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Abstract: The paper deals with a neural network control for the gravity compensation of a parallel kinematics robot. 

The network has been designed in a simulation environment then it has been implemented in robot’s 

controller by using an FPGA device that is part of an embedded system. After the training phase, several 

experiments have been performed on the prototype manipulator and the related datasets have been collected 

and elaborated. In the end, a comparative analysis has shown the improved performance of the neural 

network controller with respect to the inverse dynamics one, mainly due to the well-known difficulties in 

deriving explicit models of friction and play in the joints. 

1 INTRODUCTION 

During the last two decades, research in the 

Artificial Neural Network (ANN) field has increased 

significantly in different branches of science. To the 

best of our knowledge, King and Hwang (1989) first 

theorized the application of ANN for robotics 

applications; Narendra and Parthasarathy (1990) 

demonstrated that Neural Networks can be also 

usefully exploited for the modelling of dynamic 

systems as well as for the control of automated 

machinery. Other recent robotics applications for 

neural networks are the solution of the kinematics of 

a parallel manipulator (Zhang and Lei, 2011) and the 

control of a planar robot (Serrano, 2011). 

Field Programmable Gate Arrays (FPGA) can 

perform a large number of parallel operations at very 

high time rates and their architecture is very suitable 

for the implementation of real time neural networks. 

As a matter of fact remarkable realisations are 

available already in scientific literature, e.g. 

Orlowska-Kowalska et al. (2011) used an FPGA-

based ANN for the state estimation of a two mass 

system with elastic couplings. 

The main target of the present work is the 

realisation of a gravity compensation module for the 

control of a prototype parallel manipulator, named 

Sphe.I.Ro. whose kinematics allows only motions of 

pure rotation. The computation of the analytic model 

of machine’s statics is quite burdensome due to the 

presence of the closed kinematics chains. Therefore 

an ANN has been created in order to obtain a 

reliable and efficient static model of the robot, that is 

able to provide the actuation forces needed to 

maintain a certain configuration in the orientation 

space. 

 

Figure 1: Photograph of the Sphe.I.Ro. robot. 

2 THE Sphe.I.Ro. ROBOT 

Sphe.I.Ro. (Spherical Innovative Robot) is a parallel 

kinematic machine developed at the robotics 

laboratory of the Polytechnic University of Marche. 

It is made by three identical serial chains connecting 

the moving platform to the fixed base, as shown in 

Figure 1; each leg is composed of two links: the first 

one is connected to the base by a cylindrical joint 

(C)  while  the  second  link  is  connected to the first 
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one by a prismatic joint (P) and to the end-effector 

by a universal joint (U); for this reason its 

mechanical architecture is commonly called 3-CPU. 

Figure 2 shows a sketch of robot’s kinematics: when 

the translations of the three cylindrical joints are 

actuated, the end effector is only allowed to perform 

pure rotations around a fixed point of the space 

(Callegari et al., 2004). The large number of passive 

prismatic pairs, typical of parallel kinematics, causes 

high friction losses, which represent a relevant 

disturbance for motion control and make quite 

difficult the realisation of a good dynamic model of 

the robot. Therefore the A.’s decided to turn to an 

empirical model that could robustly take into 

account these phenomena; in particular, the resort to 

ANN’s systems proved able to fit the physical 

behaviour of machine, obviously after a proper 

training phase. 

 

Figure 2: Schematic representation of robot’s kinematics. 

3 DESIGN OF THE ANN SYSTEM 

3.1 ANN Model 

If the model of a single neuron is taken into 

consideration, its output can be expressed as: 

   (     ) (1) 

where x is the input vector, W is a weighting vector, 

b is the bias number and σ is the activation function. 

According to Cybenko’s theorem (Cybenko, 1989) a 

static feedforward net with one hidden layer of 

neurons has been chosen, with the number of 

neurons n to be selected after some simulation trials, 

as explained in the following section; the input of 

the net are the 3 displacements qi of the actuators 

while the output is represented by the 3 forces fi that 

keep the robot at rest in the assigned configuration. 

The resulting model of the whole net has the form: 

    (  
   (  

     )    ) (2) 

where:            
   ;     

   ;    
    ;        

   . 

