Towards a Framework for Information System Testing
A Model-driven Testing Approach

Federico Toledo Rodriguez’, Beatriz Pérez Lamancha? and Macario Polo Usaola®
!Abstracta, Montevideo, Uruguay
%Centro de Ensayos de Software, Universidad de la Rep(blica, Montevideo, Uruguay
3Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain

Keywords:

Abstract:

Software Testing, Model-based Testing, Information System Testing, Test Data.

Testing has an important role within the development of a software system; the automation of testing tasks

has been largely used with the goal of minimizing costs and increasing productivity. For some of those tasks
—as it is the execution of test cases— well-known solutions already exist as the industry adopted them many
years ago. This is not the case with test data generation, and even less for software that uses databases,
where this task is particularly complex. In the present work we propose to generate test cases automatically
to test information systems that use relational databases. We represent the data model with UML Data
Modeling Profile, automatically extracted from the database with reverse engineering techniques. Then,
applying model-driven testing, test cases are generated from the data model, represented with the standard
UML Testing Profile. The test case generation also includes test data inputs, in order to accomplish certain

coverage criteria defined on the schema.

1 INTRODUCTION

An Information System (IS) is a software system
that allows the manipulation of structured data for a
specific business goal. The importance of testing in
the IS development process has being growing
lately, looking for better quality, but it is still one of
the most time consuming tasks. Commonly, IS’s
consist of applications which deal with the
information saved in relational databases (DB),
storing data of different entities on the base of
particular business rules. Thus, there is a
correspondence between the visual components (e.g.
web forms), the data structures (generally in
relational DB) and the logic in the middle to
accomplish the business rules. The basic operations
to manipulate data structures are the CRUD
operations (create, read, update, delete). For
example, if values are updated in the user interface,
this will produce the execution of an operation on an
object in the middle layer, and then an operation of
type update on the DB.

Considering this, the DB is one of the essential
components for an IS. To manage it, the IS could
provide several applications with different nature
(according to the type of user, operating system,

172 Toledo Rodriguez F., Perez B. and Polo Usaola M..

environment, kind of device, etc.) and there is often a
correspondence between the DB structure and the
logic layer of those applications accessing it. In fact,
there are many proposals which intend to apply
reverse engineering on the DB to obtain the
corresponding data model: this is sometimes used to
restructure the DB itself, and sometimes as a business
layer model to generate new applications for the same
DB (Alalfi et al., 2008, Garcia Rodriguez de Guzman,
2007, Pérez-Castillo et al., 2012).

Therefore, taking into account that the DB is the
main common element between those applications,
we can use its structure as a starting point for the
construction of test cases which permit to guarantee
the quality of the IS accessing it.

Model-Driven Testing (MDT) refers to model-
based testing where the test cases are automatically
generated from software artifacts through model
transformation. In this work we propose a model-
driven testing methodology to automatically
generate test cases from the DB metadata.

The goal is to minimize the development effort of
the required tools for the proposal, using (as much as
possible) metamodels according to the standards
offered by the ObjectManagment Group (OMG), for
which there are tools already available in the market.

Towards a Framework for Information System Testing - A Model-driven Testing Approach.

DOI: 10.5220/0004067801720177

In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 172-177

ISBN: 978-989-8565-19-8

Copyright ¢ 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Towards a Framework for Information System Testing - A Model-driven Testing Approach

a P ' Entities / .
\ | Relations [

Attributes
Rules

Reverse '; == ey | Pattern- | |
Engineering == matching

: xUnit
| Test Cases

Test Suites
Test Cases
Datapools

Figure 1: General Schema.

The methodology consists mainly in three phases
described below and shown in Figure 1:

= Phase 1: Reverse Engineering to Data
Model Extraction. Initially some reverse
engineering techniques and tools are used in
order to obtain, from the physical schema of
the DB, its corresponding data model.

= Phase 2: Model-driven Test Cases
Generation. The data model .is processed
using pattern-matching (Garcia-Rodriguez et
al., 2007), then the test cases that test each
pattern are automatically generated through
model transformations. As a result, test cases
for the data structures are generated, thus
obtaining a test model.

» Phase 3: Executable Test Cases Generation.
Last but not least, the test models are
transformed into test code, obtaining
executable test cases.

Except for the reading of the physical DB
scheme, models and transformations comply with
the standards of the OMG.

In the following section we present some
background concepts. In section 3, the general
framework is explained. Then, in section 4, we show
the related work. Finally, in section 5, we explain
our conclusions and future work.

