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Abstract: The problem of block triangular decoupling is studied for the case of general neutral multi delay systems.  
The system is not restricted to be square and invertible. The controller is of the general neutral dynamic type 
involving a dynamic feedback and dynamic precompensator. Two different cases of feedback are studied. 
The first is the case of measurable output feedback and second is the case of performance output feedback. 
The controller is restricted to be realizable. The necessary and sufficient conditions for the problem to be 
solvable are established. The general class of the realizable controllers solving the problem is derived. The 
closed loop transfer function is proven to have arbitrary characteristic polynomial thus facilitating command 
tracking and stability. 

1 INTRODUCTION 

The block triangular decoupling problem, has 
attracted considerable attention (see Commault and 
Dion, 1983; Lohmann, 1991; Morse and Wonham, 
1970; Otsuka and Inaba, 1992; Otsuka, 1992; Park 
2008; Park and Choi, 2011; Sourlas, 2001 and the 
references therein). The problem appears to be of 
great importance particularly for large scale and 
interconnected MIMO plants. For the case of 
retarded time delay systems (or more generally for 
systems over a ring or a principal ideal domain) the 
problem has been studied in Caturiyati (2003), Ito 
and Inaba (1997a) and Ito and Inaba (1997b). 

The category of general neutral multi delay 
systems is more general than the aforementioned 
system cases and covers a wide range of applications 
(see Koumboulis and Panagiotakis 2008; 
Koumboulis, Kouvakas and Paraskevopoulos, 
2009a-c and the references therein). In the present 
paper the block triangular decoupling problem is 
studied for the first time for the category of general 
neutral multi delay systems. The controller is of the 
measurement output feedback type with a dynamic 
feedback matrix and a dynamic precompensator. The 
controller is required to be realizable. The controller 
type covers the state feedback and the performance 
output feedback cases as special cases. The 
contribution of the present paper consists in 
establishing the necessary and sufficient conditions 
for the problem to be solvable and deriving the 

general class of the realizable controllers solving the 
problem. The closed loop transfer function is proven 
not to be restricted by the design requirement except 
of its realization index, thus achieving tracking and 
BIBO stability. It is important to mention that the 
special case of row by row triangular decoupling for 
the category of general neutral multi delay systems 
has been solved in Koumboulis and Panagiotakis 
(2008) using static controllers and in Koumboulis 
and Kouvakas (2010) using dynamic controllers. 
Also, the problem of diagonal block decoupling for 
the same system category has been solved in 
Koumboulis and Kouvakas (2011).  

2 PRELIMINARIES 

Consider the general class of linear neutral multi-
delay differential systems 
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where ( ) nx t ∈ \  denotes the vector of state 
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variables, ( ) mu t ∈ \  the vector of control inputs, 

( ) py t ∈ \  the vector of performance outputs, i
τ        

( 1, ,i q= … ) are positive real numbers denoting 

point delays, and ,j i
q  ( 0

1, ,j q= … ; 1, ,i q= … ) is a 

finite sequence of integers with regard to i  and j . 

The quantities q  and 0
q  are positive integers. 

Clearly, if the quantity 
,

1

q

j i i
i

q τ
=
∑  is negative then it 

denotes prediction. The real matrices  j
E� , j
A� , j
B�   

have n  rows while the real matrices j
C , j
C�  have 

p  rows. In general, m p≠ .  
The interest is focused on the forced behaviour of 

the system, i.e. for zero initial and past conditions                  
( ( ) 0x t = , ( ) 0u t =  for 0t < ). Defining 
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the system (1) can be described in the frequency 
domain by the following set of equations 

( ) ( ) ( ) ( ) ( ) ( )sE X s A X s B U s= +-sT -sT -sTe e e�� � (2a) 
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−
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transform of the argument signal, while 
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where exp e
⎡ ⎤⋅⎢ ⎥⎣ ⎦⎡ ⎤⋅ =⎢ ⎥⎣ ⎦  is the exponential of the 

argument quantity. The matrices ( )E -sTe�  and 

( )C -sTe  are assumed to be invertible. Hence, the 

system of equations in (2) can be expressed in 
normal system form as follows 
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Consider the open loop transfer matrix  
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3 SOLUTION OF THE BLOCK 
TRIANGULAR DECOUPLING 
PROBLEM  

Here, the design goal is that of block triangular 
decoupling via dynamic state feedback and dynamic 
precompensator, namely to derive a closed loop 
system in a block lower triangular form. The outputs 
of the system are grouped into blocks and each block 
of outputs is controlled by the corresponding group 
of external inputs and the previous groups of 
external inputs. To present the formal definition of 
the problem we will first present the form of the 
controller.  

