
NexusDSS: A System for Security Compliant Processing of Data Streams

Nazario Cipriani1, Christoph Stach1, Oliver Dörler2 and Bernhard Mitschang1

1Universität Stuttgart, Institute of Parallel and Distributed Systems, Universitätsstraße 38, 70569 Stuttgart, Germany
2Steinäcker 54, 73773 Aichwald, Germany

Keywords: Accessibility of Data, Privacy Policies, Data Stream Processing.

Abstract: Technological advances in microelectronic and communication technology are increasingly leading to a highly
connected environment equipped with sensors producing a continuous flow of context data. The steadily grow-
ing number of sensory context data available enables new application scenarios and drives new processing
techniques. The growing pervasion of everyday life with social media and the possibility of interconnecting
them with moving objects’ traces, leads to a growing importance of access control for this kind of data since
it concerns privacy issues. The challenge in twofold: First mechanisms to control data access and data us-
age must be established and second efficient and flexible processing of sensible data must be supported. In
this paper we present a flexible and extensible security framework which provides mechanisms to enforce
requirements for context data access and beyond that support safe processing of sensible context data accord-
ing to predefined processing rules. In addition and in contrast to previous concepts, our security framework
especially supports fine-grained control to contextual data.

1 INTRODUCTION

With the rapidly increasing density of mobile phones
equipped with GPS sensors and mobile Internet con-
nections, the usage of data stream processing is in-
creasing in many application areas. A GPS sensor,
for example, continuously produces a potentially un-
bounded stream of measuring points which makes the
use of data stream processing necessary. Application
areas for data stream processing can be found in so-
cial media applications—such asFacebook,Twitter
andGoogle+—as well as in location-based services
(LBSs). These applications often augment position
information of mobile devices with personal informa-
tion of the user in real time. The benefits of a LBS is
undisputed and already included in many of today’s
smartphone applications.

More and more of our social and private life is per-
vaded by this kind of applications, which on the one
hand delivers a real benefit in everyday life providing
location-based information which one might be inter-
ested in. On the other hand, however, this raises the
question on how to protect this information against
unauthorized access. For the data owner it is of great
importance to express fine-grained access conditions,
defining which data can be accessed by certain enti-
ties and how this data might be processed by, e.g., da-

ta stream processing systems. A majority of users of
LBSs can also be found in social networks. Social
networking is easy to use and information including
personal details and the current position is available
to a wide audience. This creates a variety of usage
scenarios, but at the same time exposes possibly sen-
sitive information to the public.

The upper part of Figure 1 (Application View)
depicts such a LBS, calledFriend Finder (FF). This
sample Application reveals the current location of a
user to all of his friends. Mike broadcasts his GPS
data to FF in our scenario. FF then combines his data
with additional information acquired by third-party
data providers, e.g. Google Maps. Similar services
are offered by many of todays social networks such
as foursquare. However, in these services Mike can
share all of his private information with a user or no
information at all. In contrast, our approach goes a
step further: Although, both of his friends Bob and Al-
ice have access to parts of Mike’s data, Alice receives
filtered information only. E.g., while Bob gets Mike’s
accurate location, Alice gets the country where Mike
is at the moment.

In the lower part of Figure 1 (Stream-Processing
View) the participants of this scenario are mapped to
the nodes of a data stream processing system. Mike’s
GPS and the third-party data providers act as data

175Cipriani N., Stach C., Dörler O. and Mitschang B..
NexusDSS: A System for Security Compliant Processing of Data Streams.
DOI: 10.5220/0004051401750185
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 175-185
ISBN: 978-989-8565-18-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Application scenario illustrating the necessityof
access control in data streaming applications.

sources (S1, S2) while Bob’s and Alice’s mobile de-
vices are the data sinks (T1, T2). The FF LBS pro-
cesses this data (e.g. by combining different sources
O1 or by visualizing the dataO2) and ensure that
Mike’s privacy rules are respected. In order to enable
these features, the data stream processing system that
performs data integration and data processing must
provide access control to data (Anderson, R. J., 2008).
Furthermore, it must provide a way in defining a fine-
grained process control to data.

A prerequisite to support a wide range of stream-
based applications—including the application sce-
nario sketched above—is that the data stream pro-
cessing system must be open to further applica-
tion scenarios and provide an integration mechanism
for domain-specific extensions (Cipriani, N. et al.,
2011a). This particularly means that the required
domain-specific data and processing techniques —in
terms of operators— should be integrated into an ex-
isting system to exploit already existing functionali-
ties and extend the system only where necessary, re-
ducing functional redundancy. For this purpose we de-
veloped NexusDS (Cipriani, N. et al., 2009), an open,
flexible, and extensible data stream processing system
for distributed processing of streamed context data.
NexusDS bases on Nexus (Nicklas and Mitschang,
2004) as it builds upon its particular data management
and extends it by stream processing capabilities. As
context-data is highly privacy-related, also security
control patterns are essential to control data access
and data processing. Thus, we extended NexusDS by
security control patterns to meet the particular require-
ments of context-aware applications.