2 BACKGROUND
This section presents the background of this paper.
2.1 Metamodels

Our metamodels are UML Profiles, which is the
standard mechanism that UML offers for its
extension, based on the use of stereotypes and
tagged values.

The UML Data Modeling Profile (UDMP)

(Gornik, 2002) is an UML class diagram extension
developed by IBM to design DB using UML, with
the expressive power of an entity-relationship
model, and it is used in their tool IBM Rational Rose
Data Modeler. It defines concepts at a physical level
and architecture (Node, Tablespace, Database, etc.),
and the ones required for the DB design (Table,
Column, etc.). Several proposals use this profile to
model the DB structure (Yin and Ray, 2005;
Zielinski and Szmuc, 2005; Sparks, 2001).

The UML Testing Profile (UTP) extends UML
with test specific concepts for testing, grouping them
in test architecture, test data, test behavior and test
time. The test case is the main concept and its
behavior can be described by sequence diagrams,
state machines or activity diagrams. In this profile,
the test case is an operation of a test context that
specifies how a set of components cooperates with
the system under test to achieve the test goal, and
giving a verdict. Being a profile, the UTP seamlessly
integrates into UML.

The OMG has adopted and published the
transformation language between models, called
QVT (querylview/ transformation) (OMG, 2005),
which is defined at a metamodel level. Using QVT, it
is possible to throw queries against models, and of
course, to perform model transformations within
models.

Besides, the OMG published a model-to-text
transformation language, called MOFM2T (OMG,
2008). Its goal is to define a language to facilitate the
generation of code or documentation from models.

Over the last few years, the agile development
community has implemented various frameworks to
automate the software testing process, commonly
known as xUnit; these are based on the principle of
comparing the obtained with the expected output,
and which have quickly reached high popularity
(Polo et al., 2007b). The basic idea of xUnit is to
have a separate test class, containing test methods
that exercise the services offered by the class under
test. The most popular perhaps are Junit

173

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

(www.junit.org) for Java and Nunit (www.nunit.org)
for Microsoft .NET.

2.2 Coverage Criteria

The coverage criteria are used: (1) to know the areas
of the system that the test cases have exercised; (2)
to find the unexplored building blocks; (3) to create
new test cases to exercise those unexplored building
blocks; (4) in some situations, achieving a
predefined coverage without finding new errors
could be used as a stop testing criteria (Cornett,
2004). Given that in our case we generate test cases
from a UDMP class diagram corresponding to the
DB’s data model, we will consider some coverage
criteria as adequate to those artifacts:

2.2.1 Coverage Criteria for Class Diagrams

Andrews et al. proposed different coverage criteria
for testing UML diagrams (Andrews et al., 2003).
For class diagrams, they propose the following:

= AEM (Association-end multiplicity): the test
set must include the creation of each
representative pair of multiplicities in the
associations that appear in the model. Thus, if
there is an association which multiplicity is, in
one of the extremes, p..n, the association
should be instantiated with p elements
(minimum value), n elements (maximum
value) and with one or more values from the
range (p+1,n- 1).

= GN (Generatlization): the test set must cover
every generalization relation of the model.

= CA (Class attribute): the test set must
instantiate representative data sets for the
different attributes of each class.

2.2.2 Coverage Criteria for CRUD

The data instances on a system have a life cycle,
since they are created until they are deleted, and they
are updated in between. Because of that, it is useful
to consider CRUD operations as coverage criteria.

This criterion (Koomen et al., 2006) considers
that the whole life cycle of an entity should be
tested, therefore it defines the test cases starting with
a C, followed by a R, followed by every operation
that performs a U (with a R after that to validate the
result) and finally a D and another R (to validate the
deletion). Then, representing with Ui each operation
that updates data (over different attributes for
example), the criteria could be represented with the
following regular expression:

174

C-R-(Ui-Ri)* DR 1)

3 FRAMEWORK FOR TESTCASE
GENERATION

In this section we describe the details of the
proposed framework, going through the different
phases, pointing to which metamodels are used,
what is going to be generated and how. Figure 2
complements the already presented Error!
Reference source not found., showing the
metamodels involved in the process.

DB Schema
Reverse I Phase
ngineering | il

UML Data

Modeling Profile

Phase
2

'

QvTt

UML Testing Profile

Phase
3

2
2
2
o
=

xUnit

Figure 2: Metamodels used for the test case generation.

Nowadays, we are developing the proposal to its
experimentation and validation. Bellow, the
implementation details also are described.

