
A Virtual Document Approach for Keyword Search in Databases

Jaime I. Lopez-Veyna, Victor J. Sosa-Sosa and Ivan Lopez-Arevalo
Information Technology Laboratory, Center of Research and Advanced Studies of the National Polytechnic Institute

(CINVESTAV), Cd. Victoria, Tamaulipas, Mexico

Keywords: Keyword Search, Indexing, Databases, Top-k, Virtual Documents.

Abstract: It is clear that in recent years the amount of information available in a variety of data sources, like those
found on the Web, has presented an accelerated growth. This information can be classified based on its
structure in three different forms: unstructured (free text documents), semi-structured (XML documents) and
structured (a relational database or XML database). A search technique that has gained wide acceptance for
use in massive data sources, such as the Web, is the keyword based search, which is simple to people who
are familiar with the use of Web search engines. Keyword search has become an alternative to users without
any knowledge about formal query languages and schema used in structured data. There are some traditional
approaches to perform keyword search over relational databases such as Steiner Trees, Candidate Networks
and recently Tuple Units. Nevertheless these methods have some limitations. In this paper we propose a
Virtual Document (VD) approach for keyword search in databases. We represent the structured information
as graphs and propose the use of an index that captures the structural relationships of the information. This
approach produce fast and accuracy results in search responses. We have conducted extensive experiments on
large-scale real databases and the results demonstrates that our approach achieves high search efficiency and
high accuracy for keyword search in databases.

1 INTRODUCTION

In recent years we have been witnesses to an expo-
nential increase of the quantity of information avail-
able on the World Wide Web. The information search
has become an indispensable component in our lives.
Web search engines such as Google or Yahoo are the
primary way to access massive information. Most of
data in the Web can be found in a textual format, and it
is also common to find a huge amount of information
stored in relational databases, XML documents, and
other data sources. This information could be classi-
fied based on its structure such as: a) unstructured
data, or free-text documents (emails, news, HTML
documents) that are written in natural language, b)
semi-structured, such as posting on newsgroup (e.g.
apartment rentals), medical records, equipment main-
tenance logs; XML documents are semi-structured
because the schema information is mixed with the
data values. HTML pages on the Web are considered
semi-structured, since the embedded data are often
rendered regularly via the use of HTML tags. And c)
structured, such as those found in relational databases.

The search engines have used a very simple and
widely accepted mechanism for querying textual doc-

uments known as keyword search. This mecha-
nism becomes an alternative of querying over re-
lational databases and XML documents, because it
is simple to people who are familiar with the use
of Web search engines. Recently the database re-
search community has recognized the benefits of
keyword search and has been introducing keyword
search capability intorelational databases(Li and
Feng, 2009),(Agrawal and Chaudhuri, 2002),(Ding
and Xu, 2007),(Hristidis and Papakonstantinou,
2002),(Park and goo Lee, 2011),(Feng and Li,
2011),(Bhalotia and Hulgeri, 2002),XML databases
(He and Wang, 2007),(V. Hristidis, 2006),(Hris-
tidis and Papakonstantinou, 2003), (Bao and Lu,
2010), graph databases(Kimelfeld and Sagiv,
2008),(Achiezra and Golenberg, 2010),(Kacholia and
Pandit, 2005),(Zhong and Liu, 2009),(He and Wang,
2007), andheterogeneous data sources(Dong and
Halevy, 2007),(Li and Feng, 2008a),(Franklin and
Halevy, 2005). One important advantage of keyword
search is that it enables users to search for information
without having a detailed knowledge of the schema of
the database or XML document and without the need
to learn some formal languages like SQL or XQuery.

Although keyword search has been proven to be

39I. Lopez-Veyna J., J. Sosa-Sosa V. and Lopez-Arevalo I..
A Virtual Document Approach for Keyword Search in Databases.
DOI: 10.5220/0004048700390048
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 39-48
ISBN: 978-989-8565-18-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

effective for textual documents, it presents some limi-
tations on structured and semi-structured data that are
not easy to carry out. This situation is because cur-
rent Information Retrieval (IR) techniques applied on
search engines have not been designed for this type
of data sources (M. Karnstedt, 2008). They have
always employed the inverted index to process key-
word queries, which is effective for unstructured data
but it is inefficient for semi-structured and structured
data (Franklin and Halevy, 2005). Additionally, these
techniques ignore the information structure (hyper-
links in the case of unstructured data, parent child re-
lationships or IDRefs in semi-structured data and pri-
mary and foreign keys in the case of structured data)
that can be extracted from the data sources for answer-
ing keyword queries.