The openness of NexusDS in combination with the
requirement of a fine-grained data access and a fine-
grained data processing, as described beforehand, is a
big challenge. Appropriate mechanisms must be de-
veloped to allow for both a controlled access to sensi-
tive context data and a controlled processing of it. For
this purpose we extended NexusDS to NexusDS Se-
cure (NexusDSS). We developed an access control
framework for data stream processing systems, which
allows a fine-grained tuning on which data is acces-
sible and how it might be further processed. The
security framework retains the openness and flexibil-
ity of the original data stream processing system and
allows—depending on the desired level of security—
to determine the settings for fine-grained data access
and data processing.

The remainder of this paper is organized as fol-
lows: Section 2 defines protection goals and provides
a classification for access control and processing con-
trol mechanisms. Related work is discussed in Sec-
tion 3 comparing data stream processing systems with
respect to the control mechanism classification from
the previous section. In Section 4 the architecture of
the security framework with all its main components
is described and its mode of operation. After that Sec-
tion 5 presents the security framework which consti-
tutes an open and extensible mechanism to integrate
custom access control and process control. The se-
curity policies in a second step are handled by the
data stream processing system at deployment time
and may change at runtime, as described in Section 6.
In Section 7 a summary and an outlook to future work
concludes this paper.

2 PROTECTION GOALS

The definition of an access control framework for a
distributed data stream processing system is preceded
by a definition of safety and security requirements to
data. Depending on this set the actualsafe process-
ing issuesare designed. Section 2.1 first describes
the necessary terminology. After that in Section 2.2
the access control classification is shown to ensure—
in the context of this work—safe processingby es-
tablishing a security architecture that allows to define
access conditions and process conditions for context
data.

2.1 Clarification of Terms

The access control framework distinguishes two dif-
ferent types of participants:Subjectsandobjects. Sub-
jects represent entities such as users of a system or a

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

176

process running in a system. In contrast, objects rep-
resent entities such as files, database entries, or exe-
cutable code within a system. Subjects access objects.
However, imagine a subject which wants to change
the access conditions of another subject, such as e.g.
the user from Figure 1 limiting the position sharing
to only family members (assuming subjects can be
grouped according to their family membership). In
this case, the former user modifying the access condi-
tions is the subject whereas the latter user represents
the object. Throughout this work we will refer to the
respective entity type being either a subject or an ob-
ject.

2.2 Classification of Protection Goals

Information can be protected under the consideration
of different protection goals, which leads to the so-
called protection targets. These protection targets in-
fluence the actual design and functioning of the sys-
tem or process concerned. The classification is build
out of four protection target classes which in turn
consist of a variety of targets. The protection target
classes are:Authentication, Access Control, Process
Control, andGranularity Control.

• Authentication: Covers all targets for the reli-
able identification of the relevant subjects and ob-
jects which are participating in the system. These
include theauthenticityof subjects and objects
which must have the necessary rights to join the
system as well as the actionliability , which as-
signs each action to a specific subject. To make
these actions traceable a storage area for trace in-
formation must be provided.

• Access Control:Covers all targets that play an es-
sential role for access control. Here a target that is
of crucial importance is the dataintegrity, as this
ensures that objects cannot be changed uncontrol-
lably and therefore guarantee that only subjects al-
lowed to make changes will be able to access this
data. Furthermore, theconfidentialityof informa-
tion must be ensured in order to hide information
from subjects who may not be allowed to read this
information.

• Process Control:Covers all targets that influence
the processing of data. This includesacceptance
of computation environments which are going to
process the data. Assuming a distributed environ-
ment, this protection target defines the computa-
tion nodes the data might be processed on. Be-
sides this, also dataextentis of importance, i.e.,
to define the amount of data that is available at
one time instant for data processing. By limiting

the data extent a limited view of the current data
window is provided.

• Granularity Control: Granularity control cov-
ers targets which play a role in obfuscating the
original data (object) in order to, e.g., prevent
conclusions to the subject the data originates
from with techniques such as anonymization and
pseudonymisation. Other techniques which be-
long to this protection target class are methods
that add some fuzziness to data in order to hide
detailed information on e.g., the current position,
or aggregate a certain amount of data elements be-
fore delivering it to subsequent operations.

These protection targets build the basis for the
comparison of related work in the following section.
The protection targets also define the main functional-
ities of our security framework which is the basis of
our system implementation, as shown in Section 5.

3 RELATED WORK

This section introduces some well-known security
concepts in the context of data stream processing sys-
tems (DSPS) and provides a comparison according to
the protection targets raised in Section 2.2. A DSPS is
characterized by an asynchronous and distributed exe-
cution of long running queries. This represents a ma-
jor challenge since, e.g., access policies might change
at runtime which require the use of appropriate mea-
sures in order to ensure changed security policies be-
ing enforced. These changes on the one hand should
not influence ongoing operations as this would affect
currently running queries negatively. On the other
hand the new policies must be enforced as quickly as
possible while avoiding centralized structures as they
constitute a single point of failure. Table 1 provides a
comparison of well-known concepts in this area w.r.t.
the protection targets presented in Section 2.2. These
concepts are described in detail below.

In the year 2005,Secure Borealis(Lindner, W. et
al., 2005)—which extended Borealis (Abadi, D. J. et
al., 2005)—was one of the first DSPS which had an in-
tegrated security concept to control data access. The
security concept is based on a general DSPS architec-
ture out of which additional components that enable
access control were derived. The query processing
in Secure Borealis is performed in a distributed fash-
ion. Communication between the single computation
nodes is encrypted to ensure data integrity and to pre-
vent it from being read by third parties. In contrast to
the query processing, the security concept of Secure
Borealis is based on a centralized structure to enforce

NexusDSS:�A�System�for�Security�Compliant�Processing�of�Data�Streams

177

Table 1: System comparison w.r.t. the protection targets authentication, access control, process control, the possibility of
controlling the access granularity of context data, and howthe protection targets are enforced by the respective system.

