
On the Development of Totally Self-checking Hardware Design for
the SHA-1 Hash Function

Harris E. Michail1, George S. Athanasiou2, Andreas Gregoriades3, George Theodoridis2
and Costas E. Goutis2

1Electrical Eng. and Information Technology Dept., Cyprus University of Technology, Kyprianos Str., Lemesos, Cyprus
2Electrical and Computer Engineering Dept., University of Patras, Rio Campus, 26500, Patras, Greece

3Computer Science and Engineering Dept., European University of Cyprus, Nicosia, Cyprus

Keywords: Cryptography, Hash Functions, SHA-1, Totally Self-checking, Concurrent Error Detection.

Abstract: Hash functions are among the major blocks of modern security schemes, used in many applications to
provide authentication services. To meet the applications’ real-time constraints, they are implemented in
hardware offering high-performance and increased security solutions. However, faults occurred during their
operation result in the collapse of the authentication procedure, especially when they are used in security-
critical applications such as military or space ones. In this paper, a Totally Self-Checking (TSC) design is
introduced for the currently most-used hash function, namely the SHA-1. A detailed description concerning
the TSC development of the data- and control-path is provided. To the best of authors’ knowledge, it is the
first time that a TSC hashing core is presented. The proposed design has been implemented in 0.18μm
CMOS technology and experiments on fault caverage, performance, and area have been performed. It
achieves 100% coverage in the case of odd erroneous bits. The same coverage is also achieved for even
erroneous bits, if they are appropriately spread. Compared to the corresponding Duplicated-with-Checking
(DWC) design, the proposed one is more area-efficient by almost 15% keeping the same frequency.

1 INTRODUCTION

Cryptographic hash functions are properly-
developed algorithms that are used by security
systems to provide authentication services. An
application domain of hash functions is the
verification of the integrity of the exchanged
messages. For this reason, hash function are
employed in digital signature algorithms like DSA
(NIST, 2002a) and other applications, such as the
Secure Electronic Transaction (Loeb, 1998) and
Public Key Infrastructure (NIST, 2001).
Additionally, hash function is the major building
block of the Hashed Message Authentication Code
(HMAC) (NIST, 2002b), of the Internet Security
protocol (IPSec) (NIST, 2005) of the forthcoming
Internet Protocol (IPv6) (Loshin, 2004).

As hash functions are used in real-time
applications, they must be properly implemented to
offer high throughput, secure, and reliable solutions.
The hardware implementation of the hash functions
offers high-speed proccesing and secure
encapsulation, however, a crucial issue arises when

these systems are used in high-noisy enviroments
(e.g. space or military applications). In that cases,
potential errors during their normal oparation have
to be timelly detected. In the last years, the
development ofsecurity algorithms (hash functions
and block ciphers) with Concurrent Error Detection
(CED) capabilities is a very active research (Juliato,
2008), (Juliato, 2010). CED is the common method
to develop self-checking designs, where the Circuit
under Test (CuT) is partitioned to its major units and
each of them is, then, redesigned applying CED
techniques. A more robust subset of the self-
checking circuits is the Totally Self-Checking
(TSCs) circuits (Lala, 2001).

In this paper, a TSC, 4-staged, pipelined design
for the SHA-1 hash function is introduced. For each
component of the architecture a detailed desrciption
concerning its development as a TSC is given. The
proposed TSC design achieves 100% fault covarage
for the odd faulty bits, while, in some caes, even
faulty bits are detected as well. The introduced
design is implmented in TSMC 0.18μm technology
and experimental results regarding the frequency,

270 E. Michail H., S. Athanasiou G., Gregoriades A., Theodoridis G. and E. Goutis C..
On the Development of Totally Self-checking Hardware Design for the SHA-1 Hash Function.
DOI: 10.5220/0004059302700275
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 270-275
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

throughput and area were gathered. An additional
design using only the Duplication-with-Checking
(DWC) method has been also developed in the
above technology for comparison reasons. Based on
the experimental results, the proposed TSC desing
achieves the same throughput as the DWC one but it
is almost 15% more area-efficient.

