
Towards a Framework for Information System Testing
A Model-driven Testing Approach

Federico Toledo Rodríguez1, Beatriz Pérez Lamancha2 and Macario Polo Usaola3
1Abstracta, Montevideo, Uruguay

2Centro de Ensayos de Software, Universidad de la República, Montevideo, Uruguay
3Alarcos Research Group, University of Castilla-La Mancha, Ciudad Real, Spain

Keywords: Software Testing, Model-based Testing, Information System Testing, Test Data.

Abstract: Testing has an important role within the development of a software system; the automation of testing tasks

has been largely used with the goal of minimizing costs and increasing productivity. For some of those tasks

–as it is the execution of test cases– well-known solutions already exist as the industry adopted them many

years ago. This is not the case with test data generation, and even less for software that uses databases,

where this task is particularly complex. In the present work we propose to generate test cases automatically

to test information systems that use relational databases. We represent the data model with UML Data

Modeling Profile, automatically extracted from the database with reverse engineering techniques. Then,

applying model-driven testing, test cases are generated from the data model, represented with the standard

UML Testing Profile. The test case generation also includes test data inputs, in order to accomplish certain

coverage criteria defined on the schema.

1 INTRODUCTION

An Information System (IS) is a software system

that allows the manipulation of structured data for a

specific business goal. The importance of testing in

the IS development process has being growing

lately, looking for better quality, but it is still one of

the most time consuming tasks. Commonly, IS’s

consist of applications which deal with the

information saved in relational databases (DB),

storing data of different entities on the base of

particular business rules. Thus, there is a

correspondence between the visual components (e.g.

web forms), the data structures (generally in

relational DB) and the logic in the middle to

accomplish the business rules. The basic operations

to manipulate data structures are the CRUD

operations (create, read, update, delete). For

example, if values are updated in the user interface,

this will produce the execution of an operation on an

object in the middle layer, and then an operation of

type update on the DB.

Considering this, the DB is one of the essential

components for an IS. To manage it, the IS could

provide several applications with different nature

(according to the type of user, operating system,

environment, kind of device, etc.) and there is often a

correspondence between the DB structure and the

logic layer of those applications accessing it. In fact,

there are many proposals which intend to apply

reverse engineering on the DB to obtain the

corresponding data model: this is sometimes used to

restructure the DB itself, and sometimes as a business

layer model to generate new applications for the same

DB (Alalfi et al., 2008, García Rodríguez de Guzmán,

2007, Pérez-Castillo et al., 2012).

Therefore, taking into account that the DB is the

main common element between those applications,

we can use its structure as a starting point for the

construction of test cases which permit to guarantee

the quality of the IS accessing it.

Model-Driven Testing (MDT) refers to model-

based testing where the test cases are automatically

generated from software artifacts through model

transformation. In this work we propose a model-

driven testing methodology to automatically

generate test cases from the DB metadata.

The goal is to minimize the development effort of

the required tools for the proposal, using (as much as

possible) metamodels according to the standards

offered by the ObjectManagment Group (OMG), for

which there are tools already available in the market.

172 Toledo Rodríguez F., Perez B. and Polo Usaola M..
Towards a Framework for Information System Testing - A Model-driven Testing Approach.
DOI: 10.5220/0004067801720177
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 172-177
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: General Schema.

The methodology consists mainly in three phases
described below and shown in Figure 1:

 Phase 1: Reverse Engineering to Data

Model Extraction. Initially some reverse

engineering techniques and tools are used in

order to obtain, from the physical schema of

the DB, its corresponding data model.

 Phase 2: Model-driven Test Cases

Generation. The data model is processed

using pattern-matching (García-Rodríguez et

al., 2007), then the test cases that test each

pattern are automatically generated through

model transformations. As a result, test cases

for the data structures are generated, thus

obtaining a test model.

 Phase 3: Executable Test Cases Generation.

Last but not least, the test models are

transformed into test code, obtaining

executable test cases.

Except for the reading of the physical DB

scheme, models and transformations comply with

the standards of the OMG.