System

Authentication Access Control Process Control Granularity Enforcement

Authenticity Liability Integrity Confidentiality Acceptance Extent
Control

Secure
Role Subject Encryption

Centralized
— — "All or Nothing"

Centralized

Borealis Control Supervisor

ACStream Subject Subject Predicate Predicate —
Time-based

"All or Nothing" Rewrite Queries
Windows

FENCE Subject Subject Predicate SS+Operator — — "All or Nothing"
Rewrite Queries/

Security Punct.

NexusDSS Role Subject
Encryption/

SI Filter
Computation Parametrizable

LoD Filters
Augment Queries/

Certificates Node Set Windows Security Punct.

the security policies. This circumstance is a potential
bottleneck and represents a possible single point of
failure since all data first has to pass through this com-
ponent before it can be forwarded to subsequent op-
erations or the target. This centralized component en-
forces access control and consists of two parts,Object
Level Security(OLS) andData Level Security(DLS)
components. The OLS component is active before
runtime of queries and the DLS component is active
during query runtime. The OLS component is linked
to a role model that assigns to each subject (e.g., user)
a specific role that holds its associated access permis-
sions. Subjects hereby are identified by a username
and password combination. Based on this informa-
tion the OLS component decides whether a subject is
allowed to access objects (e.g., data). All objects a
subject is not allowed to access are hidden. The DLS
component enforces the security policies at query run-
time and consists of filters that are applied to the final
result of the queries to remove objects (data elements)
from the resulting data streams to which the subject
has no access. This in turn means that the access con-
trol enforcement is performed after the final data ele-
ments are determined, i.e. the entire query processing
is done. This strategy might discard costly calculated
data resulting in a waste of resources.

The access controls inACStream(Cao, J. et al.,
2009) can be defined on a data stream level for data
elements and their attributes. ACStream builds upon
Aurora (Abadi, D. J. et al., 2003). Access control re-
strictions are defined by expressions that describe an
explicit assignment of access rights to certain subjects.
To illustrate this, imagine a data stream holding posi-
tions where each data element has anID-attribute and
a location-attribute. An expression in ACStream can
define read access for a subjectA, if the ID-attribute
has a certain value or the position is within a defined
quadrant. A special feature of the concept is the pos-

sibility to define temporal constraints. A temporal re-
striction allows access to data elements which are in a
certain time interval. The start time and end time can
be explicitly defined and the time interval is provided
by defining the absolute time interval size and the in-
terval step size. ACStream enforces access control
by rewriting queries. The rewrite process possibly se-
lectssecurity operatorsinstead of regular operators to
carry out the defined access control constraints. Four
different types of security operators are available:Se-
cure Viewprocesses an input stream by applying the
access restrictions and returning a view of the data
stream with only data elements meeting the access re-
strictions.Secure Readoperators filter data elements
and remove attributes,Secure Joinoperators filter the
output data streams composed of multiple input data
streams, andSecure Aggregateoperators control ag-
gregate functions.

FENCE(Nehme, R. V. et al., 2010; Nehme, R. V.
et al., 2008) exploitssecurity punctuationsto enforce
access control to data streams. A security punctuation
is a data element within a data stream that defines the
access policies on the respective data stream. I.e., the
security punctuations are woven into the original data
streams when access restrictions are to be supported.
E.g., if at some point in time the GPS position stream
is restricted to a certain subset of subjects (users) a
corresponding security punctuation is generated and
is woven into the output stream to tell subsequent op-
erations about the changed access restriction setting.
Security punctuations are implemented by two punc-
tuation types. The first type is represented by adata
security predicatewhich controls access to data ele-
ments. The second type is represented by aquery se-
curity predicatewhich controls access to queries. To
control data access two possible approaches are pro-
posed. The first approach is asecurity filterapproach
which provides the use of the so-calledsecurity shield

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

178

plusoperator (SS+ operator). SS+ operators are inte-
grated into the original query and filter data elements
according to security punctuations. Here filtering for
security punctuations is directly integrated within the
query processing. The second strategy consists of
rewriting the queryand relying on existing operator
implementations. To support the filtering of security
punctuations the query predicates must be rewritten
such that—beside the original predicate condition—
the selection operator filters out data elements which
do not meet the access restrictions defined by the se-
curity punctuations.