Let ( )sΨ  be the Laplace transform of the vector 

( ) rtψ ∈ \ , denoting the measurement output of the 

system. It holds that ( ) ( ) ( )s L X sΨ = -sTe , where 

( )L -sTe  is a r n×  matrix with elements being 

rational functions of 1 , , qsse e
ττ −− … . The feedback is 

proposed to be of the form 

 
( ) ( ) ( ) ( ) ( ), ,U s K s s G s s= Ψ + Ω-sT -sTe e

 
(5) 

where ( )sΩ  is the 1p×  vector of external inputs. 

The elements of the matrices ( ),K s -sTe  and 

( ),G s -sTe  are rational functions of s . The 
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respective numerator and denominator polynomial 
coefficients are multivariable rational functions of 

1 , , qsse e
ττ −− … . The controller is restricted to be 

realizable. This means that the elements of 

( ),K s -sTe  and ( ),G s -sTe  are restricted to be 

realizable, i.e. their realizability index should be 
greater than or equal to zero. Substituting controller 
(5) to the open loop system (3) the problem of block 
decoupling is formulated as follows  
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and where ( ) ( ),
, ,

i jp p

i j
H s s

×
∈-sT -sTe e\

                      
( { }, 1, ,i j ν∈ … ) are matrices whose elements are 
rational functions of s  while the respective 
numerator and denominator polynomial coefficients 

are multivariable rational functions of 1 , , qsse e
ττ −− … . 

Obviously it holds that 
1
i

i

p p
ν

=

=∑ . The matrices 

( ),
,

i i
H s -sTe

 
( 1, ,i ν= … ) are square and invertible. 

From (6) we also observe that ( ),G s -sTe  is 

constrained to be of full column rank while 

( ),K s -sTe  is constrained to preserve the solvability 

of the closed loop system, i.e. 
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and applying elementary computations, relation (6) 
can be rewritten as 
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the equation (8) takes on the form 
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or equivalently the form 
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From (11) the following necessary condition is 
derived 
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Condition (12) implies that m p≥ . Before 
presenting the necessary and sufficient conditions 
and the general solutions of the controller matrices, 
three definitions will be presented. If m p=  define  

( ) ( )ˆ , ,P s P s=-sT -sTe e . If m p>  define  
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Clearly, the choice of ( ),P s -sTe�  is not unique. Here, 

the following choice is proposed 

( )
11
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m p

T
T T
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P s k e k eυ υ −−

⎡ ⎤= ⎢ ⎥⎣ ⎦
-sTe� "  

where j
e  is an 1 m×  unity row vector having the 

unity in its j −th position and i
k  are appropriate 

different than zero reals. The integers 1
, ,

m p
υ υ −…  

are chosen in a way that the set of integers 

{ } { }1
1, , , ,

m p
m υ υ

−
−… …  corresponds to the 

indices of the linear independent columns of 

( ),P s -sTe . The parameters i
k   may be used to 

adjust the characteristics of ( )
1
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−⎡ ⎤

⎢ ⎥⎣ ⎦
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adjust its norm, to achieve stability). Divide 
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 In the following theorem, the solvability 
conditions and the general class of all realizable 
controllers solving the problem are presented. 

Theorem 1: The necessary and sufficient 
condition for the solvability of the Block Triangular 
Decoupling problem via a dynamic measurement 
output feedback controller of the form (5) is 
condition (12). The general class of the realizable 
controller matrices solving the problem is  

( ) ( ) ( ){ }, , ,
m

G s I K s Q s= ×−-sT -sT -sTe e e
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( ), :K s -sTe  arbitrary, realizable and preserve the 

closed loop solvability      (14b) 
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( { }1, ,i ν∈ … , 

{ }1, ,j i∈ … ) are arbitrary matrices being enough 
realizable to satisfy the realizability of (14a). The 
matrices ( ),

,
i i
H s -sTe

 
( 1, ,i ν= … ) are square and 

invertible. 

Proof: Using the definitions before Theorem 1, we 
observe that the general solution of (10) is  
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where ( ) ( )( )
, ,

im p p

i
s s

− ×
Λ ∈-sT -sTe e\ ( 1, ,i ν= … ) 

are arbitrary matrices. Substituting (15) to (9), the 
relation (14a) is derived. Clearly, ( ),K s -sTe  is 

arbitrary but it should also be chosen to be realizable 
and to satisfy the constraint (7). For ( ),G s -sTe  to be 