3.1 Phase 1: Data Model Extraction

From the DB of the IS under test we extract a data
model which represents the entities and their
relationships, attributes, and constraints. This model
is based on the UDMP metamodel. This approach
allows representing the information necessary to
generate test cases in a platform independent way.

This is the only step for which there is not a
standard tool available. We are extending
RelationalWeb (Polo et al., 2007a), a reengineering
tool developed in ALARCOS research group, in
order to make it generate models according to the
UDMP metamodel.

3.2 Phase 2: Test Cases Generation
We want to generate test cases for EvVery occurrence

of certain structures in the data model. This can be
made by using model transformation, defining

Towards a Framework for Information System Testing - A Model-driven Testing Approach

patterns which indicate which structures to look for
in the data model in order to generate test cases from
them. The patterns are expressed as QVT rules
which explore the data model looking for
occurrences of the defined substructure. The target
metamodel in the transformation is UTP: for each
occurrence matched by the QVT rule, the
transformation will generate different elements of
the UTP.

We can define, for example, a pattern to match
every relation of two entities from 1 to O:N,
indicating to generate test cases in order to cover the
AEM criterion for the create operation of those
entities. The matching rule is easy to represent and it
can be seen as a generic model; this is shown in
Figure 3. The QVT rule will look for this kind of
substructure in the data model to apply the
corresponding transformations.

Entity_1 Entity_2

1 0..N
PK Id "M B

+ <<PK>>pk_id ‘ + <<FK>> fk_ el lid

Figure 3: Example of pattern model.

First of all, the transformation will create the test
architecture (according to UTP), as shown in Figure
4, which includes, among other components:

= a Test Context, which contains the generated
test cases as methods;

= a Test Component, responsible for initiating
the test cases and interacting with the SUT
(system under test);

= one datapool per each entity; each datapool
has one data selector for each test case in
order to provide specific data for each test.

<<TestContext>>

<<TestComponent>>
TestContext_Pattern001

TC_Pattern001

<<TestCase>> + testCase001 () : Veredict
<<TestCase>> + testCase002 () : Veredict

<<Datapool>>

DP._Entity1 <<SUT>> <<SUT>>
Entity_1 Entity_2
<<DataSelector>> + dataselector_tc001 () : Datarow
<<DataSelector>> + dataselector_tc002 () : Datarow +create () +create ()
+read() +read ()
<<Datapool>> +update () +update ()
DP_Entity2 +delete () +delete ()

<<DataSelector>> + dataselector_tc001 () : Datarow
<<DataSelector>> + dataselector_tc002 () : Datarow

Figure 4: Example of generated test architecture.

Then, each test case behavior is represented as a
sequence diagram as the one represented in Figure
5. Note that for the same matching rule several test

cases can be generated, in order to reach certain
coverage. For this example, with this test case, we
reach AEM criterion for the create operation of the
Entity 1 and Entity_2. Considering the relationship
1 to O:N, we should test these cases:

= case 1: 1 at the left extreme,

= case 2: 0 at the right extreme,

= case 3: 1 at the right extreme,

= case 4: multiple instances at the right extreme
(there is no a limit, so we consider this
situation covered with at least 2).

Furthermore, we should even test 0 at the left
extreme (case 5), in order to verify if the system can
manage the unexpected situation (it should fail
because of the foreign key).

<<TestComponent>>
TC_Pattern01

<<Datapool>> || <<Datapool >> || <<suT>> || <<suT>>

<<ValidationAction>> 1
created?pass:fall |

DP_Entity_1 DP_Entity_2 Entity_1 Entity_2
l v - : \I
lm— data2 = dmmemnr_mlom {— \
- reate (data2, null) :
st fread () '
1 1
<<ValidationAction>> 1 :
1
i | "
{-data1 = dataselector_tc001 () T 1
:—n = create | datat) "
ead () T T I
1
|
' i
e create{ data2. e1)
read () J
1
I
I
1
1
1

|
: datad = ~tc001 ()
I
e create(data3, 1)
; read ()

T

p— ! ‘
|
|

created?pass il

I
I
I
1
L
I
I
I
|
T
i
I
I
I
I
T
I
I
I

I
I

I

gt
1
|
]
1
I
1
I
|
1
I
1

Figure 5: Example of a generated test case.

In Figure 5 we can see that these situations are
covered in the different calls:

= the first call tries to create an instance of
Entity_2 without an instance of Entity 1,
which covers case 5 (it should fail);

= then the test case creates an instance of
Entity 1 (case 1 and case 2)

= then tries to create an instance of Entity 2
associated to one of Entity 1 (case 3),

= and two different instances of Entity_2
associated with one of Entity_1 (case 4).