3.2 Simulation Network 

A simulation model of the network was developed in 

order to select the appropriate number of neurons for 

the hidden layer and to tune the training procedures. 

Both kinematic and dynamic models of the robot 

were available already (Callegari et al., 2004, 2012): 

it is remarked that the latter has been built according 

to the virtual work principle, therefore resulting very 

compact and efficient, potentially allowing a real-

time use. 

Once set up the simulation environment, several 

parameters of the ANN have been changed to look 

for best gravity compensation performance. Every 

net configuration has been tested after a proper 

training, realized by using data sets of about 3 500 

different orientations inside robot’s workspace. If 

the latter is mapped into the joint space, it is 

represented by a tetrahedron whose lateral faces are 

singularity surfaces (Carbonari, 2012). For each test 

configuration, the gravity force reflected to the 

actuators was calculated by using the mathematical 

model, therefore obtaining both input (joint 

positions) and output (reflected gravity forces) data 

set for the training of the net. 

The ANN training has been performed by means 

of the Levemberg-Marquard back-propagation 

algorithm (Hagan and Menhai, 1994). The back-

propagation algorithm needs data to be pre-

processed in order to normalize the input of the net. 

Nets with different numbers of neurons have 

been investigated (see Table 1 for details); in each 

case, the training has been interrupted when the 

output error or the gradient became lower than a 

given threshold. Simulation results showed that 20 

neurons are a good compromise between net 

complexity and net performance. It is noted that a 

mean square error of about 26 mN has been achieved 

throughout the workspace for the 20 neurons net: 

this, for a mean actuation effort of about 48 N, 

corresponds to a relative error lower than 1%. 

Table 1: Training performance of different nets 

(simulation). 

 Training stop criterion 

No. of 
neurons 

Gradient 
threshold 

Actual 
gradient 

Performance 
(mean square 

error) 

15 0.009 0.0090 0.0429 

20 0.009 0.0080 0.0263 

25 0.009 0.0500 0.0268 

30 0.009 0.0072 0.0314 

40 0.009 0.0088 0.0198 
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4 ANN IMPLEMENTATION ON 

FPGA 

The performance of the artificial neural network has 

been experimented on the Sphe.I.Ro. robot, whose 

control architecture is briefly described in the 

following. The parallel robot is actuated by three 

brushless linear motors, whose drivers are connected 

to a PXI platform (by National Instruments) which 

performs both control and supervision tasks. The 

PXI device hosts an FPGA board, which deals with 

several processes, such as managing encoders 

signals, commanding the brakes of the 3 linear axes, 

running the neural network and operating the pre- 

and post-processing of network’s input and output. 

By grouping the elementary operations of the 

ANN for layers, it is possible to implement the net in 

LabView by means of two nested “for loops”, as 

shown in Figure 3: the inner one for the 

multiplication between the input and the 

corresponding weight, and the outer one for the 

implementation of neuron’s calculations. Figure 3 

shows the hidden layer of the ANN, in case 20 

neurons are used: x is the input vector of the net and 

W is the weights matrix, where wij represents the j
th

 

weight of i
th

 neuron. It is noted that the activation 

function σH is the same for all the neurons. The 

activation function has been realised by means of the 

sigmoid tanh(x). According to Kwan (1992) an 

approximation of a sigmoid function can be 

implemented by using a sigmoid-like second-order 

piecewise function : 

 ( )  {
 (    )      

 (    )       
 (3) 

where   and   determine respectively the slope and 

the gain of the nonlinear function (3) while L 

represents the amplitude of the non-linear region. 

 

Figure 3: Scheme of the neural network structure 

implemented on the FPGA device. 

In this work L=2 was used, see Figure 4. This 

makes possible to evaluate the activation function by 

means of two multiplications and one summation. 

 

Figure 4: Sigmoid activation function σ_H (x) and its 

approximation Γ(x). 

5 CONTROL ALGORITHM 

DESCRIPTION 

The implementation of the software in the LabView 

environment has been made through its typical 

graphic language. Two types of code had to be 

written: the ANN has been implemented on the 

FPGA board while all other control software had to 

run on the PXI controller, which supervises the user 

interface and manages the manipulator’s control 

system.  