The rest of the paper is organized as follows. In
Section 2 the majority of the related published
works, regarding error detection and/or correction is
security IPs, is reported. Section 3 describes briefly
the background for SHA-1 hash function and CED
principles. In Section 4 the introduced TSC hashing
core is analytically presented. The experimental
results, for error detection capability and
performance, of the introduced TSC core are shown
in Section 5, while Section 6 concludes the paper.

2 RELATED WORK

In the literature, there are several published works
concerning the application of error detection and/or
correction in cryptographic IPs. However, such
designs have mainly been proposed for block ciphers
(Karri, 2002); (Bertoni, 2003); (Karri, 2002).

Considering the application of error
detection/correction principle on hash functions, few
published works exist in the literature. In (Ahmad,
2007), error detection with parity coding was
applied in SHA-512 hash function transformation
round and implemented in FPGA technology. In
(Juliato, 2010), a fault tolerant hardware design of
the HMAC on top of SHA-256 and SHA-512 hashes
is presented. Similar work is also presented in
(Juliato, 2008), dealing only with the SHA-256 hash
function core. In both of the above works, the fault
tolerance principle was applied only in the registers
of the utilized designs. To the best of authors
knowledge, it is the first time that a TSC design is
developed including the message schedule and
control units. Furthemore, the adopted design
procedure is generic and can be also applied (with
slight modifications) to other existing hash functions
(e.g. SHA-256, RIPEMD) due to the similarities of
their components.

3 BASIC BACKGROUND

3.1 SHA-1 Hash Function and Design

SHA-1 hash function is an iterative algorithm that
operates on 512-bit message blocks and returns a

160-bit output, h, that is called message digest. A
message schedule procedure is applied on the
message blocks to produce the Wt values, which are
fed to the corresponding t-th iteration of the
transformation round. The transformation round
takes as input the Wt value, a constant value, Kt
defined by the standard, and the initial values, H(0),
(in the first iteration) or the values produced in the
previous iteration, performs the transformation
processing, and generates through 80 iterations a
series of hash values. The last generated hash value
is considered as the message digest, h.

The SHA-1 transformation round (Figure 1)
includes simple additions, rotations, and four Non-
Linear Functions (NLFs). These NLFs functions
consist of simple XOR, AND, and NOT logical
operations. More information about SHA-1
algorithm can be found in (NIST, 2008).

Figure 1: SHA-1 transformation round.

At the t-th iteration (t = 1, 2,…,80), it receives
five 32-bit words, namely the (at-1 – et-1) ones,
performs the computations shown in Figure 1, and
produces the output values (at – et). Concerning the
production of the Wt values, the first 16 of them are
produced by a simple splitting of the 512-input
block into 16 32-bit words. The remaining 64 are
produced through Eq. (1),

()1
3 8 14 16 , 16 t 79t t t t tW ROTL W W W W− − − −= ⊕ ⊕ ⊕ ≤ ≤ (1)

where ROTLx stands for x times left bit rotation and
⊕ for XOR.

As mentioned in the introduction, the target
architecture is a 4-stage pipeline one because it
offers a balanced compromise in terms the achieved
throughput and area. The target architecture includes
four pipeline stages with each one includes a Round
unit i (i = 1, 2, 3, and 4), which corresponds to the
hash transformation round (see Figure 1), a W unit
for producing the Wt values, and a memory, K, for
storing the constant values. Also, pipeline registers

On�the�Development�of�Totally�Self-checking�Hardware�Design�for�the�SHA-1�Hash�Function

271

exist at the output of each Round unit. The W unit
blocks comprise XOR trees, as described before (see
Eq. 2). The control logic includes four counters and
each pipeline stage executes 20 iterations of the
transformation round.

