 
the human diagnosis expertise and experience. In the 
last decade, a lot of effort was made to create 

automatic analysis and diagnosis tools for aiding the 
medical act. Nowadays, automatic diagnostic is still 
a long term goal to be achieved, but Computer-
Aided Diagnosis (CAD) systems design seems 
possible. This is confirmed by all major medical 
imaging companies increasing interest in developing 
CAD systems. Three signal processing operations 
are closely related to CAD topics: filtering, 
segmentation and quantification of analyzed 
features. Enhanced visualization is another 
important aspect, especially in the context of kidney 
CT images presenting benign affected tissue.  

The main goal of this paper is to present a series 
of new or improved nonlinear methods that can aid 
the medical diagnostic in the case of kidney diseases 
and can be included in a CAD system. These 
methods are derived from nonlinear time series 
analysis and fractal geometry, both branches of 
chaos theory.  Their primary goal is to analyze the 
kidney CT images and to decide if the presented 
tissue is normal, malign affected, benign affected 
and also to try differentiating between types of 
benign diseases and malignancy stages. Where these 
classification attempts prove limitations, enhanced 
visualization procedures are offered as support. 

The paper is organized in four chapters. In what 
follows the nonlinear deterministic methods to be 
used are presented and the results obtained by 
employing them to the analysis of CTs are 
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statistically analyzed. For this study, a series of 120 
CT images were used: fifty of them contain malign 
modified kidney tissue, fifty images present normal 
kidney tissue and the rest of twenty are organised in 
four images groups of benign affections. In the end 
conclusions are summarized.    

2 THE PROPOSED NONLINEAR 
DETERMINISTIC METHODS 
FOR CAD 

Nonlinear time series analysis (NTSA) and fractal 
analysis, as branches of chaos theory, provide useful 
methods for the characterization of mono and multi 
variable signals (like time series and images).  

2.1 Attractor’s Correlation Dimension 
Estimation Method for the CT 
Image Associated Time Series 

Typically, the NTSA deals with series that are sets 
of values of a single variable function, usually 
measured as function of time (dynamic features). 
Nonlinear methods have been developed in the past 
20 years, being motivated by the concept of 
deterministic chaos, which is proved to exist within 
many real systems in biology, medicine, chemistry, 
physics and electronics. The studied time series in 
medicine and biology are: recordings of the 
electrical activity – electrocardiograms (EKG), 
electroencephalograms (EEG) and physiological 
parameters – blood pressure, pulse, and breathing 
rate. Here are some applications with important 
results of NTSA: diagnosis and control of cardiac 
arrhythmia and ventricular fibrillations prediction 
(Perc, 2005); characterization of sleep stages 
(Rajendra, 2005); evaluation of variations in brain 
functioning for psychical processes characterization 
(Mekler,2008; Pritchard and Duke 1995); 
characterization of anesthesia state (Widman, 2000). 

The proposed NTSA derived method is based on 
the invariant measure of a chaotic dynamical system: 
the correlation dimension of the system’s attractor. 
By investigating time series, one can observe the 
behavior and properties of dynamical systems, in our 
case of different physiological parameters. 

From the mathematical point of view, there is a 
formalism to describe the time series features. Let 
the real valued map F :M →R be a measure on the 
state space of some discrete dynamical system T 
providing data in M. If s>0  is a fixed delay 
(assigned to some sampling period) and x is a fixed 

state, then a time series is a sequence of 
measurements like the following: 

 
F (T(t,x)), F (T(t + s,x)), F (T(t + 2s,x)), 

…, F (T(t + (N −1)s,x)) (1)
 
for any starting instant t . Note that the state changes 
too during the time series acquisition. The samples 
of  time series are often simply denoted by  xt , xt+1, 
xt+2, … .In context of medical signals, these time 
series are measurement (like EEG, EKG) performed 
on some patient (represented here by the system T ). 
The acquisition rate and the length of the 
measurement depend on the type of investigated 
parameter. One can reconstruct the attractor of a 
dynamical system from the time series generated by 
the system, by using the Taken’s Embedding 
Theorem (Taken, 1981) and computing the 
correlation dimension of the attractor in order to 
geometrically characterize it. The correlation 
dimension dC is calculated using the following 
recipe: 
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where C(ε ) is the correlation integral defined below: 
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and: H is the Heaviside step function (which returns 
either the unit value for non negative arguments or 
null value otherwise), ε is the accepted distance 
between points, yi is a point in the embedded phase 
space constructed from a single time series, 
according to Taken’s theorem, i.e: 
yi=(xi,xi+s,xi+2s,…xi+(dE-1)s), s is the delay, dE is the 
dimension of the embedding space where the 
attractor resides, N is the number of embedding 
vectors. So, C(ε ) gives the proportion of number of 
points couples in the embedding space with the 
Euclidian distance less than a specified small 
threshold ε . 