left invertible (of full column rank) and realizable, it 
is necessary for ( ),

,
i j
H s -sTe

 
and ( ),

i
sΛ -sTe  

( { }1, ,i ν∈ … , { }1, ,j i∈ … ) to be sufficiently 

realizable and ( ),
,

i i
H s -sTe  to be invertible. For 

example the index of realizability of  ( ),
i
sΛ -sTe  

should be greater than or equal to the minus of the 
index of realizability of 

( ) ( ){ } ( ),, ,
m

P sI K s Q s ⊥− -sT-sT -sT ee e  and the 

index of realizability of  ( ),
,

i j
H s -sTe  should be 

greater than or equal to the minus of the realizability 
index of ( ) ( ){ } ( )† ,, ,

im
P sI K s Q s− -sT-sT -sT ee e .   � 

The expressions of the general class of the 
controller matrices proposed in Theorem 1 are 
implicit. In the following corollary explicit and 
analytic expressions of a class of controllers solving 
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the problem at hand are proposed. The derivation of 
this class is based on the observation that ( ),Q s -sTe  

and ( ),P s -sTe  are strictly proper with respect to s . 

Corollary 1: If ( ),Q s -sTe  is realizable, a class of the 

realizable controller matrices solving the problem is 
given by (14a) and (14b) with 

i) ( ),K s -sTe  proper with respect to s  and 

realizable while the minimum index of 
realizability of its elements is restricted to be 
greater than or equal to zero  

ii) the minimum index of realizability of the 
elements of ( ),

,
i j
H s -sTe  is restricted to be 

greater than or equal to the minus of the 
minimum realizability index of the elements of  

( )† ,
i
P s -sTe   

iii) the minimum index of realizability of the 
elements of ( ),

i
sΛ -sTe  is restricted to be greater 

than or equal to the minus of the minimum 
realizability index of the elements of 

( ),P s⊥ -sTe .                                              � 

Corollary2: If ( ) ( ), ,Q s P s=-sT -sTe e  (the case of 

performance output feedback) and ( ),P s -sTe  is 

realizable, a class of the realizable controller 
matrices solving the problem is given by 

( ) ( ) ( )†
,1

1

, , ,G s P s H s
ν

κ κ
κ=

⎧ ⎡⎪⎪ ⎢= ⎨ ⎢⎪⎪ ⎣⎩
∑-sT -sT -sTe e e "

 

( ) ( )†
,

, ,
i

i

P s H s
ν

κ κ
κ=
∑ -sT -sTe e… "

 

( ) ( )†
,

, ,P s H sν ν ν
⎤ +⎥⎦

-sT -sTe e  

( ) ( ) ( ) }1
, , ,P s s sν

⊥ ⎡ ⎤ ++ Λ Λ⎢ ⎥⎣ ⎦
-sT -sT -sTe e e"

 

( ) ( ){ }{ },
1,..., ; 1,...,

block.triang ,, i j
i j i

H sK s
ν= =

−
-sT-sT ee (16) 

where ( ),K s -sTe  is restricted only to be proper with 

respect to s  and realizable while the minimum index 
of realizability of its elements is restricted to be 
greater than or equal to zero and the minimum index 
of realizability of the elements of ( ),

,
i j
H s -sTe  is 

restricted to be greater than or equal to the minus of 
the minimum realizability index of the elements of  

( )† ,
i
P s -sTe  . The minimum index of realizability of 

the elements of ( ),
i
sΛ -sTe  is restricted to be greater 

than or equal to the minus of the minimum 
realizability index of the elements of ( ),P s⊥ -sTe .  � 

Remark 1: In Theorem 1 and Corollaries 1 and 2 
the blocks of the closed loop transfer matrix are 
restricted only to have enough large realizability 
index. This way regional BIBO stability of the 
closed loop system can be achieved, while tracking 
and command following are satisfied as fast as is 
allowed by the realizability indices of the elements 
of the closed loop transfer matrix. 

Remark 2: The condition (12) is the same with the 
necessary and sufficient condition for the solvability 
of the diagonal block decoupling (Koumboulis and 
Kouvakas, 2011). As was expected, the class of 
controller, solving the problem at hand, is much 
wider.   

4 CONCLUSIONS 

In the present paper the problem of block triangular 
decoupling has been studied for the first time for the 
category of general neutral multi delay systems. The 
controller has been selected of the general neutral 
dynamic type involving a dynamic feedback and 
dynamic precompensator. The controller has been 
restricted to be realizable. The necessary and 
sufficient condition for the problem to be solvable 
has been established and the general class of the 
realizable controllers solving the problem has been 
derived. The realizability indices of the elements of 
the closed loop transfer matrix are restricted to be 
large enough. Except this restriction, the closed loop 
transfer matrix has been proven to have arbitrary 
characteristic polynomial thus offering itself for 
command tracking and regional BIBO stability. 
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