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Abstract: The paper elaborates a hyperbolic wavelet construction for representing signals in the Hardy space H2 on the
unit disc. An efficient computing scheme based on the matrix form of the representation is worked out. The
wavelet coefficients can be computed on the basis of discrete time–domain measurements. This wavelet is
used to reconstruct poles of functions in H2 as the basis of nonparametric frequency–domain identification of
discrete–time signals and systems.

1 INTRODUCTION

Representations of discrete-time signals and systems
in the frequency domain are used in many fields of
science and technology, e.g. in detection and changes
in systems, system identification, and control design.
The stable representations of signals and systems of
finite energy result in complex analytic functions de-
fined on the unit disc of the Hardy space H2. The
identification of H2 signals is usually based on phys-
ical measurements in the time–domain. Convenient
methods for system identification can be obtained in
the case when an orthogonal basis of the space H2 is
used. A well-known orthonormal basis in H2 is the
trigonometric system that forms the basis of classi-
cal Fourier–transform representations and associated
identification methods. Orthogonal bases can also be
generated by rational functions and this concept leads
to rational orthogonal bases (ROBs) that have gained
great significance besides H2 also in H∞ system iden-
tification (Heuberger et al., 2005). Application of
ROBs requiresa priori information on the locations
of system poles. This paper elaborates a method to
obtain representations of H2 functions that does not
use stricta priori assumptions. A promising opportu-
nity to realize this arises from some wavelet-type con-
struction that utilize the hyperbolic geometry gener-
ated by the so-called Blaschke functions. The goal is
to apply hyperbolic wavelet methods to identify poles
of functions in H2.

2 RATIONAL ORTHOGONAL
BASES

The Blaschke function in H2(D) is defined as

Bb(z) :=
z−b

1−bz
(z∈ C,b∈ D),

where b is called the parameter of the Blaschke-
function. The parameterb is identical to the zero and
b∗ = 1/b is the pole ofBb.

The most important feature of the Blaschke func-
tion is thatBb : T → T andBbD → D are bijections,
as a consequence the Blaschke functions to be inner
functions in the space H2(D).

The discrete Laguerre-system is complete or-
thonormed system in H2(D) defined by

φn(z) =

√
1−|b|2
1−bz

Bn
b(z), (n= 0,1, . . .).

If the pole locations of the system are exactly
known one obtains finite rational representations
(Soumelidis et al., 2002b). Rational orthogonal bases
have intensively been discussed in the context of H2

and H∞ identification of systems (Heuberger et al.,
2005), and efficient methods have been elaborated
that solved the identification problem in the case when
— at least approximately — the pole locations are
known. Special attention paid on the problems of pole
selection and validation (Bokor et al., 1999; e Silva,
2005) as well as methods have been found to refine
the pole locations starting from an approximate place-
ment (Soumelidis et al., 2002a), however the general
problem identifying poles has not been solved so far.
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3 HYPERBOLIC WAVELETS

It is known that the Blaschke functions form a group
with respect to the function composition, i.e.(Bb1 ◦
Bb2)(z) := Bb1(Bb2(z)) . In the set of the parame-
tersB := D×T let us define the operation induced
by the function composition in the following way
Bb1 ◦Bb2 = Bb1◦b2. The(B,◦) results in a group iso-
morphic with the group group of the Blaschke func-
tions. The neutral element of the group(B,◦) is e :=
(0,1) ∈ B and the inverse element ofb= (b,ε) ∈ B is
b
−1 = (−bε,ε).

This group can be associated with the congruence
transforms of the Poincaré model of the hyperbolic
geometry (see e.g. (Ahlfors, 1973)). It can be proved
that the map

ρ(z1,z2) :=
|z1− z2|
|1− z1z2|

= |Bz1(z2)|

(Bz1 := B(z1,1),z1,z2 ∈D)

is a metric onD, called pseudohyperbolic metric
(Ahlfors, 1973). Moreover the Blaschke functionsBb
(b∈ D) are isometries with respect to this metric, i.e.

ρ(Bb(z1),Bb(z2)) = ρ(z1,z2)

(b∈ D,z1,z2 ∈ D).

