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Abstract: This article presents a method for localization able to provide the pose in 3D using stereo vision. The 

method offers a better and inexpensive alternative to classical localization methods such as wheel odometry 

or GPS. Using only a calibrated stereo camera, the method integrates both optical flow based motion 

computation and SURF features detector for stereo reconstruction and motion computation. Robustness is 

obtained by finding correspondences using both feature descriptors and RANSAC inlier selection for the 

reconstructed points. Least squares optimization is used to obtain the final computed motion. World scale 

pose estimation is obtained by computing successive motion vectors characterized through their orientation 

and magnitude. The method involves fast algorithms capable to function at real time frequency. We present 

results supporting global consistency, localization performance and speed as well as the robustness of the 

approach by testing it in unmodified, real life, very crowded outdoor dynamic environments. 

1 INTRODUCTION 

Recent trends in mobile robotics deal with a 

fundamental requirement of any robot, the 

possibility of localizing itself. As robots moved from 

a highly deterministic environment the proposed 

solutions for localization had to deal with more and 

more difficult scenarios.  

Solutions that used both custom infrastructure 

and expensive sensor configurations exist already. 

Wheel odometry is the most commonly encountered 

solution that allows easy and cheap localization but 

is reliable only for a few tens of meters, at best, due 

to accumulated measurement errors. 

A different alternative that has previously been 

explored but which only recently has been shown to 

provide better results relies on using cameras as 

sensors. Our paper focuses on the type of approaches 

named structure from motion. Different methods can 

also use different types of cameras, but most work is 

based on monocular or stereo cameras. 

Structure from motion methods allow recovering 

both scene geometric structure and camera extrinsic 

as well as intrinsic parameters from sets of images of 

the scene taken from different poses. 

2 RELATED WORK 

One of the most cited approaches by (Nister, 2006) 

presents solutions for both monocular and stereo 

setups. The 5 point algorithm or in the case of a 

stereo camera, a 3 point perspective method referred 

therein is enough to compute the relative pose 

change. Other work presented by (Konolige and 

Agrawal, 2007) is also based on stereo vision. In this 

case, the authors use 3D triangulation from stereo. 

A similar approach used among other purposes 

for the Boston Dynamics Big Dog robot is given by 

(Howard, 2008). Other sensors such as expensive 

IMU are used to offer a reference. (Scaramuzza, 

2009) presents a solution tested on an 

omnidirectional camera that uses only one point to 

compute the motion hypothesis for RANSAC outlier 

rejection. This is possible because the motion model 

is restricted to planar motion.  A simplified stereo 

motion model which can be directly computed is 

presented in (Jeong, 2010). The author uses robot 

wheel odometry to correct errors that occur from 

stereo based motion computation.  

In our previous work (Pojar, 2010) we presented 

an approach that simplified to planar motion, similar 

to (Scaramuzza, 2009) using a stereo camera.  
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3 METHOD OVERVIEW 

Motion from images is obtained from point 

correspondences obtained from consecutive image 

pairs from a stereo camera. These result in two 

corresponding 3D point vectors. 

To compute the rotation a minimum of 3 points 

are needed. In a RANSAC procedure multiple such 

rotation hypothesis are obtained by random 

sampling. In order to obtain the current location the 

currently computed vector must be registered with 

the previous location. 

3.1 Retrieving Correspondences and 
the Homography  

In order to determine the corresponding projections 

of the same point in different images a corner 

detector described in (Shi and Tomasi, 1994) as well 

as the SURF feature descriptor are used. Their 

corresponding pairs in a different image are obtained 

with the Lucas-Kanade pyramidal optical flow in the 

case of corners. In the case of SURF (Bay and 

Tuytelaars 2008) features the feature vector distance 

is used to determine matches. 

If corresponding pairs are available in both images 

then the coordinates, in our case the 3D coordinates 

at world scale, can be computed using the disparity 

rl uud   from the following: 
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where b is the baseline and f  is the focal length. 

A pair of vectors denoting the coordinates of a 

point in 3D space p and 'p can be related through a 

homography consisting of a rotation and a 

translation:  
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where 
Tzyxp ),,( and Tzyxp )',','(' the 3D 

coordinates of the points and R  is a 3x3 matrix 

obtained from the three Euler angles  ,  ,   and 

T  is a 3x1 vector that contains the translation on 

each axis. 

3.2 Computing Relative Motion 

Motion is computed from change in orientation and 

position between two consecutive poses. If the 

magnitude of the vectors is up to scale then the 

translation  can  be  neglected  and  the  homography 

becomes a rotation. 

The correspondences allow computing the 

rotation matrix R from: 

1)ˆˆ(ˆ'ˆ  TT PPPPR  (3) 

Considering that the rotation matrix is the result 

by multiplying the corresponding rotation matrices 

of each axis then the angles can be obtained directly:

)/(2tan 1121 rra , )/(2tan 2
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3.3 Robust Inlier Selection and 
Refinement 

Many of motion hypotheses are wrong dues to 

incorrect correspondences in the tracking stage.  

In order to cope with outliers two stages of 

RANSAC are applied to the images. It is debated in 

(Hartley and Zisserman, 2003) how many samples 

should be selected in order to encounter at least one 

inlier, considering the dimensionality of the sample 

and the outlier ratio.  