In pathology (especially in case of CT, RM 
images and frozen tissues samples), one deals with 
static (invariant) structures. In this case, 
measurements are taken with respect to the one-
dimensional spatial axis, instead of temporal axis. In 
this context we propose a method for reconstructing 
the attractor from a CT image an associate to it a 
specific dC. 

In order to perform nonlinear analysis on a CT 
normal or modified tissue image, a series of steps 
must be made.  
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First, from a CT slice, the region containing the 
tissue to be analyzed must be isolated; a matrix 
containing values of each pixels shade is obtained 
(the value can vary between 0 and 255 
corresponding to different shades of grey; 0 stands 
for black and 255 for white). The time (spatial) 
series is generated in the following manner: the 
matrix resulting from the original image is cut in 
horizontal strips of 1, 2, 4, 8, … pixels, with respect 
to the initial image dimension and precision; all 
strips are put together one after another and generate 
one single strip associated to the image; the time 
(spatial) series - x(t) - is generated by computing 
either the mean value or the maximal (dominant)  
value of each column of pixels within the strip. 

As result of this procedure, the time (spatial) 
series associated to the section of the analyzed tissue 
is obtained. For this study, since the analyzed CT 
regions are not extremely large, a 1-pixel strip was 
associated to each original image, this way not 
altering the information provided by the image. 

Having the associated series, the next step of the 
procedure implies calculating the correlation 
dimension of the attractor. This value is the 
discrimination criterion.  

However, in practical applications, in order to 
determine the dimension of an attractor, we cannot 
directly use the above formulae for dC due to the 
following aspects: limited time series;   noisy time 
series;    unknown fractal dimension of the attractor;  
for different s - delay values different results due 
autocorrelations;  unknown dE – leading to time 
correlations when reconstructing the series in a 
embedding space with unsuitable dimension;  time 
series with the first part of data not on the attractor.  

The delay or lag value -s- used to create the 
delayed embedding must be properly chosen (Kantz 
and Schreiber, 2003). A small value of the delay 
generates correlated vector elements, while large 
delay values yield to uncorrelated data and a random 
distribution in the embedding space. The delay can 
be chosen with good results as the moment of time 
where the autocorrelation function of the 
reconstructed series decays to 1/e of its initial value: 

   

( ) (1)(1 1/ )RN RN eτ < − . (4) 
 

Generally, the lag value is found between 4 and 
10, while the used search interval is [1, 20]. 

The minimum allowed embedding dimension is 
the dimension where the number of so called false 
nearest neighbours drops under a certain percent. A 
false neighbour is a point that under a certain higher 
dimensional embedding is projected near a point that  
in the previous embedding is not in its vicinity. 

 In order to implement this procedure, each point 
of the delayed series is tested by taking its closest 
neighbour in dE dimensions, and computing the ratio 
of the distances between these two points in dE +1 
dimensions and in dE dimensions. If this ratio is 
larger than a certain threshold th, the neighbour is 
false (this threshold is taken large enough to take in 
consideration points that exponential diverge due to 
deterministic chaos):  
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 where ||.|| is the Euclidian distance. 

The percentage of false neighbours is computed 
over a range of embedding dimensions (dE between 2 
and 15) until it reaches a value less than a specified 
limit; otherwise it considers the minimal obtained 
value. 

Once a proper delay and a minimum allowed 
embedding dimension are determined, the 
correlation dimension is calculated over a range of 
different ε  - values and embedding dimensions 
higher than the first assuring a decreased number of 
false neighbours.  

The dC differs from one embedding dimension to 
another due to the noise in the data, but there is a 
particular region, usually called the scaling region 
where dC stabilizes (Kantz and Schreiber, 2003). 
This is the interval where a mean value for the 
correlation dimension of an attractor is calculated.  