We propose a novel virtual document approach as
an attempt to solve the problem of keyword search
in databases. This approach can be applied to un-
structured and semi-structured information. Our ap-
proach will improve the keyword search in databases
and make an efficient processing using a score based
on classical information retrieval that takes into ac-
count the meta-information included in structured in-
formation.

The rest of this paper is organized as follows. Sec-
tion 2 shows the Related Work. We introduce the
Problem in Section 3. Section 4 presents our ap-
proach. Section 5 shows some of our preliminary re-
sults. Conclusions and Future Work are given in sec-
tion 6.

2 RELATED WORK

The first area of research related to our work is the
keyword-based search over structured data using the
IR techniques. Inverted index has been proven to be
one of the most effective techniques to organize un-
structured data. In recent years there are applications
that need to integrate structured data and text docu-
ments. Due to this situation, different approaches to
keyword search over structured data have been pro-
posed. The existing approaches can be classified into
three main methods:Steiner Tree, Candidate Net-
worksandTuple Units.

The Steiner-Tree-based methods use a data graph
structure to compute relevant answers. A Steiner Tree
can be defined as: givenN points in a plane, it is
necessary to connect them by lines of minimum to-
tal length in such a way that any two points may be
interconnected(Du and Hu, 2008). The authors in
(Li and Feng, 2009),(He and Wang, 2007),(Li and
Feng, 2008a),(Dong and Halevy, 2007) and (Bhalo-

tia and Hulgeri, 2002) first model the tuples in a re-
lational database as a data graph, where nodes are tu-
ples and edges are the primary-foreign-key relation-
ships, and they identify the steiner trees that contain
all or some of the input keywords to answer a query.
These methods compute answers on the fly by travers-
ing the database graph to discover structural relation-
ships. Since minimum Steiner tree problem is known
to be NP-hard (Fang and Clement, 2006), a Steiner
Tree based approach can be inefficient, demanding
new studies to find polynomial time solutions that can
effectively approximate the minimum Steiner Tree
problem (Li and Feng, 2009). For example, the EASE
approach proposed by (Li and Feng, 2008a) was re-
viewed and we found that the datagraph generated
from the IMDB Dataset1, contained 1,000,209 nodes
and 200,000 vertex. After following the process de-
scribed in this approach, we found 1,007,826 min-
imal Steiner Trees, this is a big number, closer to
the same number of nodes of the datagraph, requir-
ing an important computational effort. Another issue
found in the EASE approach is the need for comput-
ing a score DB, which requires to analyze all possible
paths between two nodes belonging to a Steiner Tree.
These issues imply a very high computational effort
and time consuming process, especially in the cases
where a Minimal Steiner Graph contains hundred
of nodes and arcs. BLINKS(He and Wang, 2007),
BANKS(Bhalotia and Hulgeri, 2002), EASE(Li and
Feng, 2008a) and CSTREE(Li and Feng, 2009) are
examples of this approach.

The Candidate Networks based methods use the
database or XML schema to identify answers. A Can-
didate Network is a subtree that involves tuple sets
with occurrences of the query keywords, where the
keywords can be leafs nodes or the root of the sub-
tree. They first generate candidate networks follow-
ing the primary-foreign-key relationships, and then
compute answers composed of relevant tuples based
on Candidate Networks. Each Candidate Network
would be generated and evaluated as a good answer.
The problem of evaluating all Candidate Networks
is a multi-query optimization problem and has two
main issues: (1) How to share common subexpres-
sions among Candidate Networks generated in order
to reduce computational cost evaluation and (2) How
to find a proper join order to fast evaluate all Can-
didate Networks(Xu and Qui, 2010), this is because
for a keyword query, the number of Candidate Net-
works can be very large. DISCOVER(Hristidis and
Papakonstantinou, 2002) and SPARK(Luo and Lin,
2007) are examples of this approach.

1http://www.imdb.com/interfaces (1,000,000 Data Set
(475 MB)).

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

40

These first two methods discover the connec-
tions (primary/foreign keys) between tuples on the
fly. As there are usually large numbers of tuples in
a database, these methods are rather expensive to find
answers and neglect that relevant tuples can be iden-
tified, pre-computed, materialized and indexed off-
line(Li and Feng, 2008b).