3.2 CED Techniques

The use of CED introduces redundancy in the
produced design, which may be hardware, time, or
information redundancy. Hardware redundancy
refers the duplication of the CuT and checking the
outputs (Duplication-with-Checking or DWC). On
the other hand, time redundancy techniques re-
compute the output of the CuT at different time
instances with the same circuit. Finally, information
redundancy concerns the appending of data with
extra bits produced by a coding scheme (e.g. parity
coding) in order to detect potential errors (Lala,
2001).

A more robust subset of self-checking circuits is
the Totally Self-Checking circuits (TSCs). In order a
circuit to be TSC, it has to satisfy the self-testing and
fault secure properties. Self-testing means that for
every fault of an assumed fault set the circuit
produces a non-codeword at the output for at least
one input codeword. On the other hand, the fault-
secure property ensures that for any fault in the
assumed fault set, the circuit’s output is either a
correct codeword or a non-codeword (Lala, 2001).

Compared to a system developed using the
genral CED principle, a TSC one offers important
benefits. Specifically, in a TSC design except the
data errors, errors ocured at the included checking
circuitry are also detected. Also, a TSC system is
more efficient in terms of area and throughput than a
DWC one. Finally, contrary to DWC system, the
corrsponding TSC one allows laocating the faulty
component. Thus, it can be re-designed in case of
continuous failing, without much effort.

4 TSC SHA-1 CORE

In this section the proposed TSC SHA-1 core is
described. We start presenting the general topology
of the TSC components that are developed.
Afterwards, the TSC design of the data path and
control units components are described. In the end,
the finalization of the TSC core is developed.

4.1 Topology of the TSC Components

To produce the TSC SHA-1 core, both information

redundancy (parity coding) and hardware
redundancy (DWC) are utilized. The choice between
them is made taking into account the introduced area
penalty and the incapability of applying information
redundancy in some circuit blocks.

Figure 2: Block diagram of a TSC component based on
information redundancy.

According to Figure 2, a TSC module consists of
the Circuit under Test (CuT) and the Error
Detection unit. Furthermore, the Error Detection unit
includes three components which are the Codes
Prediction, the Codes Computation, and the Checker
units. As the CuT and the Code Prediction unit are
separate circuits without common parts, the TSC
principle is validated.

The role of the Codes Prediction unit is to predict
the codes (check bits) of the CuT output. In our case,
this unit is a parity prediction unit that predicts the
parities of the output data using the parity bits of the
incoming data. The Codes Computation unit is used
for computing the codes of the output (i.e. the
complement check bits) using the produced output
data of the CuT. Finally, the Checker performs the
comparison between the predicted and computed
codes and produces the error signal.

When DWC is applied, the block diagram of the
TSC module is shown in Figure 3. This diagram is
similar to that of Figure 3 with the exception that the
CuT is duplicated, while the Codes Prediction unit is
omitted. However, there is still a Codes
Computation unit for producing the output’s code
that is going to be fed in the next TSC circuit.

Figure 3: Block diagram of a TSC based on DWC.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

272

The Checker unit used in this work is an r-bit
Two Rail Checker (TRC) circuit. It receives two
inputs say X = (X0, X1) and its complement X’ = (X’0,
X’1), compares them and produces two outputs Z and
Z’ which are complementary if there are not faulty
input bits. Moreover, the TRC fulfils the TSC
principles ass stated previously and can detect faults
potentially occurred during its own operation.
Hence, it does not affect the TSC nature of the
whole design. This type of TRCs has a special
property (Anderson, 1971): There is a great
similarity between a part of the TRC and a parity
generator. Hence, exploiting the incorporated TRC
we can produce parity bits from a TSC sub-circuit
implemented with hardware redundancy. This way,
the produced TSC designs are more area-efficient,
because: a) TSC blocks using hardware redundancy
and TSC blocks using information redundancy are
easily connectable and b) in cases where hardware
and information redundancy techniques are used at
the same time in a TSC module, the data parities are
produced by the incorporated TRC.