3.1 Discussion

The approaches presented propose interesting fea-
tures and give valuable directions. However, the ap-
proaches are not suitable for NexusDS, our open and
distributed data stream processing system (presented
in Section 5.1). A major problem is query rewrite
since a complete rewrite functionality supposes the
query processor to semantically know all operators
available in the system. NexusDS is open and extensi-
ble, thus allowing arbitrary operators. Even only con-
sidering the rewrite of existing predicates might end
up in unpredictable overhead since changes to secu-
rity policies usually condition a restart of the affected
query. The centralized approach in Secure Borealis
guarantees that the security policies are enforced, but
it is not feasible since it represents a potential bottle-
neck limiting the amount of queries that can run in
parallel. Secure Borealis and ACStream in principle
allow to integrate custom operators into the system.
However, no precautions are taken to prevent uncon-
trolled outflow of data. Also the data access granular-
ity is not adjustable to domain-specific needs. Some
data provider generally permits other subjects to use
its objects (context data such as GPS positions). But
eventually a subject may also want to restrict the ac-
cess and processing of the exact objects to a certain
set of subjects and provide the data to others only less
accurate. Finally, the presented approaches only con-
sider access control mechanisms. However, also the
way data is being processed is of importance. E.g.,
certain data should not cross certain administrative
boundaries and thus processing should be limited to
a certain set of processing nodes.

Our augmentation approach is an extension on
a query graph level—denoted as stream processing
graph (SP-graph) throughout this work—and shows
some important advantages compared to the other ap-
proaches presented:

• The semantics of the operators must not be known
in order to adapt the SP-graph to meet the security
restrictions.

• The presented operator model is flexible in the
way it embeds the operator within a box. Thus
also operators which are not designed to work
with the security framework are still usable.

• Our approach allows to define and integrate arbi-
trary granularity filters to adapt the data details
and still allow to process them at the cost of some
reduction in data quality.

In the following sections we present the architec-
ture and the characteristics of our security framework
as well as the augmentation technique, that is realized
as part of the NexusDS stream processing system.

4 SECURITY FRAMEWORK

The security framework in NexusDS builds upon the
approaches presented so far and extends them to meet
the special requirements, given by an open, i.e. ex-
tensible, DSPS. In this section we present the secu-
rity framework for security compliant processing of
streamed data. Therefore, first basic assumptions for
the security framework are presented. Thereafter, we
detail on the functional capabilities.

4.1 Basic Assumptions

Each subject interacting with the data stream process-
ing system must be assigned a unique identity. This
means that for each user, operator1, and compute node
a unique identity must be defined. There already ex-
ist a variety of solutions, such as the identification
by a combination ofusernameandpassword. Hence,
we assume here subjects can identify themselves by
a valid username and password combination. Further-
more, all services and operators communicate using
a asymmetric key algorithm. This means data is en-
crypted with the public key of the receiver and only
the receiver is able to read the data by using its pri-
vate key. To ensure liability, it is important to track
all actions a certain subject does. Therefore, the cor-
responding log informations must be stored in a re-
stricted and fail-safe area.

Subjects are associated with a set of security poli-
cies which are managed by a policy management com-
ponent. These policies define access and process con-
ditions for the subjects and the affected objects. Poli-
cies are divided into the typesAccess Control(AC),

1Operator is referred to as synonymous with either a
source operator, an operator or a target operator is used.

NexusDSS:�A�System�for�Security�Compliant�Processing�of�Data�Streams

179

Figure 2: Augmentation principle of the secure framework. The original query formulated by applications is translatedto
an equivalent one with access control and process control patterns. In a second step the SP-graph is augmented by the
corresponding constraints defined by the access control patterns and the filters for the process control patterns. Afterwards,
the augmented SP-graph is ready for deployment by an appropriate deployment algorithm.

Process Control(PC), andGranularity Control(GC),
which are detailed in the following. Each policy type
covers a certain aspect of security according to the
protection goals.

First, we start presenting the different security con-
trol patterns. Afterwards, the underlying approach
to augment the SP-graphs with security policies is
shown. This must be done before deploying the SP-
graph to ensure that all security policies are met.

4.2 Security Control Patterns

Access Control. AC-policies ensure integrity of
data and confidentiality in terms of hiding data that
subjects are not allowed to access and provide a mech-
anism to trace actions of subjects accessing data. Ac-
cess control policies enforce anall or nothingseman-
tic. Thus it ensures that objects are only accessed by
subjects having the necessary permissions. Each AC-
policy is uniquely identified by apolicyID. Optionally,
also public keys might be provided to check the signa-
tures of the related operators and services and thus
verify their authenticity. This corresponds to the pro-
cedure of digital signature (Merkle, R. C., 1989) and
is transparently done by the security framework.

Process Control. PC-policies ensure acceptance of
the execution environments and limit the extent of vis-
ible data. PC-policies apply tonodesthus defining a
set of computing nodes which are allowed to execute
certainoperators. Furthermore, it is important to limit
theextentof data, i.e. the currently visible window of
data, for the operators. This way it is possible to con-
trol the quality of aggregates, e.g. such as traces of
mobile objects. PC-policies influence the placement
of operators as part of SP-graph deployment. There-
fore, we developed and presented a flexible operator

placement strategy (Cipriani, N. et al., 2011b) that
allows to restrict the actual placement according to
given restrictions, such as restricting the placement to
certain nodes by at the same time satisfying certain
QoS-conditions.

Granularity Control. GC-policies basically define
filters, that apply to operatorslots. A slot unam-
biguously defines an operator-related input or output.
These filters might be appliedbeforedata is send to
subsequent operators orafter data has been received
by this operator. This basically depends on the con-
crete configuration of the DSPS.