In the following section we present some

background concepts. In section 3, the general

framework is explained. Then, in section 4, we show

the related work. Finally, in section 5, we explain

our conclusions and future work.

2 BACKGROUND

This section presents the background of this paper.

2.1 Metamodels

Our metamodels are UML Profiles, which is the

standard mechanism that UML offers for its

extension, based on the use of stereotypes and

tagged values.

The UML Data Modeling Profile (UDMP)

(Gornik, 2002) is an UML class diagram extension

developed by IBM to design DB using UML, with

the expressive power of an entity-relationship

model, and it is used in their tool IBM Rational Rose

Data Modeler. It defines concepts at a physical level

and architecture (Node, Tablespace, Database, etc.),

and the ones required for the DB design (Table,

Column, etc.). Several proposals use this profile to

model the DB structure (Yin and Ray, 2005;

Zielinski and Szmuc, 2005; Sparks, 2001).

The UML Testing Profile (UTP) extends UML

with test specific concepts for testing, grouping them

in test architecture, test data, test behavior and test

time. The test case is the main concept and its

behavior can be described by sequence diagrams,

state machines or activity diagrams. In this profile,

the test case is an operation of a test context that

specifies how a set of components cooperates with

the system under test to achieve the test goal, and

giving a verdict. Being a profile, the UTP seamlessly

integrates into UML.

The OMG has adopted and published the

transformation language between models, called

QVT (query/view/ transformation) (OMG, 2005),

which is defined at a metamodel level. Using QVT, it

is possible to throw queries against models, and of

course, to perform model transformations within

models.

Besides, the OMG published a model-to-text

transformation language, called MOFM2T (OMG,

2008). Its goal is to define a language to facilitate the

generation of code or documentation from models.

Over the last few years, the agile development

community has implemented various frameworks to

automate the software testing process, commonly

known as xUnit; these are based on the principle of

comparing the obtained with the expected output,

and which have quickly reached high popularity

(Polo et al., 2007b). The basic idea of xUnit is to

have a separate test class, containing test methods

that exercise the services offered by the class under

test. The most popular perhaps are Junit

Towards a Framework for Information System Testing - A Model-driven Testing Approach

173

(www.junit.org) for Java and Nunit (www.nunit.org)

for Microsoft .NET.

2.2 Coverage Criteria

The coverage criteria are used: (1) to know the areas

of the system that the test cases have exercised; (2)

to find the unexplored building blocks; (3) to create

new test cases to exercise those unexplored building

blocks; (4) in some situations, achieving a

predefined coverage without finding new errors

could be used as a stop testing criteria (Cornett,

2004). Given that in our case we generate test cases

from a UDMP class diagram corresponding to the

DB’s data model, we will consider some coverage

criteria as adequate to those artifacts:

2.2.1 Coverage Criteria for Class Diagrams

Andrews et al. proposed different coverage criteria

for testing UML diagrams (Andrews et al., 2003).

For class diagrams, they propose the following:

 AEM (Association-end multiplicity): the test

set must include the creation of each

representative pair of multiplicities in the

associations that appear in the model. Thus, if

there is an association which multiplicity is, in

one of the extremes, p..n, the association

should be instantiated with p elements

(minimum value), n elements (maximum

value) and with one or more values from the

range (p+1, n- 1).

 GN (Generatlization): the test set must cover

every generalization relation of the model.

 CA (Class attribute): the test set must

instantiate representative data sets for the

different attributes of each class.

2.2.2 Coverage Criteria for CRUD

The data instances on a system have a life cycle,

since they are created until they are deleted, and they

are updated in between. Because of that, it is useful

to consider CRUD operations as coverage criteria.

This criterion (Koomen et al., 2006) considers

that the whole life cycle of an entity should be

tested, therefore it defines the test cases starting with

a C, followed by a R, followed by every operation

that performs a U (with a R after that to validate the

result) and finally a D and another R (to validate the

deletion). Then, representing with Ui each operation

that updates data (over different attributes for

example), the criteria could be represented with the

following regular expression:

C · R · (Ui · Ri)* · D · R (1)

3 FRAMEWORK FOR TESTCASE

GENERATION

In this section we describe the details of the

proposed framework, going through the different

phases, pointing to which metamodels are used,

what is going to be generated and how. Figure 2

complements the already presented Error!