The Tuple Units are proposed by Li et. al. in
(Li and Feng, 2008b). A Tuple Unit is composed
of relevant tuples connected by primary-foreign-key
relationships. It is a set of highly relevant tuples
which contain query keywords. The tuple units are
generated and materialized off-line in order to ac-
celerate the on-line processing of keyword queries.
EKSO(Su and Widom, 2005) and RETUNE(Li and
Feng, 2008b) are examples of this approach. Fol-
lowing the RETUNE approach proposed by (Li and
Feng, 2008a). We tried to make our own implemen-
tation in order to make a real comparison with this
approach. Unfortunately, it was not possible to cre-
ate the score table that contains the posting list that
the authors created for a single keywords. They men-
tioned the use of MYSQL in this process. However
MYSQL is limited to 4096 columns per table or ev-
ery table has a maximum row size of 65,535 bytes2.
In this process, at leas 4170 columns to store terms
and 126,505 columns to store keyword pairs were re-
quired. This situation made impossible to reproduce
those experiments.

3 PROBLEM

3.1 Motivation

Nowadays information becomes the most critical and
valuable asset for business. Providing a uniform in-
terface for querying and retrieving information re-
gardless of its structure, is not a trivial task. Hav-
ing access to a large set of structured data or het-
erogeneous data has been one of the most impor-
tant challenges facing the current database and in-
formation recovery/retrieval projects (Li and Feng,
2008a),(Chaudhuri and Ramakrishnan, 2005),(Abite-
boul and Allard, 2008). It Is very common to find
information on the web by typing some keywords
in a search engine (using IR techniques). However,
some times the returning results may not contain rel-
evant data. Current search engines are mainly fo-
cused on exploring unstructured information (docu-
ments). In this way, they are losing relevant informa-

2http://dev.mysql.com/doc/refman/5.0/en/column-
count-limit.html

tion that could be found in different data sources like
semi-structured or structured. To have access to struc-
tured or semistructured data, users need to know the
schema of the database or to learn some formal lan-
guage like SQL, XQuery (Li and Feng, 2009). Fur-
thermore, the IR-style ranking model implemented in
current search engines ignores the information struc-
ture (meta-information) that can be extracted from
different data sources. This meta-information can be
useful for determining the relevance of that informa-
tion(Li and Feng, 2008a). The structure information
awareness facilitates the assembling of pieces of data
that are interconnected at different relations or XML
documents. These pieces of data can represent more
relevant answers that could be provided by a search
engine.

The mentioned situation has motivated us to pro-
pose a novelVirtual Document Approach for Keyword
Search in Databases. This approach makes an effi-
cient query processing and uses a score based on the
classical Information Retrieval metrics. Furthermore
it takes into account the structure extracted from the
structured information. Our approach identifies the
most relevant and meaningful tuples to answer key-
word queries. We model structured data as graphs,
where nodes can be tuples, and edges can be primary-
foreign-key relationships. A data index enables effi-
cient keyword search over databases using an IR style
that captures the structural relationships of the data.
This structure is kept implicitly in what is called Vir-
tual Documents..

The main contributions of this paper are:

• A novel and efficient keyword search method for
structured information.

• A new method for the construction of virtual doc-
uments from structured data.

• A definition of a data index that stores the struc-
tural relationships taken from the data sources.

• The analysis of the issues related to indexing
and ranking, and a simple and efficient indexing
mechanism to index the structural relationships
between the transformed data.

• The development of an effective ranking tech-
nique to rank the virtual documents by taking into
account both the structural relationships included
in the relational and XML databases and the tex-
tual relevancy using a text retrieval approach.

4 OUR APPROACH

Our Virtual Document Approach is a novel approach
for keyword search on databases that takes some ideas

A�Virtual�Document�Approach�for�Keyword�Search�in�Databases

41

from the RETUNE project (Li and Feng, 2008b) but
implementing important differences. The first differ-
ence is that we manipulated the information in a data
graph, instead of using relational tables. The second
difference is that RETUNE uses SQL to extract the tu-
ple units and our approach uses the data graph to iden-
tify the Tuple Units that are converted into something
called Virtual Documents. These documents are used
for creating a data index that takes into account the
meta-information included in structured data without
including redundant information.