It is also well–known that the Hardy spaceH :=
H2(D) is Hilbert space with respect to the inner prod-
uct

〈 f ,g〉 :=
1
2π

∫ π

−π
f (eit )g(eit )dt ( f ,g∈ H),

and the power functionshn(z) := zn (z∈ C,n ∈ N)
form an orthonormal basis in the space. By defining
the multiplier function

Rb(z) :=

√
ε(1−|b|2)
1−bz

(z∈ D,b := (b,ε) ∈ B := D×T),

introduce the mapping

Ub f := R
b
−1 f ◦B

b
−1 (b ∈ B, f ∈ H). (1)

(Ub,b ∈ B) can be considered as a unitary represen-
tation of the group(B,◦) on the Hilbert spaceH with
properties

(i) Ub1(Ub2 f )) =Ub1◦b2 f (b1,b2 ∈ B, f ∈ H),

(ii) ‖Ub f‖ = ‖ f‖ ( f ∈ H,b ∈ B),

(iii) b→Ub f ∈ H ( f ∈ H,b ∈ B) is continuous.

See for proofs in (Pap and Schipp, 2006), and an
introduction to the unitary group representations in
(Wawrzyńczyk, 1984). From the properties (i) to (iii)

follows thatUb maps any complete orthogonal sys-
tem inH into complete orthogonal system in the same
space. Particularly the system

Lb
n :=U

b
−1hn (n∈ N,b := (b,1) ∈ B)

form an orthogonal basis inH that is calleddiscrete
Laguerre system.

The unitary group representations allow us to in-
troduce the concept of thewaveletsin the Hilbert
spaceH (Goupillaud et al., 1984), (Meyer, 1990), and
(Daubechies, 1992). The continuous wavelet trans-
form on a functionf ∈ L2(R) is formed by taking
translation and dilation of a functionψ named the
mother wavelet; the integral operator with the kernel

ψpq(x) :=
ψ((x−q)/p)√

p
, x∈ R,

p∈ (0,∞),q∈ R is calledwavelet transform:

(W ψ f )(p,q) :=
1√
p

∫
R

f (x)ψ
(

x−q
p

)
dx=

=〈 f ,ψpq〉 ( f ∈ L2(R)),

where〈·, ·〉 means the inner product of the Hilbert-
space L2(R). Using the unitary representationUb

(b ∈ B) defined by (1) one obtains

(W ϕ f )(b) = 〈 f ,Ubϕ〉 ( f ,ϕ ∈ H2(D),b ∈ B),

where〈·, ·〉 is the scalar product in the Hardy space
H2(D). This construction can be referred asBlaschke
or hyperbolic wavelet.

Particularly the hyperbolic wavelets generated by
the power–functions

εn(t) := ei nt (n∈ Z, t ∈ R),

can be interpreted as the Laguerre–Fourier coeffi-
cients, i.e. the Laguerre representation of any func-
tion f ∈ H can be considered as a hyperbolic wavelet
transform.

Any function f ∈ H can be expressed in the
trigonometrical system in the form

f =
∞

∑
n=0

f̂ (n)εn(t),

where
f̂ (n) := 〈 f ,εn〉 (n∈ N)

is the n-th trigonometric Fourier–coefficients of the
function f . Consequently the Fourier–coefficients of

Fb :=Ub f =
∞

∑
n=0

f̂ (n)Ubεn

can be obtained as

F̂b(m) :=〈Ub f ,εm〉=

=
∞

∑
n=0

〈Ubεn,εm〉 f̂ (n) =
∞

∑
n=0

umn(b) f̂ (n),
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where umn(b) = 〈Ubεn,εm〉 ((m,n) ∈ N
2) form the

matrix of the representationUb in the trigonometri-
cal basis. By introducing the matrix

Ub = [umn(b)](m,n)∈N2,

the mappingf → Fb can be expressed in the space of
the Fourier–coefficients with the matrix–transform

F̂b = Ub f̂ ( f ∈ H,Ub = {umn(b)}). (2)

Since the transform is unitary, i.e.U
b
−1 =U−1

b
=U∗

b
,

the elements

umn(b) = 〈Ubεn,εm〉= umn(b) (m,n∈N).

can be expressed by the Jacobi–polynomials, i.e.
umn(b) =

= (−1)m
√

1− r2ei(n−m)αr |n−m|P(0,|n−m|)
min{m,n} (2r2−1).