Furthermore an interrupt-based procedure 

ensures the synchronization between the different 

hardware components: in fact, the two devices run at 

different clock rates, i.e. a maximum clock rate of 

40 MHz for the FPGA board and 10 MHz for the 

PXI controller. In order to optimize the FPGA 

performance, the code has been partitioned into 

different processes, able to perform in-parallel 

different real-time tasks, i.e. encoder’s signals 

processing, motor driving, ANN system computation 

and safety procedures management. 

In the PXI controller a Virtual Instrument was 

implemented, by exploiting a series of routines that 

guarantee the correct execution of the ANN on the 

FPGA. In fact the net was designed and tuned in 

Matlab and then adapted for real-time execution in 

the LabView environment. Thus relevant data of the 

net, such as weights matrix, bias vector, pre-process 

and post process settings, were first set up in the 

Matlab simulation environment and then exported to 

the LabView one. 

It is useful to assess and compare the 

computation efforts needed by both gravitational 

compensation models. 

As for the ANN model, of course the 

computation burden depends upon the number of 

neurons  that   compose  the  net. For the net that has  
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                                                 (a)                                                                                                              (b) 

Figure 5: Norm of the error on different surfaces of joints space (different scales are used):  (a) surface close to home 

configuration, (b) surface close to workspace boundaries. 

been actually implemented on robot’s controller 

(one hidden layer with 20 neurons, 3 input and 3 

output), the computation of gravity forces requires 

166 multiplications and 43 summations. 

If the analytical model is used, a huge number of 

non linear operations must be used. In particular, an 

algorithm based on this model involves 8305 

operations, of which 532 are trigonometric 

operation. 

6 RESULTS 

6.1 Simulation Tests 

Several tests have been performed in order to 

estimate the performances of the ANN gravity 

compensation module. First, the entire workspace of 

the Sphe.I.Ro. robot has been investigated through 

computer simulation, by computing the gravity 

compensation forces with the two available models, 

i.e. the analytical model and the neural network 

model. The deviation between the two models can 

be evaluated as: 

                   [         ]  (4) 

where       are the 3 motor thrusts compensating 

the gravity force computed by the mathematical 

model while         is the corresponding force 

vector evaluated by the ANN in the simulation tests. 

Each point of the surface visible in Figure 5a 

represents a specific robot’s pose in the 

neighbourhood of home configuration while the 

surface of Figure 5b lays closer to workspace 

boundaries. In both cases the norm of error vector 

(4) is represented by different colour levels. Since 

darker regions mean higher error values, it is 

apparent that the error is relevant (0.4 N) only 

within a very limited region of the space. As a 

matter of fact, the error becomes lower and lower as 

the home configuration is approached: this is due 

both to the choice of the training points and to the 

increasing isotropy of robot kinematics. In fact, 

during training, the points of the dataset have been 

made denser in this part of the workspace, where 

most operations are carried on. 

The behaviour of both the neural network and the 

analytical model can be better visualized in the task 

space. To this aim, the orientation of the platform is 

described by means of the elevation, azimuth and 

torsion angles (). By keeping the torsion angle 

( as a parameter, the error in the orientation space 

can be represented as a function of elevation and 

azimuth only: for instance, each point of the surface 

in Figure 6a represents the norm of the error for a 

configuration that is given by elevation  (the angle 

around the base circle) and azimuth  (the polar 

distance from the centre of the base circle). Figure 6 

and Figure 7 represent the error evaluated in 

simulation for a null torsion angle () and for a 

torsion angle  respectively: this task space 

representation clearly shows how the error increases 

while workspace boundaries are approached, even if 

it is pretty limited anyhow. It is noted that the peak 

error values emerging in these figures are higher 

than the errors that can be read in Figure 5 because 

the corresponding points are external to those 

surfaces and therefore they are not mapped there. 

The prototypal machine is affected by significant 

friction forces and bodies deformations, which can 

be hardly evaluated in symbolic models, therefore it 

was expected that the ANN based model would 

perform better than the analytic model: the following 

experimental tests aimed at assessing this point. 
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Figure 6: Error plot in the orientation space for 

(simulation tests). 