4.1 Notations

This section introduces some notations for clarity of
this paper. In our approach we model structured data
as an undirected graph, where the nodes are tuples,
and the edges are primary-foreign-key relationships.
A data Graph can be defined as follows:

Definition 1. (Data Graph) A Data Graph G is a pair
(V,E), where V is a set of vertices, and E is a set of
edges between the vertices E⊆ {(u,v)|u,v∈V}

We need a database to identify Tuple Units and
transform them into Virtual Documents. Given a
databaseD with n tables,R1,R2...,Rn, Ri k

−→
Rj denote

that Ri has a foreign keyk which refers to the pri-
mary key ofRj . If two relational tablesRi andRj are
connected, are denoted as,Ri ⇔ Rj , if i) Ri k

−→
Rj ; or

ii) R j k
−→

Ri ; or iii) ∃Rk,Ri ⇔ Rk andRk⇔ Rj . In this
approach, we suppose that each table is pointed out
by other relations that act as link table. A relational
tableRi is called alink table if there is not relation
table Rj , such that,Rj k

−→
Ri . That is, Ri only con-

tains foreign keys to connect other relational tables
but it does not contain any primary key (Li and Feng,
2008b). For example, consider the database with
three tables in the figure 1, we haveRatingUID

−→
User

andRatingMID
−→

Movie; andUser← Rating→Movie.

Rating is a link relational table as it has no primary
key.

4.2 Tuple Units

Since the database is modeled as a data graph, we can
identify a Tuple Unit following the primary and for-
eign keys into the data graph. We have to choose a
root node of the data graph and the set of neighbors or
adjacent nodes connected by primary or foreign key,
will be called a Tuple Unit. Next this Tuple Unit is
transformed in a set of Virtual Documents. Our ver-
sion of Tuple Units is defined as follows:

Definition 2. (Tuple Unit (TU)) Given a node vi ∈V
a Tuple Unit from the node vi , are composed of the

Figure 1: An example database.

Figure 2: The graph model for the example database in Fig-
ure 1.

set of neighbors of the node vi , and can be defined as
TU(vi) = {u|u∈ neighbors(vi) and u∈V}. The node
TU(vi) is called the root node from the Tuple Unit of
(vi).

To better understand the concept of tupleTuple
Units (TU), we give the Example 1.

Example 1. Consider the database in the figure 1
where Rating is a link table. First we model as a data
graph following the primary and foreign keys as illus-
trated in figure 2. With this graph we can iteratively
get each node in the graph and obtain the TU. For
example, consider the nodes u1, u3 and m2. We can
get the Tuple Units Tu1, Tu3 and Tm2 respectively, as
shown in figure 3

The Tuple Unit based method has the follow-
ing features: (1) TU is effective to answer keyword

Figure 3: Tuple units from the nodes u1, u3 and m2.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

42

Figure 4: Virtual documents from the nodes u1 and m2.

queries as they capture structures and can represent
a meaningful and integral information unit. (2) The
relationships between tuples connected through pri-
mary/foreign keys can be identified and indexed, so
we can efficiently answer keyword queries by using
such indexed structural information. (3) The number
of TU will not be large, which is not larger than of the
total tuples in the underlying database(Ding and Xu,
2007).

Once we identify the TU for each node in the
graph, we need to transform it into a Virtual Docu-
ment by dividing the TU into a set of documents. We
indeed create a new document for each neighbors of
the node, and all these documents together compose a
single Virtual Document. The new Virtual Document
only contains the textual attributes from TU, the idea
is to reduce the size of virtual documents by avoiding
redundant information. We can also include non tex-
tual attributes, such as numbers and dates, taking their
string representation. A similar approach to virtual
documents was proposed by (Su and Widom, 2005).
The set of virtual documents generated will feed the
index. The figure 4 shows the virtual documents gen-
erated from the Tuple Units Tu1 and Tm2.

4.3 Ranking

Section 4.2 described how Tuple Units were identi-
fied and transformed into Virtual Documents(VD). In
this section, we first discuss how to meaningfully in-
dex and rank the Virtual Documents and then to iden-
tify the top-k answer based on existing proposals. The
generated VDs include the structural relationships be-
tween input keywords with respect to a Tuple Unit.

The simplest way to score and rank the virtual
documents is by the use of the TF· IDF metric.
We can take the terms in the virtual documents as
keywords, following a similar technique of indexing
and ranking used in DISCOVER2 (Hristidis and Gra-
vano, 2003), SPARK (Luo and Lin, 2007), EASE (Li
and Feng, 2008a) and by (Fang and Clement, 2006),
where the terms can be used to answer keyword-based
queries over Virtual Documents. The idea is first as-
signing to each Virtual Document a score using a stan-
dard IR-ranking formula, and then to combine the in-
dividual scores using a score aggregation function,
such as SUM, to obtain the final score.