4.3 Mode of Operation

The principal mode of operation to augment SP-
graphs is depicted in Figure 2. The starting point is
the original SP-graph shown in the left part of Fig-
ure 2. For each subject–object pairing there is a se-
curity policy defined which must be met. This step
is denoted by theintegration processwhich ends up
in an intermediate SP-graph shown in the middle of
Figure 2. The intermediate SP-graph has AC-policies,
PC-policies, and GC-policies attached to their opera-
tors. Each policy type is shown in different shades of
grey. Integration ensures that relevant security poli-
cies are integrated into the SP-graph. The integration
process consists of three steps: AC-integration, PC-
integration, and finally GC-integration.

In the AC-integration phase, it is first checked for
AC-policies relevant to the subject running the appli-
cation (and thus issuing the SP-graph) which defines
data access to the data involved into the computa-
tion task. This is denoted byAC-Adefining whether
the subject is allowed to accessSource A. For exam-
ple, an AC-policy might exist for the third-party data

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

180

provider from the application scenario depicted in Fig-
ure 1 which forbids him to receive results of the linked
data. Thereafter, the AC policies forAC-B (Operator
B) and AC-C (Sink C) are attached to the SP-graph.
Note that AC-policies for all subjects involved must
be considered in this phase. This especially means
that also AC-policies for operators must be integrated
into the SP-graph.

The second phase, PC-integration, consists of
checking whether PC-policies relevant to the subject
(e.g., a user) are defined stating whether the subject
is allowed to execute the operators of the SP-graph.
Analogous to the AC-integration the respective PC-
policies are attached to the SP-graph. This is denoted
by the different PC-policies depicted in Figure 2. Be-
side the user-related PC-policies there might also ex-
ist operator-related PC-policies that limit the execu-
tion of a certain operator to a concrete set of nodes.
Thus, all existing PC-policies for all involved subjects
(including entities such as users, operators, or nodes)
must be attached to the SP-graph.

The GC-integration denotes the final phase be-
fore augmentation starts. Analogously to the previ-
ous integration phases in this phase GC-policies are
attached to the SP-graph. In Figure 2 these are dis-
played asGC-A, GC-B, andGC-C. The GC-policies
describe data transformation techniques to manipulate
the original data such that the involved subjects only
access the granularity of data they are allowed to. GC-
policies represent a refinement of the AC-policies and
PC-policies. At this point the intermediate SP-graph
consists of the original SP-graph with security pol-
icy information for all related subjects and objects at-
tached to it.

After the integration process theaugmentation
processtranslates the intermediate SP-graph to an
augmented SP-graph which is shown on the right
side of Figure 2. First, the security policies must be
checked for consistency before continuing. All AC-
policies and PC-policies must be checked. This es-
pecially means that all senders must check whether
the attached receivers of their data are allowed to ac-
cess the data depending of their attached PC-policy.
GC-policies need not to be checked since they are re-
finements to the AC-policies and PC-policies to fil-
ter data. The AC-policies map to interconnections
between the involved operators which semantically
mean that a certain operator is allowed to access data
from a previous one. The PC-policies condition the
AC-policy interconnections since they influence the
selection of computation nodes the operator can be
executed on. The GC-policies map to filters which al-
low a fine-grained access to the single data streams.
The placement of the filters may be done in three dif-

ferent ways. Referring to Figure 2 they may be placed
on the sender side

�

�

�

�1 , on the receiver side
�

�

�

�2 or on

both sides
�

�

�

�3 . The actual placement depends on the
receivers attached to a certain output stream. In Fig-
ure 2 this is shown for the combinationSource Aand
Operator B. In a nutshell,

�

�

�

�1 is always preferred and
selected tolimit the transferred datavolume. This
is beneficial if the receiver is a mobile device and
has stringent energy and bandwidth constraints.

�

�

�

�2
is used if there ismore than one receiverattached to
the output stream. Thus, the filters are executed on the
respective receivers. For

�

�

�

�3 we have awork sharing
approachwhich is selected ifSource AandOperator
B are both running on a mobile device or if the filtered
output stream is used by multiple attached operators
which themselves need a dedicated filtering.

5 SECURITY FRAMEWORK
INSIGHTS

After the security pattern discussions we now ex-
plain some internals about the characteristics of
our security framework as well as its implementa-
tion within our flexible stream processing framework
called NexusDS. We introduce the architecture of
NexusDSS (NexusDS Secure) with support for secu-
rity compliant processing of data streams. Finally, we
give some details on the operator framework and its
mode of operation.

5.1 NexusDSS – NexusDS Secure

NexusDS (Cipriani, N. et al., 2009) is an open data
stream processing system designed for processing
context data streams with extensive capabilities for
domain-specific adaptation and support for the protec-
tion goals stated in Section 2.2. NexusDS has been ex-
tended to also enable secure processing of streamed as
well as static context data, resulting in NexusDSS. Its
enhanced organization is depicted in Figure 3. Nexus-
DSS supports the distributed processing of streamed
context data by execution of SP-graphs on a heteroge-
neous network of nodes. NexusDSS allows a flexible
adaptation of the system functionality through the in-
tegration of customized services and operators. The
SP-graph thereby can be annotated by means of re-
strictions to influence the concrete deployment and ex-
ecution of the SP-graph. For example, deployment re-
strictions limiting the selection of a physical operator
can be defined in this context. This restriction has an
influence on the deployment process of the SP-graph.
Besides that, also runtime-specific restrictions can be

NexusDSS:�A�System�for�Security�Compliant�Processing�of�Data�Streams

181

Figure 3: Simplified architecture of the security concept tar-
geted by this paper.

defined. If an operator has specific parameters, these
parameters can be adjusted to meet certain conditions.
E.g., if we imagine a domain-specific rendering oper-
ator the resolution is such a parameter that influences
the runtime behavior of the operator.