Each hypothesis is applied to all the points in the 

previous pair of stereo frames and scoring is based 

on measuring the projection of the hypothesized 

points in the current image. The projection is 

computed with the projection matrix in the current 

left image: 

PKp   (4) 

where RPP  and K  is the pinhole camera 

projection matrix. The score is computed by 

summing the errors between the tracked and 

hypothesized image points. Inliers are selected by 

comparing the distance of the hypothesized 

projections with a threshold. 

After selecting the inlaying points a solution for 

the rotation is computed via a least squares 

minimization algorithm.  

  ))ˆ'ˆmin((,, 2PPR   (5) 

The preffered solution for minimization is the 

Levenberg-Marquardt algorithm. 

3.4 Global Pose Computation 

The rotation matrix provides a direction of motion. 

In order to determine the motion magnitude we 

consider the world scale coordinates of the points 

selected as inliers. Excluding rotation, translation is 

a first order linear operation and is independent for 
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each axis so the optimal solution is unique and is the 

centroid of the differences given by:    
∑( ̂    ̂ )
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The magnitude of motion is the magnitude of the 

variation vector on each axis: 

‖  ‖  √            (6) 

The final step is computing a pose in the world 

coordinate system. Initially the camera is considered 

to be placed at the origin of the world coordinate 

system. At each step the current pose is registered 

relative to the pose at the previous step. Change in 

orientation can be registered directly by summing 

the angular variations: 
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The position is registered based on the new 

orientation and on the motion magnitude: 
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4 EXPERIMENTS AND RESULTS 

We present in the paper results obtained with a Tyzx 

DeepSea stereo camera. The camera was rigidly 

mounted on a Pioneer2 AT mobile robot. The 

algorithm is tested in scenarios, outdoor and indoor. 

The test scenarios are real life environments without 

any modifications. In the outdoor case the area 

where the test was performed is a public space, a 

very dynamic environment. 

Implementation was done using OpenCV 

(Bradski, 2008), which provides very convenient 

feature tracking implementations, and Boost Library. 

In all scenarios the mobile robot was driven 

remotely on a path in different environments. The 

chosen paths were quite complex, containing loops 

in order to test global consistency and most times 

followed the surrounding buildings layout. 

The first test scenario was an outdoor and 

dynamic environment. Situations where moving 

obstacles clutter the image can have serious outcome 

on motion recovery. The algorithm was able to 

recover the travelled path with good accuracy.  

In Figure 1 we present the results of the 

algorithms when only one feature descriptor is used.  

A   more   robust   estimation   can  be performed 

 

Figure 1: Comparison of the computed paths in the case of 

each descriptor: Corners (red), SURF (green), 

Corners+SURF (blue). 

 

Figure 2: Wheel encoder odometry (red)  compared to 

visual odometry (green) represented on a metric grid of 

1x1m. 

when both types of descriptors are used. 

In Fig 2 the path computed by the visual 

odometry algorithm is compared to the path 

computed by the wheel encoder odometry provided 

by the Pioneer 2AT robot. Visual odometry 

(represented by green) can reconstruct the path much 

closer to the truth. Both trajectories are obtained in 

the same outdoor environment. Global consistency 

can be noticed as the robot has been moved around 

on loops. Translation depends on stereo 

reconstruction and is affected by two factors: linear 

motion directed forward which increases view angle 

ambiguity and stereo matching noise. 

In table I we present an analysis of computation 

times   per   frame  on a regular PC. We consider the 
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Figure 3: Reconstructed path overlapped on satellite image 

data. 

 

Figure 4: Top view of the map (yellow) obtained from 

reconstructed 3D points registered based on the computed 

successive poses (red). 

main algorithm to be divided in three main steps: 

feature detection, feature tracking and pose 

estimation. 
On average the algorithm can process at speeds 

higher than 10HZ meaning it can compete with the 
rates of other means of localization. 

In Fig 3 the trajectory is overlapped on a satellite 
image of the test scenario. The image is taken of 
Google Maps at smallest scale available. 

In Fig 4 we present the result of registering the 
reconstructed 3D points based on the information 
from VO. This presents the global consistency of the 
path while more loops are performed within the 
same perimeter. 

Table 1: Computing Time. 

Computing time 
Mean Minimum  Maximum 

[ms] [ms] [ms] 

Corner Detection 10.3 8 25 

Corners Tracking 33.5 10 159 

SURF  45 41 51 

Pose Estimation 24.8 7 302 

Total time 88.6 33 328 

5 CONCLUSIONS 

The article presents a method of localization that 

relies only on stereo vision. We present data 

showing that performance depends on the type of the 

feature descriptor involved in interest point 

detection. We compare results obtained from using 

two different descriptors separately as well as 

together. Superior results are obtained when using 

both feature descriptors in the homography recovery 

process. We compare the performance of vision 

based localization against wheel encoder odometry. 

The far superior precision of the proposed vision 

algorithm can be shown in outdoor with challenging 

environment. We present data showing that the 

algorithm is capable of running at speeds that allow 

real time usage. Finally we demonstrate global 

consistency of the poses by registering the 

reconstructed points with respect to the VO current 

pose. 
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