Assuming that we have calculated the total set of

the virtual documents denoted asD, there areN dif-
ferent virtual documents andK keywords inD. Given
a virtual document denoted asd ∈ D and a keyword
ki contained ind. We setnt f(ki ,d) as the normalized
term frequency ofki in a documentd, and it is defined
in Equation 1. Wheret f (ki ,d) represents the number
of occurrences of the termki in a documentd.

nt f(ki) = 1+ ln(1+ t f (ki,d)) (1)

We setid f (ki) as the inverse document frequency
of ki defined in equation 2. Whered fki is the number
of virtual documents that a termki occurs inD. Id f
is normalized by dividing the total number of Virtual
DocumentsN over(d fki+1) and then applying the ln
function.

id f (ki) = ln
N

d fki +1
(2)

Document Normalized Lengthndl(d) is defined
in Equation 3, and represents the normalized docu-
ment length, that is the number of terms in the doc-
umentd over the average of terms in the set of doc-
umentsD. ndl is used to reduce the term weights in
long documents.|d| denotes the number of terms in
a documentd. And s is a constant taken from IR lit-
erature(Fang and Clement, 2006) and is usually set to
0.2.

ndl(d) = (1− s)+ s∗
|d|

∑d′∈D |D
′|

N

(3)

In the IR literature, ranking methods usually com-
bine the three metrics (tf, idf and ndl) in aTF · IDF
for a keywordki in a Virtual Documentd as illustrated
in equations 4.

TF · IDF (ki ,d) =
nt f(ki)

ndl(d)
∗ id f (ki) (4)

Although the TF· IDF-based ranking methods are
efficient for textual documents, they are inefficient for
semi-structured and structured data and do not take
into account the implicit structured information. In
our approach, Virtual Documents capture some struc-
tural information, which is easy to find in relational
databases and XML documents. Representing the
rich structural relationships by the Virtual Documents
should be at least as important as discovering more
keywords, and in some cases, even more crucial.

Therefore, given a keyword queryK = k1,k2, ...kn,
and a Virtual Documentd we can compute the score
of a virtual documentd with respect to a keyword
queryK by summing the TF· IDF for each keyword
ki ∈ K as it is defined in equation 5.

SCORE(K,d) =
n

∑
k=1

TF · IDF (ki ,d) (5)

A�Virtual�Document�Approach�for�Keyword�Search�in�Databases

43

With the compute of theSCORE, we are allowed
to answer queries and rank the relevant virtual doc-
uments, taking into consideration the classical Infor-
mation Retrieval metrics and including in this score
the structural information extracted from the relation-
ships of a Tuple Unit.

4.4 Indexing

To efficiently retrieve scores of the documents, we
propose a virtual document inverted index(VDII),
which is similar to the traditional inverted index. The
entries of VDII are also the keywords that are con-
tained in the virtual documents. VDII is similar to
inverted indexes since each entryki keeps the virtual
documents that directly contain the keyword, and the
corresponding score. The virtual documents with re-
spect to the entryki are sorted bySCORE(ki,d) in
descending order, whered ∈ {d j |d j contains the key-
wordki}. We indexing all the virtual documents using
the Apache Hadoop Framework3. Hadoop is an open
source framework for writing and running distributed
applications that process large amounts of data using
commodity hardware(Lam, 2011). Hadoop uses an
implementation of Map-Reduce programming model.

4.5 Query Processing

With theVDII index, we can answer a keyword query
as follows: given a keyword queryK = k1,k2, ...kn,
we first retrieve the inverted lists ofIi(1 ≤ i ≤ n),
which is composed of the virtual documents that con-
tain keywordki . Then, we compute the score of each
relevant virtual document adding theSCOREof each
keyword, next we apply a ranking function to finally
return thetop− k answers with the highest scores.

5 RESULTS

5.1 Experimental Scenario

In order to evaluate the effectiveness and the effi-
ciency of our proposal, we have conducted extensive
experiments on real datasets. We compared search
efficiency and results quality with existing state of
the art algorithms BLINKS(He and Wang, 2007),
EASE(Li and Feng, 2008a) and RETUNE(Li and
Feng, 2008b). We used the Internet Movie DataBase
(IMDB) to evaluate our approach. IMDB contains ap-
proximately one million anonymous ratings of 3883
movies made by 6040 users, each user has rated at

3http://hadoop.apache.org/

Table 1: IMDB dataset.