Each wvalidation is represented as an UML
invariant with the stereotype Validation Action
setting the verdict.

Moreover, we generate datapools and data
selector methods for each test case. In the testing
model we indicate if the data is valid or invalid, and
the test case works considering this meta-
information, which is useful for the oracle, to define

175

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

if it has to verify failure or success. For example, if
Entity 2 has three columns, one for the foreign key
(E1_Id) and two integer values (A and B), the
generated data selector could return data as it is
shown in Table 1. So, test cases do not have specific
data, they are tagged as valid or invalid, and in the
following phase, taking this categorization and the
data types from the data model, they are instantiated
with corresponding values.

Table 1: Example datapool.

A B El Id Expected result
Any Any Null Fail
Valid Invalid Valid Fail
Valid Valid Valid Pass

3.3 Phase 3: Executable Test Cases
Generation

Finally, from the generated test cases in the UTP, we
obtain test code. To transform those models into
executable code, we continue the work presented in
(Pérez Lamancha et al., 2011), which uses UTP test
cases automatically generated from UML sequence
diagrams taken from the design of the SUT. The
UTP test cases are transformed into JUnit and Nunit
code using MOFM2T.

Instead, in our proposal, we do not have the
specification of the operations that are being tested
(mainly the CRUD operations). In (Pérez Lamancha
et al., 2011) the operations under test are given by
the sequence diagrams. As we do not ask for this
specification as input, the test cases that we generate
have invocations to stub methods, belonging to an
adaptation layer that has to be developed later on.

One of the main benefits of this part of the
proposal is that we can follow a Keyword-driven
testing approach (Fewster and Graham, 1999), to
have the possibility to test different levels of our
system, or different components that manage the
same data model (i.e., a web component and another
for mobile). For example, we could use the
generated xUnit test cases for unit testing
(performing the invocations at a persistency level,
accessing the classes that manage the access to the
DB), or for integration testing (exercising the classes
of the logic layer of the system), or even for system
testing (invocating automated scripts at an user
interface level, for example using Selenium,
seleniumhg.org).

This idea can be better understood paying
attention to the example pseudo code shown in
Figure 6. This is part of the result of the last phase

176

of the generation process, considering the same
example of Figure 5. To make this xUnit completely
executable, the user has to develop some operations
for each entity; those are the CRUD operations (in
the example the create operation is used for Entity 1
and Entity 2) and methods to validate absence or
existence of an instance (verifying the values of each
attribute). The same test can be executed with
different adaptation layers, one for unit testing,
another for system testing, invoking Selenium
scripts, etc.

@Test
voidtest 001 () throws Exception{

data2 = dpE2.dataSelectorTest001();
//create instance with datapool
//data and without Entity 1

al E2.create(data2,null);

//verify that it was NOT inserted
al E2.verifyNotExists (data2,null);
datal = dpEl.dataSelectorTest001();
el = al El.create(datal);

al E2.create(data2, el);

al E2.verifyExists(data2, el);

Figure 6: Pseudocode of the generated xUnit.

In this way, we are obtaining a set of test cases
that can be executed against any IS managing the
data model from which we generated the test cases,
independently of the different platforms over which
those 1S were developed.

4 RELATED WORKS

Regarding test data generation, (Tuya et al., 2010)
define a coverage criteria based on SQL queries,
applying a criteria similar to MCDC (Chilenski and
Miller, 1994) but considering the conditions of
FROM, WHERE and JOIN sentences, generating
test data to cover this criterion. There is an approach
where the code coverage criteria are extended in
order to consider the embedded SQL sentences
(Haller, 2009, Emmi et al., 2007), generating DB
instances to cover the different scenarios proposed
as interesting. (Arasu et al., 2011) propose to specify
in some way the expected results of each SQL
included in the test, and then they can generate test
data to satisfy this specification. The proposal from
(Chays and Deng, 2003), called AGENDA, takes as
input the DB schema and categorized test data given
by the user, whereby generates test cases and initial

Towards a Framework for Information System Testing - A Model-driven Testing Approach

DB states, and validating after the test case
execution the outputs and the final DB state.
(Neufeld et al., 1993) generate DB states according
to the integrity restrictions of the relational schema,
using a constraint solver. As far as we know, many
proposals for test data generation exist, but none of
them focuses on automated test model generation
using model transformations.