TheCore Graph Service(CGS) performs the aug-
mentation of the SP-graph, by inserting e.g. missing
filters according to the access conditions and process
conditions defined. This task is performed by the help
of the Access Control Service(ACS). Beside others,
the ACS is composed of anIdentity Administration
Point (IAP) and aPolicy Administration Point(PAP).
The IAP is responsible for identifying all subjects
(e.g., users) and objects (e.g., data) available within
the system. The IAP also provides thePublic Key In-
frastructure(PKI) to secure the communication of ser-
vices and the data streams between operators against
unauthorized access. Furthermore, certificates for op-
erators executed in the secure environment are created
with the PKI. Certificates are needed to validate if op-
erators are known by the security framework and thus
can be executed. All services and operators interact-
ing with the secure environment need a corresponding
key and must be certified via the IAP. The PAP holds
the policies for accessing and processing data.

The fragmentation of the SP-graph into operator
groups is done by our M-TOP approach (Cipriani, N.
et al., 2011b), a multi target operator placement ap-
proach for heterogeneous environments. M-TOP con-
siders annotations at SP-graph level. These annota-
tions in the original work focused on QoS aspects
such as"latency should not exceed a certain value".
However, the annotations might also be of another
kind such as the security policies, annotated at SP-
graph level to adapt deployment decisions. The sin-
gle fragments are distributed across appropriateOp-
erator Execution Service(OES) which are instances
of computing nodes running a certain execution envi-
ronment for the operators of NexusDSS. Each OES-
instance runs on a different computing node. These
services represent the central components of Nexus-
DSS to process data streams. TheMonitoring Ser-

Figure 4: Secure operator which is part of the operator
framework supporting security policies. Dashed arrows in-
dicate control interaction with architectural componentsand
solid arrows indicates data consumed and produced.

vice(MS) collects runtime statistics for the computing
nodes running the operators and provides hints which
OES-instances to use for each fragment. These statis-
tics are exploited to enhance future placement deci-
sions.

5.2 Security Compliant Operator
Framework

Besides the different architectural entities necessary
for security policy management also the actual data
processing facility must support the notion of secu-
rity policies in order to make the security framework
work. For that purpose we adopt ablack-box princi-
ple decoupling the definition of processing logic (in
terms of operators) and security policies. This facil-
itates the development of operators since developers
can concentrate on the actual processing logic. To
support security policies, also the corresponding AC,
PC, and GC policies must be defined. The SP-graph
is augmented by the security policies valid for the sub-
jects and objects involved in the SP-graph definition.

To create an environment for safe operator execu-
tion (the same holds for source operators and sink op-
erators) the operators are embedded within abox. The
box provides the execution facilities for operators and
includesdecoders, filters, andencoders. Each of these
entities is associated to an ingoing and outgoing slot.
Also the operator itself is contained in the box and
only receives data that has been manipulated comply-
ing to the security policies.

Figure 4 illustrates the embedding of an operator.
First of all, the box, not the operator, receives all in-
coming data streams

�

�

�

�1 . The decoders decrypt all
incoming data streams and signals the encoders when
to add punctuations to the outgoing streams

�

�

�

�2 . Then
the box applies the necessary filters to the incoming
data streams before they are transferred to the oper-
ator

�

�

�

�3 and forwards the decrypted and filtered data

to the actual operator performing the operations
�

�

�

�4 .
When the operator has finished doing its job the box
receives the processed data from the operator and en-

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

182

Figure 5: Secure source which is part of the operator frame-
work supporting security policies. Solid arrows indicate the
source’s produced data streams.

crypts it by the encoders which also check if a punc-
tuation must be inserted before the data element. Fi-
nally, the data is passed to subsequent operators

�

�

�

�5 .
For sink operators, the figure looks similar but with
the difference that for sink operators there are no out-
puts.

The source operator is depicted in Figure 5 and is
also embedded in a box that carries out all security
relevant operations. However, this does not show in-
puts, since the source produces data. An example for
such a source is the GPS sensor from the introductory
example in Section 1. For source operators after the
data generation process (performed by the embedded
Source) the registered filters (GC-policies) must be ap-
plied to the respective data streams

�

�

�

�1 . As with the
operators described beforehand, different filters might
be defined for each outgoing data stream. After the fil-
tering the data must be encrypted and signed in order
to prevent manipulation from a third party

�

�

�

�2 . The
encrypted data is forwarded to subsequent operators�

�

�

�3 .

5.3 Security Characteristics

It is important to note that for encryption and decryp-
tion of the data streams a symmetric key approach is
used. For each SP-graph instantiated and executed a
separate key is generated. This segregates single SP-
graph instances running, maybe, on the same machine.
A time to live(TTL) period is assigned to each gen-
erated key. Before the TTL is reached a new key is
generated and propagated to the affected SP-graph en-
tities. This might result in a slightly higher overhead
but increases security for long running queries. The
concrete TTL assignment for the keys thus strongly
depends on the runtime of SP-graphs.