4.2 TSC Modules of the SHA-1 Design

A) TSC adders. The addition components contain
two computational paths, which are the sum and
carry computation ones. The above computation
paths are described by Equation 2, letting Si and Ci
be the sum and carry outputs of the i-th stage, where
0 ≤ i ≤ n-1:

() ()
1

1

i ii i

i i i i ii i

S CX Y
C CX Y X X Y

−

−

= ⊕ ⊕

⎡ ⎤ ⎡ ⎤= ⊕ + ⊕⎣ ⎦⎢ ⎥⎣ ⎦

(2)

In order to develop a TSC adder unit, the sum and
carry computation paths have to be checked without
sharing common logic for checking. Regarding the
sum path, the parity bit, PS, for each byte of the sum
output is calculated as follows:

()

() () ()

1 1

1
0 0

1 1 1

1
0 0 0

n n

iS i i i
i i

n n n

i i i
i i i

X Y C

S CP X Y

CX Y
P P P

− −

−
= =

− − −

−
= = =

= = ⊕ ⊕

= ⊕ ⊕

= ⊕ ⊕

∑ ∑

∑ ∑ ∑

(3)

where PX and PY are the parities of the X, Y inputs.
The PC is the parity of the (i-1)-bit carry array. The
sum parity prediction can be performed through
adding resources for the above mentioned 3-input
XOR operation. The parities of the X and Y data are
already known and fed as input in the parity
prediction unit. Regarding the parities of the carries,
they have to be computed. However, the carry
computation path has to be checked independently

from the sums one. Thence, the direct computation
of PC from the carries and its usage in Eq. 3 would
violate the TSC principle.

Exploiting the special property of the TRC
circuits that was mentioned in Sub-section 3.2, the
production of the PC bits can be done using a DWC
scheme for the carry bits along with a TRC. The
block diagram of a TSC adder is shown in Figure 4.

Figure 4: TSC 32-bit modulo adder.

B) TSC NLFs and Sole Rotators. Concerning these
components, the effectiveness of applying the parity
scheme and constructing a Parity Prediction Unit has
to be investigated. For a significant amount of these
components, the application of the parity coding
scheme leads to a TSC design that is more complex
and therefore more area consuming than the
corresponding DWC one. Hence, for those
components the DWC scheme is followed. If the
parity prediction unit is able to be formed, it is
implemented with the minimum possible area
penalty.
Regarding the NLFs, the only one that is more
efficient to be implemented using the parity coding
scheme is the Par function, while all the others are
implemented using the DWC scheme. The TSC Par
block is similar with the one depicted in Figure 3.
The topology of the other two TSC NLFs (Ch, Maj)
is shown in Figure 3. Regarding the sole rotators that
exist in the transformation round of SHA-1 hash
function, they realize bit-level rotations. The
exploited parity bit scheme in this paper operates on
bytes. Thus, the complexity of parity prediction is
highly increased, tending to be infeasible. Therefore,
the TSC rotators are implemented using the DWC
scheme, similarly to Figure 4.
C) TSC Registers and Multiplexers. In registers and
multiplexers the input is transferred to output

On�the�Development�of�Totally�Self-checking�Hardware�Design�for�the�SHA-1�Hash�Function