5 CONCLUSIONS

In this article a novel approach to test IS with DB
was presented, with focus in the coverage of the
structures found by test patterns in the data model.
This test generation methodology takes into account
the fact that, in this kind of systems, one of the most
important things is the correctness of the data, which
implies testing the operations over the data
structures. As the framework is almost completely
based on standards, it can be adopted with almost
any UML-compliant tool. Therefore no tools are
needed to be developed to support the methodology.

This is the first step towards the construction of a
test generation environment specifically for IS that
uses DB, which will facilitate the empirical
validation of the proposed ideas.

ACKNOWLEDGEMENTS

This work has been partially funded by ANII, Uruguay,
and by DIMITRI (TRA2009_0131) and MAGO/Pegaso
(TIN2009-13718-C0201) Spanish projects.

REFERENCES

Alalfi, M. H., Cordy, J. R. & Dean, T. R. 2008.
SQL2XMI: Reverse Engineering of UML-ER
Diagrams from Relational Database Schemas.
Working Conference on Reverse Engineering. IEEE
Computer Society.

Andrews, A., France, R., Ghosh, S. & Craig, G. 2003. Test
adequacy criteria for UML design models. Software
Testing, Verification and Reliability, 13, 95-127.

Arasu, A., Kaushik, R. & Li, J. 2011. Data generation
using declarative constraints. International conference
on Management of data. ACM.

Cornett. 2004. Code Coverage Analysis [Online].
Available: www.bullseye.com/coverage.html
[Accessed 2012].

Chays, D. & Deng, Y. 2003. Demonstration of AGENDA
tool set for testing relational database applications.
IEEE Computer Society.

Chilenski, J. J. & Miller, S. P. 1994. Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, 9, 193-200.

Emmi, M., Majumdar, R. & Sen, K. 2007. Dynamic test
input generation for database applications. ISSTA'07:
Software Testing and Analysis.

Fewster, M. & Graham, D. 1999. Software test
automation: effective use of test execution tools, ACM
Press/Addison-Wesley Publishing Co.

Garcia-Rodriguez, 1., Polo, M. & Piattini, M. 2007. Using
Model-Driven Pattern ~ Matching to derive
functionalities in Models. SEKE - Software
Engineering and Knowledge Engineering

Garcia Rodriguez De Guzmaén, I|. 2007. Pressweb: un
proceso para la reingenieria de sistemas heredados
hacia servicios web. UCLM.

Gornik, D. 2002. UML Data Modeling Profile. 1BM,
Rational Software.

Haller, K. 2009. White-box testing for database-driven
applications: A requirements analysis. ACM.

Koomen, T., Van Der Aalst, L., Broekman, B. & Vroon,
M. 2006. TMap Next, for result-driven testing, UTN
Publishers.

Neufeld, A., Moerkotte, G. & Loekemann, P. C. 1993.
Generating consistent test data: Restricting the search
space by a generator formula. The VLDB Journal, 2,
173-213.

Omg 2005. Meta Object Facility 2.0
Query/View/Transformation Specification.

Omg 2008. MOF Model to Text Transformation Language
(MOFMZ2T), 1.0.

Pérez-Castillo, R., Garcia-Rodriguez De Guzman, |.,
Caballero, 1. & Piattini, M. 2012. Software
Modernization by Recovering Web Services from
Legacy Databases. Journal of Software: Evolution and
Process, In Press.

Pérez Lamancha, B., Mateo, P. R., Polo Usaola, M. &
Caivano, D. 2011. Model-driven Testing -
Transformations from Test Models to Test Code.
ENASE. SciTePress.

Polo, M., Garcia-Rodriguez, I. & Piattini, M. 2007a. An
MDA-based approach for database re-engineering.
Journal of Software Maintenance and Evolution:
Research and Practice, 19, 383-417.

Polo, M., Tendero, S. & Piattini, M. 2007b. Integrating
techniques and tools for testing automation. Software
Testing Verification and Reliability, 17, 3-39.

Sparks, G. 2001. Database modeling in UML. Methods &
Tools.

Tuya, J., Sudrez-Cabal, M. J. & De La Riva, C. 2010. Full
predicate coverage for testing SQL database queries.
Software Testing Verification and Reliability, 20, 237-
288.

Yin, S. & Ray, |. 2005. Relational database operations
modeling with UML. AINA'05: Advanced Information
Networking and Applications.

Zielinski, K. & Szmuc, T. 2005. Data Modeling with
UML 2.0. Frontiers in Artificial Intelligence and
Applications, 63.

177

http://www.bullseye.com/coverage.html