All operators (including particularly the source op-
erators and sink operators), whose access should be
controlled, are provided by theOperator Repository
Service(ORS). The good behavior of an operator is
verified by its associated certificate. Certificates are
awarded by a separate certificate authority that attests
through various checks (code check, verification or

test) the respective subject to be safe. Thus, although
no guarantee is given for good behavior nevertheless
a useful degree of control is carried out. The certifi-
cate contains a public and a private key (according to
an asymmetric key approach). The subject—the cer-
tificate belongs to—is now able to create signatures
to ensure its correct provenance. Therefore, a subject-
related hash value (e.g. the hash value of the opera-
tor) is computed and encrypted with the private key.
This signature is validated each time the operator is
going to be executed. Therefore, again the hash value
is computed and encrypted. The result is compared to
the existing signature. If they are equal execution can
be carried out. Otherwise the subject has been manip-
ulated at some point in time prohibiting the execution
of this subject in the secure environment.

6 DEPLOYMENT AND RUNTIME

According to the mode of operation and the security
control patterns discussed in the sections before, in
this section the implementation of our security frame-
work in the NexusDS system is presented. In this re-
gard, we illustrate the augmentation process by start-
ing with an excerpt of the original SP-graph document
in XML notation, as shown in Listing 1. Here, the ex-
ample in Figure 1 is revived as line 5 – 11 describe
the GPS data source (S1).

1 <!−− namespace definitions −−>

2 < xmlns:nsas="http://www.nexus.uni−stuttgart.de/1.0/NSAS"

3 xmlns:eas="http://www.nexus.uni−stuttgart.de/1.0/SNSetup

4 Descriptor/EAS" [. . .] >

5

6 <eas:block>

7 <nsas:value>

8 <eas:blockType>source</eas:blockType>

9 <eas:blockID>ResultSetSource0</eas:blockID>

10 <eas:classURI>urn:java:de.uni_stuttgart.nexus.streamFederation.

11 sources.extended.vispipe.resultSetSource.

12 ResultSetSource</eas:classURI>

13 </nsas:value>

14 </eas:block>

15

16 [. . .]

Listing 1: SP-graph excerpt for the source operator
retrieving data from third-party servers.

The first part consists of namespace definitions.
The second part consists of different sections, defin-
ing the SP-graph structure, including operators, links
and so forth. The displayed part is an excerpt of
the operator definition section. The code defines a
source operator namedResultSetSource0(also being
an unique identifier for this source operator). The

NexusDSS:�A�System�for�Security�Compliant�Processing�of�Data�Streams

183

Figure 6: Illustration of the augmentation concept presented. The original SP-graph on the left side is augmented by the
corresponding measurements declared in the AC, PC, and GC policies respectively.

class representing this source operator is defined by
theeas:classURIattribute.

6.1 Augmenting SP-graphs with
Security Policies

Figure 6 illustrates the most important aspects of the
augmentation process as implemented in NexusDSS.
The figure picks up the introductory example scenario
from Figure 1. The three-stage augmentation of SP-
graphs by AC-policies, PC-policies, and GC-policies
is described in the following:

First, the AC-policies are considered. Both Bob
(T1) and Alice (T2) are allowed to access Mike’s pri-
vate data. Furthermore, also the FF visualization (O2)
must be able to access the data of the previous com-
bine step (O1), since also operators represent a sub-
ject which needs access permissions. Therefore, the
operator-related AC-policies attached to the SP-graph
are evaluated. Additionally, the certificates of all op-
erators are verified if a signature is provided.

Thereafter, the PC-policies influence the place-
ment of operators for SP-graph deployment. The set
of nodes that correspond to the PC-policies is deter-
mined by the operator itself via meta-data. E.g. the
visualization operator (O2) might need aGraphic Pro-
cessing Unit(GPU) to properly run. Additionally,
the PC-policies define a second set of nodes, that
are needed by an operator in order to process its SP-
graph’s predecessors data. The intersection of these
two sets constitute the set of nodes the operator can
be executed on. Furthermore, also the quality of ag-
gregates can be controlled by PC-policies by limiting
the extend of visible data.

Finally, the SP-graph is adapted according to the
GC-policies. Therefore, the GC-policies are evalu-

ated for each operator and the corresponding filters
are integrated into the SP-graph, e.g., when Alice (T2)
gets Mike’s coarse location.

At this point the augmentation phase is completed
and the deployment phase starts. The deployment
is out of this paper’s scope. We refer to this step
by pointing to our constraint-aware SP-graph deploy-
ment framework called M-TOP (Cipriani, N. et al.,
2011b). Each SP-graph fragment maps to anOper-
ator Execution Instancewhich executes the contained
operators, encoder, decoder, and filters. The aug-
mented and deployed SP-graph runs and generates
data originating from the two source operatorsA and
B until the sink operatorsC andD are reached.

Listing 2 resulted from Listing 1 by adding the
three policy types. Two additional sections are inte-
grated into the SP-graph document:policiesandfil-
ters. In our example listing, for the source operator
ResultSetSource0a policy is added. This source op-
erator corresponds to the source operatorA from Fig-
ure 2, representing the source for the personal data on
the mobile device. Each policy has a related opera-
tor, denoted by theblockID attribute. Furthermore,
each policy also has an uniquepolicyID attribute to
uniquely identify the corresponding policy that ap-
plies here. The policy for the source operatorA de-
fines a filter. This filter applies to the outputslotID
0 of the givenblockID . filterS defines the signature
of this filter to be sure the executed filterfilterURI is
the real one. The attributeuser represents the user re-
questing the SP-graph execution. Finally, the attribute
policyID correlated this filter to the policy defining it.