Reference source not found., showing the

metamodels involved in the process.

Figure 2: Metamodels used for the test case generation.

Nowadays, we are developing the proposal to its

experimentation and validation. Bellow, the

implementation details also are described.

3.1 Phase 1: Data Model Extraction

From the DB of the IS under test we extract a data

model which represents the entities and their

relationships, attributes, and constraints. This model

is based on the UDMP metamodel. This approach

allows representing the information necessary to

generate test cases in a platform independent way.

This is the only step for which there is not a

standard tool available. We are extending

RelationalWeb (Polo et al., 2007a), a reengineering

tool developed in ALARCOS research group, in

order to make it generate models according to the

UDMP metamodel.

3.2 Phase 2: Test Cases Generation

We want to generate test cases for every occurrence

of certain structures in the data model. This can be

made by using model transformation, defining

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

174

patterns which indicate which structures to look for

in the data model in order to generate test cases from

them. The patterns are expressed as QVT rules

which explore the data model looking for

occurrences of the defined substructure. The target

metamodel in the transformation is UTP: for each

occurrence matched by the QVT rule, the

transformation will generate different elements of

the UTP.

We can define, for example, a pattern to match

every relation of two entities from 1 to 0:N,

indicating to generate test cases in order to cover the

AEM criterion for the create operation of those

entities. The matching rule is easy to represent and it

can be seen as a generic model; this is shown in

Figure 3. The QVT rule will look for this kind of

substructure in the data model to apply the

corresponding transformations.

Figure 3: Example of pattern model.

First of all, the transformation will create the test

architecture (according to UTP), as shown in Figure

4, which includes, among other components:

 a Test Context, which contains the generated

test cases as methods;

 a Test Component, responsible for initiating

the test cases and interacting with the SUT

(system under test);

 one datapool per each entity; each datapool

has one data selector for each test case in

order to provide specific data for each test.

Figure 4: Example of generated test architecture.

Then, each test case behavior is represented as a

sequence diagram as the one represented in Figure

5. Note that for the same matching rule several test

cases can be generated, in order to reach certain

coverage. For this example, with this test case, we

reach AEM criterion for the create operation of the

Entity_1 and Entity_2. Considering the relationship

1 to 0:N, we should test these cases:

 case 1: 1 at the left extreme,

 case 2: 0 at the right extreme,

 case 3: 1 at the right extreme,

 case 4: multiple instances at the right extreme

(there is no a limit, so we consider this

situation covered with at least 2).

Furthermore, we should even test 0 at the left

extreme (case 5), in order to verify if the system can

manage the unexpected situation (it should fail

because of the foreign key).

Figure 5: Example of a generated test case.

In Figure 5 we can see that these situations are
covered in the different calls:

 the first call tries to create an instance of

Entity_2 without an instance of Entity_1,

which covers case 5 (it should fail);

 then the test case creates an instance of

Entity_1 (case 1 and case 2)

 then tries to create an instance of Entity_2

associated to one of Entity_1 (case 3),

 and two different instances of Entity_2

associated with one of Entity_1 (case 4).

Each validation is represented as an UML
invariant with the stereotype Validation Action
setting the verdict.

Moreover, we generate datapools and data

selector methods for each test case. In the testing

model we indicate if the data is valid or invalid, and

the test case works considering this meta-

information, which is useful for the oracle, to define

Towards a Framework for Information System Testing - A Model-driven Testing Approach

175

if it has to verify failure or success. For example, if

Entity_2 has three columns, one for the foreign key

(E1_Id) and two integer values (A and B), the

generated data selector could return data as it is

shown in Table 1. So, test cases do not have specific

data, they are tagged as valid or invalid, and in the

following phase, taking this categorization and the

data types from the data model, they are instantiated

with corresponding values.

Table 1: Example datapool.