273

unchanged without performing any processing.
Hence, the parity coding can be applied easily. The
corresponding block diagram of these TSC
components is similar with the one shown in Figure
2.
D) Message Scheduling Units. As described in Sub-
section 3.1, the message scheduling for each round
is performed by a shift-register, a W unit block and a
2to1 32-bit MUX. The MUX is transformed to TSC
as described in 4.2.1B and shown in Figure 3. The
16x32-bit shift register consists of 16 32-bit registers
consecutively connected to perform the 32-bit data
shifting. Hence, the corresponding TSC shift register
consists of 16 TSC cells (registers), which are
implemented as described in (C). The incorporated
XOR tree is developed to TSC using information
redundancy and its topology is similar to the one of
Figure 2.
E) Control Units. The development of the control
unit components (counters) to TSC ones begins with
an appropriate modification of them, namely the
production of complementary pairs of the control
signals. This is required because the control signals
have to be checked without violating the TSC
principle. This action introduces minor delay in the
control unit’s process, because its components are
simple counter blocks. The application of parity
coding in the counter blocks leads to TSC ones that
consume more area than the DWC ones. Therefore,
the TSC transformation is accomplished by applying
the DWC scheme along with a TRC for the output’s
checking, similarly to Figure 3.

4.3 Finalization of the TSC SHA-1
Core

At this point, all the components of the SHA-1
function, together with the majority of their
interconnections have been developed fulfilling the
TSC principle. However, there is a possibility of
either concurrent utilization of information and
hardware redundancy for data buses, or existence of
control signals that are checked neither during their
production, nor before their consumption. Thus,
some interconnections may allow some errors to
pass undetectable.

Regarding the first type of the above issues,
typical examples are the bus branches just before the
DWC nodes. The data from the same bus are
transferred to both the main and the duplicated
module. Hence, there is a possibility that a fault
occurs just before the branch and the error will be
transferred to both the above modules and not be
detected. In order to deal with such cases, a

complement parity generation and checking is
performed just before the main and the duplicated
module. The problems of the unchecked control
signals are addressed via some additional resources
(TRCs) for checking the complementary pairs of
control lines that serve as inputs in a component.
The same also holds for the Control Unit’s
components themselves. The complementary pairs
are produced either by the current Control Unit
itself, or by other similar Unit of the current core.

5 EXPERIMENTAL RESULTS

The TSC SHA-1 core that was developed was
captured in VHDL, validated for its functionality by
using a large set of input test vectors, and
implemented in TCMC 0.18μm CMOS technology.

Each individual TSC component of the TSC
SHA-1 design was tested for a large number of test
cases targeting different types of potential errors, in
order to validate its error detecting ability. To model
multiple odd faulty bits, a single fault was injected,
while the multiple even faulty bits were modelled by
two appropriately injected erroneous bits.
Concerning the first case, a single fault was injected
consecutively in every bit of a selected input of each
TSC component. The achieved detection was 100%.
Regarding double fault injection, two error bits are
considered: the first one for all the bits of the first
two bytes and the second one for all the bits of the
remaining two bytes of the input quantity. This way,
an even number of errors in the input quantity will
be set for detection. The achieved error detection
was again 100%.

Regarding the performance evaluation, three
metrics were exploited, namely the frequency (F),
the Area (A) and the Throughput (T). The frequency
and the area were obtained by the employed tool,
while the throughput was computed by Eq. (4):

#
#

bits FThroughput
cycles

⋅
= (4)

where #bits refer to the number of the processed
bits, #cycles corresponds to the required clock
cycles between successive messages to generate
each hash value, and F is the frequency.

To the best of authors’ knowledge, there is no
previously published work in the literature
presenting complete TSC hashing cores. Therefore,
the comparisons were made among: a) The hashing
core without error detection, b) The TSC hashing
core and c) The DWC hashing core. It has to be
mentioned that, all the CED techniques introduce

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

274

some kind of delay in the critical path. In order to
fairly evaluate the proposed TSC core, the frequency
among the three core versions under comparison was
kept the same.

In Table 1, the performance metrics for the SHA-
1 hash function’s architectures, implemented in
0.18μm CMOS technology, are presented. As it can
be seen, the TSC SHA-1 core introduce an area
overhead of 69%, compared to the SHA-1 core
without any form of CED in the same operating
frequency. However, it is more efficient compared to
DWC SHA-1 core, by almost 15%.