Tables Attributes No. of Records
User UID, UserName,

Gender, OID
6,040

Movie MID, title, genres 3,883
Occupation OID, Occupation 30
Rating UID, MID, Score 1,000,209

least 20 movies. IMDB dataset are translated into four
tables as illustrated in Table 1.

We model the data set as undirected graph.
This dataset generate about 1,010,153 vertex and
2,006,458 arcs. The elapsed time to indexing IMDB
and build theVDII index is 741 seconds approxi-
mately and the size of the index is close to 355 MB.
TheVDII index includes 4,170 different keywords of
the dataset (without stop words) appearing in at least
one Virtual Document and 13,766,755 postings, with
an average of 3301 posting per keyword, and a max-
imal of 713,160 postings for a keyword. The elapsed
time required to load the index in memory and start to
query it requires only 108 seconds approximately.

All the algorithms were coded in Java. All the
experiments were conducted on a computer with an
Intel(R) Core (TM) 2@2.33 GHz, CPU, 4 GM RAM
running Ubuntu 11.10.

5.2 Search Efficiency

This section evaluates the search efficiency of vari-
ous algorithms. We selected one hundred keyword
queries with several number of keywords (2 to 6). To
form a query, we first selected a random number of
keywords from the movie title, next we selected a ran-
dom number of keywords from the Movie’s genre. Fi-
nally, we selected a random number of keywords from
occupation of the evaluator of movies. We group the
queries that have the same number of keywords and
then compute the average of the elapsed time. Table
2 shows various sample queries. The figure 5 illus-
trates the elapsed time from the queries. We can note
that the average of the elapsed time increases with re-
spect to the value of the number of keywords. This
is because we need to find more virtual documents to
calculate the final score. For example, in a query with
four keywords we get 132 ms to identify thetop−100
results and compute the final score. We can also ob-
serve that our algorithm produces better results than
the existing methods BLINKS, EASE and RETUNE.
VDII clearly reach high efficiency in the search, this
is because our approach does not need to identify an-
swers by discovering the relationships between tuples
that appears in different relational tables on the fly, or

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

44

Table 2: Several sample queries employed in the experi-
ments.

Examples of queries
herbie bananas
super mario 1993
toy story 2 animation
back future 1990 western writer
star wars iv hope adventure retired

 0

 500

 1000

 1500

 2000

2 3 4 5 6

E
la

p
s
e
d
 T

im
e
 (

m
s
)

No. of keywords

EASE
BLINKS

RETUNE DB+IR
VDII

Figure 5: Search efficiency using 2 to 6 keywords.

using SQL, since we include that relationships in the
virtual documents in the VDII index. VDII is faster
than EASE, this is because EASE spend some time
extracting the Steiner Graphs and eliminating the non-
Steiner nodes. The elapsed time of BLINKS increases
considerably when adding more keywords, compared
with the elapsed time of VDII that varies a few ms,
achieving higher search efficiency. This difference is
due to the use of VDII index to identify the answers in
our approach. VDII takes less than 320 ms to answer
keyword queries with six keywords; EASE takes 420
ms and BLINKS uses more than 1,200 ms. Clearly
VDII outperforms BLINKS and is also significantly
faster than EASE.

To better evaluate performance of our approach,
we identified the top-k answers with different values
of k and compared the corresponding elapsed time.
The figures 6 and 7 show the experimental results.
We can see that our approach outperforms the existing
methods BLINKS and EASE significantly. For exam-
ple in the Figure 6 VDII takes 121 ms to identify the
top 10 answers, while BLINKS and EASE take more
than 200 ms and 1400 ms respectively. Furthermore,
with the increase of the number oftop− k answers
the elapsed time of VDII varies slightly and always

 100

 1000

 10000

top−1 top−5 top−10 top−20 top−50 top−100

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Top k

BLINKS EASE VDII

Figure 6: Top-k search efficiency using 4 keywords.

 100

 1000

 10000

top−1 top−5 top−10 top−20 top−50 top−100

E
la

p
s
e
d
 T

im
e
 (

m
s
)

Top k

BLINKS EASE VDII

Figure 7: Top-k search efficiency using 5 keywords.

achieves high efficiency on the search.

