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Abstract: From theNested Cavities(abbr. NC) classifier (Inselberg and Avidan, 2000) a powerful new classification
approach emerged. For a datasetPand a subsetS⊂P the classifer constructs a rule distinguishing the elements
of S from those inP−S. TheNC is a geometrical algorithm which builds a sequence of nested unbounded
parallelopipeds of minimal dimensionality containing disjoint subsets ofP, and from which a hypersurface
(the rule) containing the subsetS is obtained. The partitioning ofP−S andS into disjoint subsets is very
useful when the original rule obtained is either too complex or imprecise. As illustrated with examples,
this separation reveals exquisite insight on the dataset’s structure. Specifically from one of the problems we
studiedtwo differenttypesof watermines were separated. From another dataset,two distincttypesof ovarian
cancerwere found. This process is developed and illustrated on a (sonar) dataset with 60 variables and two
categories (“mines” and “rocks”) resulting in significant understanding of the domain and simplification of
the classification rule. Such a situation is generic and occurs with other datasets as illustrated with a similar
decompositions of a financial dataset producing two sets of conditions determing gold prices. The divide-
and-conquer extension can be automated and also allows the classification of the sub-categories to be done in
parallel.

1 INTRODUCTION

Classification is a basic task in data mining and pat-
tern recognition. The input to the classification algo-
rithm is a datasetP and a designated subsetS (Fayad
et al., 1996). From insight gained from experience us-
ing theNC (Inselberg and Avidan, 2000) a significant
new step emerges significantly improving the classifi-
cation process. When the classifier either fails to con-
verge or the rule is either very complex or not accu-
rate, theNC classifier discovers the dataset’s struc-
ture partitioning into distinct sub-categories which, in
turn, can be more simply and accurately classified.

An extensive literature search, and specifically
for geometric related classification algorithms using
divide-and-conquer, was carried out to verify that
our proposal is new. Of course, divide-and-conquer
is inherent in clasification as for example in deci-
sion trees and other classifiers (Xindowg and et al,
2008). Divide-and-Conquer is also used in Support
Vector Classification (SVM) (Kugler, 2006) and also
with geometric SVM algorithms (Mavroforakis et al.,
2006). We found other geometric classification algo-
rithms (McBride and Peterson, 2004) and related ap-

proaches (Marchand and Shawe-Taylor, 2002)
(Murthy and et al, 1993) and more but none similar
to what is being proposed here.

To understand the key idea an example with the
NC algorithm is presented on a dataset with 32 vari-
ables and 2 categories obtaining an accurate rule using
the original classifier. The motivation for the exten-
sion is described next with a dataset having 60 vari-
ables and two categories. Though the resulting rule is
not accurate the dataset’s structure is revealed yield-
ing a partition which substantially improves the clas-
sification. The presentation is intuitive and technical
details of the implementation are not elaborated.

2 CLASSIFICATION
ALGORITHM

With parallel coordinates (abbr.‖-coords) (Inselberg,
2009) a datasetP with N variables is transformed into
a set of points inN-dimensional space. In this setting,
the designated subsetScan be described by means of
a hypersurface which encloses just the points ofS. In
practical situations the strict enclosure requirement is
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Figure 1: Construction of enclosure for theNested Cavi-
ties algorithm. The first “wrapping”S1 is the convex hull
of the points ofSwhich also includes some points ofP−S.
The second wrappingS2 is the convex hull of these points
and it includes some points ofS which are enclosed with
the third wrappingS3. To simplify the wrappings are shown
as convex hulls rather than as approximations. Here the se-
lected set isS= (S1−S2)∪ (S3−S4) whereS4 = /0.

dropped and some points ofSmay be omitted (“false
negatives”), while some points ofP−S are allowed
(“false positives”) in the hypersurface. The descrip-
tion of such a hypersurface provides a rule for iden-
tifying, within an acceptable error, the elements ofS.
The use of Parallel Coordinates also enablesvisual-
ization of the rule.

At first the algorithm determines a tight upper
bound for thedimension R of S. For example,P may
be a 3-dimensional set of points but all point ofSmay
be on a plane; in which caseShas dimension 2. Once
R is determinedR variables out of theN are chosen
according to their predictive value and the construc-
tion process, schematically shown in Fig. 1, operates
only on theseRselected variables. It is accomplished
by :

♦ use of a “wrapping” algorithm to enclose the
points ofS in a hypersurfaceS1 containingSand
typically also some points ofP−S; soS⊂ S1

1.

♦ the points in(P− S)∩ S1 are isolated and the
wrapping algorithm is applied to enclose them,
and usually also some points ofS1, producing a
new hypersurfaceS2 with S⊃ (S1−S2),

♦♦ the points inS not included inS1 − S2 are next
marked for input to the wrapping algorithm, a
new hypersurfaceS3 is produced containing these
points as well as some other points inP− (S1−
S2) resulting inS⊂ (S1−S2)∪S3.

1By Sj ⊂ Sk it is meant that the set of points enclosed in
the hypersurfaceSj is contained in the set of points enclosed
by the hypersurfaceSk

Figure 2: The dataset with 32 variables is shown in the
background. It has 2 categories whose points are differ-
encly colored. The table contains the explicit rule. The left
scatterplot shows the first two consecutive variables. The
classifier found that only 9 variables, whose ranges are in-
dicated by the downward and upward arrowheads on their
axis, are needed to describe the rule with a precision of 4%.
The plot of the right shows the two best predictors and the
separation achieved between the two categories.

♦ The process is repeated alternatively producing
upper and lower containment bounds forS; termi-
nation occurs when an error criterion is satisfied
or when convergence is not achieved.