Table 1: Performance evaluation results for SHA-1 hash
function’s designs.

Design F(MHz) Area
(kgates)

Throughput
(Gbps)

SHA-1 without CED 350 45.1 8.96
SHA-1 DWC 350 89.7 8.96

Proposed TSC SHA-1 350 77.6 8.96

6 CONCLUSIONS

This paper proposed a TSC design of the SHA-1
hash function. The resulted fault detection for odd
faulty bits is 100%, while, in some cases, even faulty
bits are detected as well. The TSMC 0.18μm CMOS
implementation of the resulted TSC core, proved
that the introduced TSC core is more area-efficient,
than the corresponding DWC one. Future work will
be mainly focused on developing TSC designs of the
other functions of the SHS family and other hashes.

REFERENCES

Ahmad, D., I., Das, A., S., 2007. Analysis and detection of
errors in implementation of SHA-512 algorithms on
FPGAs. In Int. Journal of computer Oxford University
Publishing,, vol.50, no.6, pp.728-738.

Anderson, D., A., 1971. Design of Self-Checking Digital
Networks Using Coding Techniques. Doctoral
Dissertation. CSL/Univ. Illinois, Urbana, rep. n.527.

Bertoni, G., Breveglieri, L., Koren, I., Piuri, V., 2003.
Error analysis and Detection Procedures for Hardware
Implementation of the Advance Encryption Standard.
In Computers, IEEE Transactions on , vol.52, no.4,
pp. 492- 505.

Juliato, T., M., Gebotys, C., 2008. SEU-resistant SHA-256
designs for Security Satellites. In 10th Workshop on
Signal Processing for Space Communications (SPSC)
Conference, pp.1-17. Greece, EU.

Juliato, T., M., Gebotys, C., 2010. An efficient fault-
tolerance technique for the Keyed-Hash Message
Authentication Code. In International Conference on

Aerospace, IEEE, pp.1-17. Big Sky, MT.
Karri, R., Wu, K., Mishra, P., Kim, Yongkook, 2001.

Fault-Based Side-Channel Cryptanalysis Tolerant
Rijndael Symmetric Block Cipher Architecture. In
International Symposium on Defect and Fault
Tolerance in VLSI Systems. pp.427-435. San
Francisco, CA, USA.

Karri, R., Wu, K., Mishra, P., Kim, Y., 2002. , Concurrent
Error Detection Schemes for Fault Based Side-
Channel Cryptanalysis of Symmetric Block Ciphers.
In Computer-Aided Design of Integrated Circuits and
Systems (CAD), IEEE Transactions on, vol.21, no.12,
pp. 1509- 1517.

Lala, P., K., 2001. Self-Checking and Fault Tolerant
Digital Design. Morgan Kaufman Publishers. San
Francisco, USA.

Loeb, L., 1998. Secure Electronic Transactions:
Introduction and Technical Reference. Artech House
Publishers. Norwood, USA.

Loshin, P., 2004. IPv6: Theory, Protocol and Practice,
Elsevier Publications. USA.

NIST, 2001. Introduction to Public Key Technology and
the Federal PKI Infrastructure. SP 800-32., NIST, US
Department of Commerce Publications, USA.

NIST, 2002a. Digital Signature Standard Federal
Information Processing Standard. FIPS 186-1 NIST,
Department of Commerce Publications, USA.

NIST, 2002b. The Keyed-Hash message authentication
code (HMAC). NIST-FIPS 198, NIST, US
Department of Commerce Publications, USA.

NIST, 2005. Guide to IPSec VPN’s. NIST-SP800-77,
NIST, Department of Commerce Publications, USA.

NIST), 2008. Secure Hash Standard (SHS). NIST-FIPS
180-3, Department of Commerce Publications, USA.

On�the�Development�of�Totally�Self-checking�Hardware�Design�for�the�SHA-1�Hash�Function

275