2.2 The Box-Counting Dimension 
Estimation Method 

Fractal analysis methods are used for the description 
and quantization of geometric features of irregular 
forms and patterns. Its most known tool is the fractal 
dimension used to provide information on the 
irregularity of an object contour or self-similarities 
of a texture, which associates to some pathology as 
well. It was applied for the study of medical systems 
and subsystems at microscopic and macroscopic 
scale, fracture analysis or texture classification 
(Peitgen, 1992). The simplest medical application 
consists in the morphological analysis of a structure 
(for example, the lung network of arteries and 
veins). This analysis of irregularities can be applied 
in a similar manner on different forms, like the 
delimitation between normal and affected tissue, 
lesions, and tumors. 

Here are some examples of fractal analysis 
results in medicine and biology: classification in 
pathology (Bassingthwaighte, 1994; Dobrescu si 
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Vasilescu, 2004) and physiology (Luzi, 1999), tumor 
growth description (Landini, 1998). The box 
counting method provides a measure of fractal 
dimension df estimated for   texture or contour.  

The df, derived from the Hausdorff coverage 
dimension, is given by the following approximation: 

 

( )
( )0

log ( )
lim

log 1/f s

N s
d

s→
=  (6) 

 
where: - N(s) is the number of squares with side 
length s that contain information when grid covering 
the image.  

Relation (6) is the equation of the slope df, of  the 
regression line associated to the points (log(N(s), 
log(1/s)) for different values of the square’s side – s 
of the covering grid..  

The standard Box-Counting algorithm assumes 
to determine the df in accordance with the 
dependence of the texture upon the used scale factor. 
It consists transforming the grey scale image in 
binary image, successively covering it with a grid of 
squares of equal sides (2, 22, 23, ..) and counting each 
time the squares that contain some part of the 
analyzed object. The points of coordinates 
(log(N(s)), log(1/s)) are approximately positioned  in 
a line and its slope is the fractal dimension in “box-
counting”  sense. 

To exemplify how the algorithm is used, we’ll 
consider the image of a kidney (Figure 1. a)) from 
which we’ll extract a binary version by neglecting all 
the pixels over a certain threshold (Figure 1. b)). 

     

 
     a)                         b)                            c)    

Figure 1:  a) The original image; b) binary image  
c) extracted contour.  

Next, we’ll apply the box-counting algorithm, 
described above, for different scale values s.  

This method can be also used to determine the 
self similarities of an object contour (Figure1 c)), but 
in our case, due to the fact that the kidney capsule is 
not necessary affected, the texture is more important. 

A general problem of this method is the use of an 
ad hoc threshold when creating the binary image. 
This fact leads to incomplete or “noisy” object in the 
binary image and sometimes importantly affects the 
fractal dimension value. 

2.3 Weighted Box-Counting Dimension 
for Image Enhancement 

This algorithm is based on the fact that in the CT  
images a higher density of the tissue is equivalent to 
lighter gray. Our idea was to associate to every pixel 
a weight proportional to its gray level. We resume 
the essential of the algorithm below. 

Let us consider an image. We cover the image 
with square boxes as in the standard Box-Counting 
algorithm. Let ks  be the size of the box used in 

covering at step k  (therefore we have to compute 
)( ksN  at this step).  Let ),( yx  be the coordinate 

of the upper-left corner of one of these boxes (let 
this be the box k

tB ).  

We now define k
tm  as the maximum of the 

weight values of the pixels contained in this box. 
 

 
 

(7) 

where jiw , is the weight associated to the pixel at   
(i,j) coordinates. 

Let k
tk

k
t

k
t rsmW += ]/[  , where if k

tk ms |  

then 1=k
tr  else 0=k

tr .  

Therefore ∑= t
k

tk WsN )( . 

Next, the computation formula for dw is the 
similar to the one in the classical algorithm. We 
shall refer to the number dw as the Weighted Box 
Counting Dimension or WBCD. Let us consider an 
image and let A be a pixel on it. Let K be a square 
centered at A.  By using the previous algorithm we 
compute the WBCD of the square K and we 
associate a color to the pixel A according to this 
WBCD (the function which associates the color is a 
key part of the algorithm). This way we obtain a 
map of level lines (we shall refer to this map as the 
Fractal Map or FM).  

This leads to a classification of different tissues 
according to the associated color. Different structures 
must have different colors. The use of the FM in 
diagnosis requires a database with sufficient images.  