A B E1_Id Expected result

Any Any Null Fail

Valid Invalid Valid Fail

Valid Valid Valid Pass

… … … …

3.3 Phase 3: Executable Test Cases
Generation

Finally, from the generated test cases in the UTP, we

obtain test code. To transform those models into

executable code, we continue the work presented in

(Pérez Lamancha et al., 2011), which uses UTP test

cases automatically generated from UML sequence

diagrams taken from the design of the SUT. The

UTP test cases are transformed into JUnit and Nunit

code using MOFM2T.

Instead, in our proposal, we do not have the

specification of the operations that are being tested

(mainly the CRUD operations). In (Pérez Lamancha

et al., 2011) the operations under test are given by

the sequence diagrams. As we do not ask for this

specification as input, the test cases that we generate

have invocations to stub methods, belonging to an

adaptation layer that has to be developed later on.

One of the main benefits of this part of the

proposal is that we can follow a Keyword-driven

testing approach (Fewster and Graham, 1999), to

have the possibility to test different levels of our

system, or different components that manage the

same data model (i.e., a web component and another

for mobile). For example, we could use the

generated xUnit test cases for unit testing

(performing the invocations at a persistency level,

accessing the classes that manage the access to the

DB), or for integration testing (exercising the classes

of the logic layer of the system), or even for system

testing (invocating automated scripts at an user

interface level, for example using Selenium,

seleniumhq.org).

This idea can be better understood paying

attention to the example pseudo code shown in

Figure 6. This is part of the result of the last phase

of the generation process, considering the same

example of Figure 5. To make this xUnit completely

executable, the user has to develop some operations

for each entity; those are the CRUD operations (in

the example the create operation is used for Entity_1

and Entity_2) and methods to validate absence or

existence of an instance (verifying the values of each

attribute). The same test can be executed with

different adaptation layers, one for unit testing,

another for system testing, invoking Selenium

scripts, etc.

@Test

voidtest_001() throws Exception{

 …

 data2 = dpE2.dataSelectorTest001();

 //create instance with datapool

 //data and without Entity_1

 al_E2.create(data2,null);

 //verify that it was NOT inserted

 al_E2.verifyNotExists(data2,null);

 data1 = dpE1.dataSelectorTest001();

 e1 = al_E1.create(data1);

 al_E2.create(data2, e1);

 al_E2.verifyExists(data2, e1);

 …

}

Figure 6: Pseudocode of the generated xUnit.

In this way, we are obtaining a set of test cases

that can be executed against any IS managing the

data model from which we generated the test cases,

independently of the different platforms over which

those IS were developed.

4 RELATED WORKS

Regarding test data generation, (Tuya et al., 2010)

define a coverage criteria based on SQL queries,

applying a criteria similar to MCDC (Chilenski and

Miller, 1994) but considering the conditions of

FROM, WHERE and JOIN sentences, generating

test data to cover this criterion. There is an approach

where the code coverage criteria are extended in

order to consider the embedded SQL sentences

(Haller, 2009, Emmi et al., 2007), generating DB

instances to cover the different scenarios proposed

as interesting. (Arasu et al., 2011) propose to specify

in some way the expected results of each SQL

included in the test, and then they can generate test

data to satisfy this specification. The proposal from

(Chays and Deng, 2003), called AGENDA, takes as

input the DB schema and categorized test data given

by the user, whereby generates test cases and initial

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

176

DB states, and validating after the test case

execution the outputs and the final DB state.

(Neufeld et al., 1993) generate DB states according

to the integrity restrictions of the relational schema,

using a constraint solver. As far as we know, many

proposals for test data generation exist, but none of

them focuses on automated test model generation

using model transformations.

5 CONCLUSIONS

In this article a novel approach to test IS with DB

was presented, with focus in the coverage of the

structures found by test patterns in the data model.

This test generation methodology takes into account

the fact that, in this kind of systems, one of the most

important things is the correctness of the data, which

implies testing the operations over the data

structures. As the framework is almost completely

based on standards, it can be adopted with almost

any UML-compliant tool. Therefore no tools are

needed to be developed to support the methodology.

This is the first step towards the construction of a

test generation environment specifically for IS that

uses DB, which will facilitate the empirical

validation of the proposed ideas.