The Fourier–coefficients in f̂ correspond to
discrete–time signal data points that can be in-
terpreted as the uniformly sampled form of the
continuous–time physical signals. Computation of
the elements inUb can be performed by using recur-
sions for any parameter selectionb ∈ B, and in ad-
vance to taking the measurements.

4 IDENTIFYING POLES

Suppose that the system under consideration contains
only a single pole of multiplicity 1, in this case the
conjugated Laguerre–Fourier coefficients are given as
F̂b(m) = Lb

m(a), and the quotients

qm(b) =
F̂b(m+1)

F̂b(m)
= Bb(a) (m∈ N),

form a constant sequence and its elements equal to a
Blaschke function applied toa. This fact can be used
to identify the position of inverse polea,

a= Bb−1(qm(b)),

whereBb−1 is the inverse ofBb, i.e. a is given by
applying a hyperbolic transform corresponding to the
inverse group element belonging tob.

This concept can be extended to multiple poles, it
will be shown that in the case of multiple poles there
exist a regionDi ∈ D where the sequence of the quo-
tients generated by the conjugated Laguerre–Fourier
coefficients converge. A theorem can be set up as fol-
lows:

Theorem 1. For any rational function f in any point
b of D the limit

(Q f )(b) := lim
n→∞

qm(b) ( f ∈R)

exists, and

(Q f )(b) = Bb(ai), b∈ Di (i = 1,2, . . . ,P).

In the case of poles of multiplicity1 for the speed of
convergence the estimation

|qm(b)−Bb(ai)|= O(qn
i ) (n∈ N,b∈ Di ,qi < 1)

can be given.

The proof can be found in (Schipp and Soumelidis,
2011).

The result of Theorem 1 can be used to reconstruct
the poles of functionf by

B−1
b ((Q f )(b)) = ai (b∈ Di , i = 1,2, · · · ,P). (3)

By this way all the poles can be reconstructed that
possess nonempty region, i.eDi 6= /0. The procedure
goes like this:

1. Estimation of the Laguerre–Fourier coefficients
belonging to parameterb based on measurements.

2. Reconstruction the poles as a limit of quotients of
consecutive Laguerre–Fourier coefficients.

The estimation of the Laguerre–Fourier coefficients
of function f with parameterb can efficiently be com-
puted according to the form (2) applied on the time–
domain signal measurements. Finding multiple poles
can be done by selecting a sequence of parametersb
arranged randomly or in arbitrary order.

5 A NUMERICAL EXAMPLE

The identification of the poles of a simulated function
is presented. The set of (inverse) poles belonging to
the function is{a1 = 0.8,a2,3 = 0.8∗e± i π

4 } with the
associated residues{λ1 = 1.5,λ2,3 = 1}.

Figure 1 presents a visualization of the iteration
processes for finding specific poles. The sequence
given by (3) is drawn in the complex plane by white
points. The sequence converges towards pole des-
ignated bya2. The convergence can be checked on
the lower two diagrams in Figure 2where the absolute
value and the phase of the sequences against the in-
dices can be seen. The upper diagram in these figures
depicts the absolute value of the Laguerre-Fourier co-
efficients belonging to the specific selection ofb. The
reconstruction error – defined as a root-mean-square
difference – is in the magnitude 10−5 . . .10−7.

Figure 1 also presents the regionsDi that belongs
to the polesai . Polesa1 anda3 can be identified by
selecting parameterb within the other two regions.
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Figure 1: Finding polea2.
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Figure 2: Modulus of the L-F coefficients, modulus and
phase of sequenceqn.

6 CONCLUSIONS

A hyperbolic wavelet concept for representing signals
belonging to the space of functions H2 on the unit
disc has been constructed, and an efficient comput-
ing scheme based upon the matrix form of the rep-
resentation has been elaborated. The wavelet coeffi-
cients can be computed on the basis of discrete time–
domain measurements. The wavelet construct can be
used in reconstructing poles belonging to functions
in H2(D), which forms the basis of nonparametric
frequency–domain identification of discrete–time sig-
nals and systems.
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