3 RESULTS AND STATISTICS 

We start the analysis procedure by presenting the 
statistical results obtained by using dF and dC as 
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classification methods. One hundred and twenty CT 
images were analysed; they were divided into two 
equal samples: containing normal tissue and half 
modified tissue.  

For the statistical analysis, descriptive and 
comparison procedures were performed. For each 
sample, the average, standard deviation, standard 
skewness and standard kurtosis were computed.  

In order to compare the samples the t test and 
Kolmogorov-Smirnov test were performed.  

In the case of df both comparison tests show no 
significant difference between the two distributions 
at the 95.0% confidence level.  So, the 
trustworthiness of this classification is low. 
   

 
Figure 2:  Comparison of density traces. 

In the case of dC both comparison tests show 
significant difference between the two distributions 
at the 95.0% confidence level.   

The average is 1.729 for the normal tissue and 
respectively 1.974  for the modified tissue.                            

The 95.0% confidence interval for mean is 
[1.6282,1.83155] for the normal tissue and 
[1.87225,2.07725] for the modified tissue. 

We conclude that the box-counting method is 
using a certain threshold, this way loosing some 
information on the tissue texture while nonlinear 
analysis is more precise and uses all the information 
in the images. We recommend the use of the second 
method for analyzing CT images.  

   

 
Figure 3: Comparison of density traces. 

We have also compared the results acquired 
when the CT was taken with contrast substances  and  

without. In the second case, the dC values are smaller 
because of a series of features that are not so visible 
(blood vessels). The differences between the dC of 
normal and modified tissue samples are smaller. So, 
we suggest that this methodology is better to be used 
with associated time series resulting from CT images 
taken with contrast substances.  

The second step in the analysis was to determine 
the correlation dimension of the attractor for images 
containing kidneys with benign affections.  

The discrimination is obvious in the cases of 
pyelonephritis (the resulted dC values being smaller 
than in the case of normal tissue) and kidney 
tuberculosis (with dC values larger than in the case 
of malign modified tissue).  

Table 1: Benign modified tissue images, their fractal maps 
and associated dC values. 

Affection Image     Enhanced dC 

Pyelone-
phritis 

 

1.36(correspo
ndent dC for 

healthy kidney 
-1.85) 

Medullary 
sponge 
kidney 

 

1.91(1.86) 

Polycystic 
kidney 

 

2.06 (1.9) 

Kidney 
tuberculos
is (renal 

TB) 

 

2.3(1.92) 

Thrombosi
s 

 

1.98(1.93) 

 
The dC values for medullary sponge kidney 

tissue and thrombosis affected kidney tissue are 
generally a little bit larger than the ones for normal 
tissue.  

Nonlinear�Deterministic�Methods�for�Computer�Aided�Diagnosis�in�Case�of�Kidney�Diseases

515



 

The dC values for polycystic kidney tissue were 
generally larger than the ones for normal tissue.  

In the third column of the above table the kidney 
CT image fractal map is presented.  

The kidney border and affection specific aspects 
like different types of tissue clusters and their 
delimitation can be seen clearer.  

Also, the different colours in the map identify 
different formations, specific to the affection.  

This method proved more useful than the 
previous two in aiding the diagnostic in the case of 
benign affected tissue. 

We conclude that discrimination between these 
benign affections can be done but needs a larger 
database of images.  

Further work will focus on enlarging the CT 
images data base in order to provide more accurate 
discrimination interval values for different types of 
kidney affections. 

4 CONCLUSIONS 

The conclusions of the study on the selected set of 
CT images are: there are significant differences 
between the correlation dimension of the normal 
tissue and the correlation dimension of the modified 
tissue; significantly better results are obtained in the 
case of CT images taken when contrast substances 
are used. The proposed nonlinear method for 
estimated the correlation dimension associated to a 
CT image proved efficient for differentiating 
between normal and modified kidney tissue while 
the box-counting method failed in providing useful 
results. The image enhancement method proved very 
helpful when inconclusive classification was 
obtained for benign tissue.    

Future work aims at:  enlarging the CT images 
data base; creating the fractal model of the kidney, 
measuring, where it is possible, the percentage of the 
modified tissue in a kidney CT slice in order to 
provide information on what is causing the increase 
in dC (percentage of affected tissue or  dC value of 
modified tissue); determining the position of masses 
in an affected organ when considering horizontal 
slices and respectively reconstructed transversal 
slices  in that organ . 
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