ACKNOWLEDGEMENTS

This work has been partially funded by ANII, Uruguay,

and by DIMITRI (TRA2009_0131) and MAGO/Pegaso

(TIN2009-13718-C0201) Spanish projects.

REFERENCES

Alalfi, M. H., Cordy, J. R. & Dean, T. R. 2008.

SQL2XMI: Reverse Engineering of UML-ER

Diagrams from Relational Database Schemas.

Working Conference on Reverse Engineering. IEEE

Computer Society.

Andrews, A., France, R., Ghosh, S. & Craig, G. 2003. Test

adequacy criteria for UML design models. Software

Testing, Verification and Reliability, 13, 95-127.

Arasu, A., Kaushik, R. & Li, J. 2011. Data generation

using declarative constraints. International conference

on Management of data. ACM.

Cornett. 2004. Code Coverage Analysis [Online].

Available: www.bullseye.com/coverage.html

[Accessed 2012].

Chays, D. & Deng, Y. 2003. Demonstration of AGENDA

tool set for testing relational database applications.

IEEE Computer Society.

Chilenski, J. J. & Miller, S. P. 1994. Applicability of

modified condition/decision coverage to software

testing. Software Engineering Journal, 9, 193-200.

Emmi, M., Majumdar, R. & Sen, K. 2007. Dynamic test

input generation for database applications. ISSTA'07:

Software Testing and Analysis.

Fewster, M. & Graham, D. 1999. Software test

automation: effective use of test execution tools, ACM

Press/Addison-Wesley Publishing Co.

García-Rodríguez, I., Polo, M. & Piattini, M. 2007. Using

Model-Driven Pattern Matching to derive

functionalities in Models. SEKE - Software

Engineering and Knowledge Engineering

García Rodríguez De Guzmán, I. 2007. Pressweb: un

proceso para la reingeniería de sistemas heredados

hacia servicios web. UCLM.

Gornik, D. 2002. UML Data Modeling Profile. IBM,

Rational Software.

Haller, K. 2009. White-box testing for database-driven

applications: A requirements analysis. ACM.

Koomen, T., Van Der Aalst, L., Broekman, B. & Vroon,

M. 2006. TMap Next, for result-driven testing, UTN

Publishers.

Neufeld, A., Moerkotte, G. & Loekemann, P. C. 1993.

Generating consistent test data: Restricting the search

space by a generator formula. The VLDB Journal, 2,

173-213.

Omg 2005. Meta Object Facility 2.0

Query/View/Transformation Specification.

Omg 2008. MOF Model to Text Transformation Language

(MOFM2T), 1.0.

Pérez-Castillo, R., García-Rodríguez De Guzmán, I.,

Caballero, I. & Piattini, M. 2012. Software

Modernization by Recovering Web Services from

Legacy Databases. Journal of Software: Evolution and

Process, In Press.

Pérez Lamancha, B., Mateo, P. R., Polo Usaola, M. &

Caivano, D. 2011. Model-driven Testing -

Transformations from Test Models to Test Code.

ENASE. SciTePress.

Polo, M., García-Rodríguez, I. & Piattini, M. 2007a. An

MDA-based approach for database re-engineering.

Journal of Software Maintenance and Evolution:

Research and Practice, 19, 383-417.

Polo, M., Tendero, S. & Piattini, M. 2007b. Integrating

techniques and tools for testing automation. Software

Testing Verification and Reliability, 17, 3-39.

Sparks, G. 2001. Database modeling in UML. Methods &

Tools.

Tuya, J., Suárez-Cabal, M. J. & De La Riva, C. 2010. Full

predicate coverage for testing SQL database queries.

Software Testing Verification and Reliability, 20, 237-

288.

Yin, S. & Ray, I. 2005. Relational database operations

modeling with UML. AINA'05: Advanced Information

Networking and Applications.

Zielinski, K. & Szmuc, T. 2005. Data Modeling with

UML 2.0. Frontiers in Artificial Intelligence and

Applications, 63.

Towards a Framework for Information System Testing - A Model-driven Testing Approach

177

http://www.bullseye.com/coverage.html