5.3 Search Accuracy

This section evaluate the search accuracy using stan-
dard precision. The lack of a benchmark that allows
us to verify the precision of the obtained results for
a set of queries motivated us to define a basic strat-
egy for measuring the accuracy. Document relevancy
is measured by using two constraints: First, a docu-
ment is relevant if the query keywords appear in some
of its textual attributes. Second, it is also relevant
if these keywords are located in a semantically re-
lated attribute. This is not an automatic validation,
for example, if we wanted to find the rates given by

A�Virtual�Document�Approach�for�Keyword�Search�in�Databases

45

 50

 60

 70

 80

 90

 100

2 3 4 5 6

T
o
p
−

k
 P

r
e
c
is

io
n
 (

%
)

BLINKS
EASE

RETUNE DB+IR
VDII

Figure 8: Top-k search precision.

Writers to the movie Doctor Dolittle (keywords: Doc-
tor Dolittle Writer), a document would be relevant
if the keywords Doctor Dolittle are appearing in the
movie name attribute and the keyword Writer appears
in the occupation attribute. In this case, it is easy to
see that false positive documents could be those in-
cluding movies that were rated by Doctors. So far,
this validation is carried out manually. We also used
the metric top-k precision, which measures the ratio
of the number of relevant answers among the first
k answers with the highest scores. Figure 8 shows
the experimental results. In this figure we can ob-
serve that our approach obtains higher search accu-
racy and outperforms the existing methods. VDII is
better than BLINKS in various queries with different
number of keywords. This is because our approach
includes structural information in the index construc-
tion when applying the TF· IDF based IR technique.
VDII also outperforms EASE and RETUNE in terms
of precision.

Figures 9 and 10 illustrate the experimental re-
sults, which show that VDII achieves higher preci-
sion than BLINKS and EASE on different values of
k. We can see that with the increase in thek values,
thetop−k precision of BLINKS falls while VDII can
always achieve high precision. This confirm the effi-
ciency of our method.

We need to make other tests with VDII to compare
the results with other approaches, however, we can
observe that VDII achieves high search efficiency and
quality for keyword search.

 50

 60

 70

 80

 90

 100

top−1 top−5 top−10 top−20 top−50 top−100

T
o
p
−

k
 P

r
e
c
is

io
n
 (

%
)

BLINKS EASE VDII

Figure 9: Top-k search precision using 4 keywords.

 50

 60

 70

 80

 90

 100

top−1 top−5 top−10 top−20 top−50 top−100

T
o
p
−

k
 P

r
e
c
is

io
n
 (

%
)

BLINKS EASE VDII

Figure 10: Top-k search precision using 5 keywords.

6 CONCLUSIONS AND FUTURE
WORK

Searching information has become an indispensable
component in our lives. There is a need to find infor-
mation in data sources with heterogeneous structure
including databases. In this paper, we have studied
the problem of effective keyword search over struc-
tured data and present aVirtual Document Approach
for Keyword Search in Databasesto make an effi-
cient processing of keyword queries. Our approach is
based on the classical Information Retrieval metrics
taking into account the meta-information extracted
from structured information. We model structured

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

46

data as graph and have proposed the use of a data in-
dex (VDII) to capture the structural relationships for
fast and accuracy response. Finally, we have con-
ducted some experiments to evaluate the efficiency
and effectiveness of our approach using real data sets.
This experiments show that our approach achieves
high search efficiency and quality for keyword search
and is capable to scale with databases with tens of
millions of tuples.

Our future work includes the need to continue the
testing of our approach with other datasets including
semi-structurated and unstructured data. We also have
to continue working on some strategies to reduce of
the size of the index for example by the using of Mu-
tual Information.

ACKNOWLEDGEMENTS

This research was partially supported by project num-
ber 187325 from Fondo Mixto Conacyt-Gobierno del
Estado de Tamaulipas.

REFERENCES

Abiteboul, S. and Allard, T. (2008). Webcontent: Efficient
p2p warehousing of web data.

Achiezra, H. and Golenberg, K. (2010). Exploratory key-
word search on data graphs. InProceedings of the
2010 international conference on Management of data
(SIGMOD), pages 1163–1166. ACM.

Agrawal, S. and Chaudhuri, S. (2002). Dbxplorer: A system
for keyword-based search over relational databases. In
Proceedings of the 18th International Conference on
Data Engineering, ICDE ’02. IEEE Computer Soci-
ety.

Bao, Z. and Lu, J. (2010). Towards an effective xml key-
word search.IEEE Transactions on Knowledge and
Data Engineering, 22(8):1077–1092.