DATA�2012�-�International�Conference�on�Data�Technologies�and�Applications

184

1 <!−− namespace definitions −−>

2 < xmlns:nsas="http://www.nexus.uni−stuttgart.de/1.0/NSAS"

3 xmlns:eas="http://www.nexus.uni−stuttgart.de/1.0/

SNSetupDescriptor/EAS" [. . .] >

4

5 <eas:block>

6 <nsas:value>

7 <eas:blockType>source</eas:blockType>

8 <eas:blockID>ResultSetSource0</eas:blockID>

9 <eas:classURI>urn:java:de.uni_stuttgart.nexus.streamFederation.

sources.extended.vispipe.resultSetSource.ResultSetSource</

eas:classURI>

10 </nsas:value>

11 </eas:block>

12

13 <eas:policy>

14 <nsas:value>

15 <eas:blockID>ResultSetSource0</eas:blockID>

16 <eas:policyID>aff337fe−abcf−4077−bb3c−743f4562b424</

eas:policyID>

17 </nsas:value>

18 </eas:policy>

19

20 <eas:filter>

21 <nsas:value>

22 <eas:blockID>ResultSetSource0</eas:blockID>

23 <eas:slotID>0</eas:slotID>

24 <eas:filterS>kqiR+IjnnRwui4JmPA83zG1hRmxQj [...]

Qwa0Pv02gICiJQgxv382Pw==</eas:filterS>

25 <eas:filterURI>urn:java:de.uni_stuttgart.nexus.streamFederation.filters.

secure.resultSet.ResultSetFilter</eas:filterURI>

26 <eas:role>poweruser</eas:role>

27 <eas:policyID>aff337fe−abcf−4077−bb3c−743f4562b424</

eas:policyID>

28 </nsas:value>

29 </eas:filter>

30

31 [. . .]

Listing 2: SP-graph excerpt for the source operator
retrieving data from third-party servers.

7 CONCLUSIONS

With the rapidly increasing number of mobile phones
equipped with GPS sensors and mobile Internet con-
nections, the use of data stream processing is increas-
ing in many application areas. This work presents a
security framework dealing with the requirements of
modern applications relying on the data stream pro-
cessing paradigm. The security framework proposes
different security control patterns, i.e. AC, PC, and
GC, which can be assigned to different system en-
tities. The defined security control patterns are ex-
ploited to ensure a safe processing of sensible data.
This is achieved by augmenting SP-graphs with AC,
PC, and GC policies. By the proposed security frame-
work it is possible to optimally adjust the density of

information that is going to be processed as well as to
limit access to data.

As future work issues we want to further extend
our framework by additional mechanisms when se-
curity policies change during the execution of SP-
graphs. A current problem is that certain security pol-
icy changes—such as the addition of a filter or the
change of a PC policy—mean to stop current execu-
tion and restart a new modified SP-graph instance.

REFERENCES

Abadi, D. J. et al. (2003). Aurora: a new model and architec-
ture for data stream management.The VLDB Journal,
12:120–139.

Abadi, D. J. et al. (2005). The Design of the Borealis Stream
Processing Engine. InSecond Biennial Conference on
Innovative Data Systems Research (CIDR 2005).

Anderson, R. J. (2008).Security Engineering: A Guide to
Building Dependable Distributed Systems. Wiley Pub-
lishing.

Cao, J. et al. (2009). ACStream: Enforcing Access Control
over Data Streams. InData Engineering, 2009. ICDE
’09. IEEE 25th International Conference on.

Cipriani, N. et al. (2009). NexusDS: A Flexible and Extensi-
ble Middleware for Distributed Stream Processing. In
Proceedings of the 13th International Symposium on
Database Engineering & Applications.

Cipriani, N. et al. (2011a). Design Considerations of a Flex-
ible Data Stream Processing Middleware. InProceed-
ings of the 15th Conference on Advances in Databases
and Information Systems.

Cipriani, N. et al. (2011b). M-TOP: Multi-Target Opera-
tor Placement of Query Graphs for Data Streams. In
IDEAS ’11: Proceedings of the 2008 International
Symposium on Database Engineering & Applications.

Lindner, W. et al. (2005). Towards a secure data stream
management system. Inin TEAA 2005.

Merkle, R. C. (1989). A certified digital signature. InPro-
ceedings on Advances in cryptology.

Nehme, R. V. et al. (2008). A Security Punctuation Frame-
work for Enforcing Access Control on Streaming Data.
In Data Engineering, 2008. ICDE 2008. IEEE 24th In-
ternational Conference on.

Nehme, R. V. et al. (2010). FENCE: Continuous access
control enforcement in dynamic data stream environ-
ments. InData Engineering (ICDE), 2010 IEEE 26th
International Conference on.

Nicklas, D. and Mitschang, B. (2004). On building location
aware applications using an open platform based on
the NEXUS augmented world model.Software and
System Modeling, 3(4):303–313.

NexusDSS:�A�System�for�Security�Compliant�Processing�of�Data�Streams

185