The algorithm decomposesP into nested subsets,
hence the nameNested Cavities(abbr. NC) for the
classifier. The nested subsets are disjoint so they are
partitionsof P. Basically, the “wrapping” algorithm
produces a convex-hull approximation; the techni-
cal details are not needed here. It turns out, that in
many cases using rectangular parallelopipeds for the
wrapping suffices. compared to those obtained by 22
other well-known classifiers (see (Inselberg and Avi-
dan, 2000)). The overall computational complexity is
O(N2|P|) whereN is the number of variables and|P|
is the number of points inP

A dataset with 32 variablesx1,x2, . . . ,x32 having 2
categories each having 300 points is chosen to exem-

Figure 3: Sonar dataset with 60 variables and 2 categories.
The NC classifier partitions the dataset into 3 nested sub-
sets indicated by the 3 rectangles, in middle of the lower
row, with 148, 51 and 14 items each. To improve the visual
clarity some of the variables (axes) not needed in the rule
were removed.
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Figure 4: Schematic of the sonar dataset partition. The
Si are the nested subsets,R= R1∪R2 and the minesM =
M1∪M2. Together with the notation is the number of items
contained in each subset.

plify the process. TheNC classifier applied to cate-
gory 1 found that only the variables, ordered by their
predictive value,x11,x14,x8,x10,x12,x9,x7,x23,x13 are
needed to specify the classification rule in only one
iteration and about 6% error. The second iteration in-
volves additionallyx2,x5,x6 reducing the error to 4%.
The result is shown in Fig. 2; the separation achieved
is striking.

Two error estimates are used: Train & Test and
Cross-correlation. When the rule involves several it-
erations an additional criterion is employed to avoid
overfiting. Namely, the rule error is traced iteration
by iterations and the process is stopped when the error
increasescompared to the previous. As pointed out in
(Inselberg and Avidan, 2000), the rule obtained by the
NC classifier were applied to 4 bench-mark datasets
and were the most accurate compared to those ob-
tained by 22 other well known classifiers.

3 PARTIONING INTO
SUB-CATEGORIES

As one might expect things do not always work out
as nicely as for the example. The sonar dataset from
(UCI, 2012) has been a real classification challenge
with which we illustrate thenew divide-and-conquer
idea. It has 60 variables, 208 observations and 2 cat-
egories 1 forMineswith 111 observations and 0 for
Rockswith 97 data points. Applying theNC classifier
partitions the dataset into 3 nested subsetsS1,S2,S3,
with 148, 51 and 14 items respectively, The rule ob-
tained involves about 35 variables and an unaccept-
able high error of about 45%. The result, demarcat-
ing the nesting (by the rectangles in the lower row)
and showing some of the variables used in the rule is
shown in Fig. 3.

The schematic in Fig. 4 clarifies the partition of
the dataset into 4 disjoint sets,M1,M2 for the mines
andR1,R2 for the “rocks”. These are obtained byS3=

Figure 5: This is a financial dataset where subset corre-
sponding to the high-gold prices is selected. The classifi-
cation byNC partitions this subset into two (indicated by
the 2 and 4th rectangle in the lower row) as for the sonar
dataset.

M2, R2 = S2 −S3, M1 = S1 −S2 andR1 = All −S1
whereAll stands for the full dataset. This is a very
useful insight into the structure of the dataset and mo-
tivates the idea. The bulk of the mines are inM1
which has the higher values of the variables needed
to specify the rule. By contrast, the subsetM2 = S3 is
a small “island”, having the smaller variable values,
surrounded byR2 differs markedly fromM1.

ConsiderR∪ M1 and apply theNC classifier.
A rule distinguishingM1 from R is found needing
only 4 variables. Due to small size ofM1 the er-
ror estimates, with eithercross-correlationor train-
and-testthe number of “false-negatives” were high,
about 30%, though the “false-positives” were about
5% yielding a weighted average error of about 15%.
For another interesting comparison distinguishingM1
from M, NC yields a rule with 5 variables and an 8%
average error. It is clear thatM1 is easily distinguished
both from the “rocks” and the larger class of mines
M1.

This strongly suggests that there are two very dif-
ferent types of mines included in this dataset. To sum-
marize part ofNC’s output, indicated by the rectan-
gles in the lower row of the figure, gives the decom-
position of the dataset into nested subsets. From these
one or more of the categories can be partitioned to
obtain a more accurate and simpler rule. While this
has been observed for some time it was only investi-
gated recently. Of course, the idea of partitioning is
inherent in classification which after all pertains to the
division of a dataset and differentiating between the
parts. While there is a lot of literature on partitions
in data mining, as we already pointed out, this spe-
cific method has apparently not been proposed. Such
a decomposition can clearly be automated and also
the classification of the new categories can bedone in
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Figure 6: This a dataset with measurements pertaining to
ovarian cancer having 50 variables and 3 categories. Classi-
fication byNC of one category yields a complex and inaccu-
rate rule. It also partitions it into 2 sub-categories yielding
simpler and more precise rule. It also suggests that this type
of cancer has two different descriptions (morphologies).

parallel.
We have encountered similar situations with other

datasets. For the financial dataset shown in Fig. 5, the
data corresponding to a high price range for gold is the
selected subset. Classification withNC showed that
there are two different sets of conditions which cause
the price of gold to rise. These are better characterized
separately as for the sonar dataset. Interestingly, the
price of Yen is involved in one of the conditions but
not the other.

Another such example is shown in Fig. 6 for a
dataset with measurements on ovarian cancer having
50 variables and 3 of categories (types of cancer).
Classification of one category yielded a complex and
imprecise rule. However, it also showed a decompo-
sition into two sub-classes for which good rules were
obtained. Since different descriptors were involved
for each sub-class the thought arises that the cancer
types are really different. These examples aregeneric
of a common problem in classification, and for these
we offer a time-honored solution:divide and con-
quer.
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