 

Figure 7: Error plot in the orientation space for  
(simulation tests). 

6.2 Experimental Tests 

In order to collect the experimental dataset for the 

training of the net, a PID controller has been used to 

bring (and keep) the manipulator in all the selected 

points of the workspace. Once Sphe.I.Ro. had been 

driven to a new pose, the forces necessary to 

maintain the robot in such configuration have been 

recorded by measuring the current absorbed by 

motors. The brushless linear motors used to drive the 

rig have a proportional dependence between current 

and force: the related constant is called “thrust 

constant” (Kt) and is provided by the manufacturer.  

During the experimental tests, the robot has been 

commanded to attain several orientations in the 

workspace (different from the ones in the training 

set) and the actual forces required by the actuators, 

    , have been compared with both the forces 

estimated by the ANN,        , and the ones 

provided by the analytical model,      . The arising 

errors are: 

                  [         ]  (5) 

                 [         ]  (6) 

Figure 8 allows a comparison between the 

behaviours of the two models of gravity 

compensation (analytical and ANN based): since the 

two graphs have quite similar values, some critical 

indicators are collected in Table 2.  

In order to get more insight into this key issue, 

Table 2 also presents the experimental performance 

 

Figure 8: Actuation forces errors in different points of the 

 space: |     | (a) and |    | (b) for =0; |     | (c) 

and |    | (d) for =15°. 

of the ANN based controller, in case the training is 

performed on the simulation data set (in place of the 

on-field training); all the data are provided for both 

torsion angles (=0° and  =15°). It can be seen that 

the performance of the ANN controller is better than 

the analytical based one in all conditions tests, but 

the difference is scarcely substantial. As could be 

expected, such difference in performance becomes 

smaller as the boundaries of the workspace are 

approached and/or the values of the torsion angle 

increases since less points have been taken in these 

conditions for ANN training and, on the other hand, 

the analytical model is able to capture, at least 

partially, the rapidly changing manipulator’s 

dynamics close to singular configurations.  

In the end, it can be useful to investigate the 

causes of the not completely satisfying behaviour of 

the ANN based compensation: first of all, due to the 

relevant time needed by on-line experiments, only 

100 points have been considered to build the 

experimental data set for net training (while 3000 

points have been used in the simulations). Secondly, 

due to the lag induced by static friction, for any 

configuration of the manipulator there exist a whole 

range of actuation forces that keep the machine in 

equilibrium under the effect of gravitational force: 

such effect surely affected the training phase and 

thus the performance of the ANN compensation. 
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Table 2: Performance indexes of gravity compensation 

models. 

  Max 

error[%] 

Ave 

error[%] 

ANN compensation 

(on-field training) 
=0° 7,0 2,8 

=15° 11,5 4,6 

ANN compensation 

(simulation training) 
=0° 9,0 3,8 

=15° 13,6 4,9 

Analytical model 

compensation  
=0° 8,5 3,8 

=15° 12,6 5,4 

7 CONCLUSIONS 

The aim of this work was to investigate the 

performance of ANN’s for the gravity compensation 

of a spherical parallel manipulator. The availability 

of an analytical model of robot’s dynamics allowed 

to design the net through computer simulation and to 

port the software to the real-time control hardware 

after a first (preliminary) tuning. 

After the on-field net training phase, more tests 

have been performed to evaluate the compensation 

effectiveness: the manipulator has been commanded 

to reach several poses in the task space and the 

output of the ANN has been compared with the 

actuation forces actually needed; the same 

comparison has been made with the actuation forces 

provided by the analytical model of robot’s inverse 

dynamics.  

The results of the tests showed that the ANN 

controller behaves better than the algorithmic one, 

even if the improvements are not very relevant. It is 

reckoned that better performances could be obtained 

by a more extensive training on the field and in case 

the mechanical structure were less influenced by 

static friction, as is the present case: the influence of 

this factor could be assessed by further 

experimentation, by measuring the gravitational 

actions with the manipulator in (slow) motion. 

From the computational point of view, on the 

other hand, the ANN based compensation 

overperforms the analytical model, whose 

computation is rather time consuming indeed. 
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