Bhalotia, G. and Hulgeri, A. (2002). Keyword searching
and browsing in databases using banks. InProceed-
ings of the 18th International Conference on Data En-
gineering, ICDE ’02, pages 431–440.

Chaudhuri, S. and Ramakrishnan, R. (2005). Integrating
db and ir technologies: What is the sound of one
hand clapping. InInnovative Data Systems Research
(CIDR), pages 1–12.

Ding, B. and Xu, J. (2007). Finding top-k min-cost con-
nected trees in databases.

Dong, X. and Halevy, A. (2007). Indexing dataspaces. In
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, SIGMOD ’07,
pages 43–54. ACM.

Du, D. and Hu, X. (2008).Steiner Tree problems in Com-
puter Communication Networks. World Scientific
Publishing.

Fang, L. and Clement, Y. (2006). Effective keyword search
in relational databases. InProceedings of the 2006
ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’06, pages 563–574. ACM.

Feng, J. and Li, G. (2011). Finding top-k answers in
keyword search over relational databases using tuple
units. IEEE Transactions on Knowledge and Data En-
gineering Volume, 23:1781–1794.

Franklin, M. and Halevy, A. (2005). From databases to
dataspaces: A new abstraction for information man-
agement.SIGMOD Record, 34:27–33.

He, H. and Wang, H. (2007). Blinks: ranked keyword
searches on graphs. InProceedings of the 2007 ACM
SIGMOD international conference on Management of
data, SIGMOD ’07, pages 305–316. ACM.

Hristidis, V. and Gravano, L. (2003). Efficient ir-style key-
word search over relational databases. InProceed-
ings of the 29th international conference on Very large
data bases - Volume 29, VLDB ’2003, pages 850–861.
VLDB Endowment.

Hristidis, V. and Papakonstantinou, Y. (2002). Discover:
Keyword search in relational databases. InProceed-
ings of the 28th international conference on Very
Large Data Bases, pages 670–681. VLDB Endow-
ment.

Hristidis, V. and Papakonstantinou, Y. (2003). Keyword
proximity search on xml graphs. InProceedings. 19th
International Conference Data Engineering, pages
367–378.

Kacholia, V. and Pandit, S. (2005). Bidirectional expansion
for keyword search on graph databases.

Kimelfeld, B. and Sagiv, Y. (2008). Efficiently enumerating
results of keyword search over data graphs.Informa-
tion Systems, 33:335–359.

Lam, C. (2011).Hadoop in Action. Manning Publications
Co.

Li, G. and Feng, J. (2008a). Ease: an effective 3-in-1 key-
word search method for unstructured, semi-structured
and structured data. InProceedings of the 2008 ACM
SIGMOD international conference on Management of
data(SIGMOD), pages 903–914.

Li, G. and Feng, J. (2008b). Retrieving and materializ-
ing tuple units for effective keyword search over re-
lational databases. InLecture Notes in Computer Sci-
ence, Conceptual Modeling - ER, pages 469–483.

Li, G. and Feng, J. (2009). Providing built-in keyword
search capabilities in rdbms.

Luo, L. and Lin, X. (2007). Spark: top-k keyword query in
relational databases. InProceedings of the 2007 ACM
SIGMOD international conference on Management of
data, SIGMOD ’07, pages 115–126. ACM.

M. Karnstedt, K. S. (2008). A dht-based infrastructure for
ad-hoc integration and querying of semantic data. In
Proceedings of the 2008 international symposium on
Database engineering and applications, pages 19–28.

Park, J. and goo Lee, S. (2011). Keyword search in rela-
tional databases.Knowl. Inf. Syst, 26(2):175–193.

Su, Q. and Widom, J. (2005). Indexing relational database
content offline for efficient keyword-based search. In

A�Virtual�Document�Approach�for�Keyword�Search�in�Databases

47

Proceedings of the 9th International Database Engi-
neering and Application Symposium (IDEAS), pages
297–306.

V. Hristidis, N. K. (2006). Keyword proximity search in
xml trees.IEEE Transactions on Knowledge and Data
Engineering, pages 525–539.

Xu, J. and Qui, L. (2010). Keyword search in relational
databases: A survey.Bulletin of the IEEE Com-
puter Society Technical Comittee on Data Engineer-
ing, 33:67–78.

Zhong, M. and Liu, M. (2009). Efficient keyword prox-
imity search using a frontier-reduce strategy based on
d-distance graph index. InProceedings of the 2009
International Database Engineering & Applications
Symposium (IDEAS), pages 206–216. ACM.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

48

