
Model Driven Development of Process-centric Web Applications

Mario L. Bernardi1, Marta Cimitile2 and Fabrizio M. Maggi3
1Department of Engineering-RCOST, University of Sannio, Benevento, Italy

2Faculty of Jurisprudence, Unitelma Sapienza University, Rome, Italy
3Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

Keywords: Model Driven Engineering, Declarative Processes, Domain Specific Languages, Code Generation, Web
Applications Development.

Abstract: Despite Model Driven Engineering (MDE) approaches are largely used to develop, update and evolve Web
Applications (WAs), the use of these approaches for the development of process-centric WAs is still very
limited. This is an important issue in the context of MDE considering that WAs are often used to support users
in the execution of business processes. In this paper, we propose the integration of three MDE metamodels
used to represent the structure of information, service and presentation layers of a WA with the metamodel of
Declare, a declarative language for business process rapresentation. The declarative nature of Declare allows
us to combine an efficient roundtrip engineering support with the advantages of an MDE approach. We present
and discuss a case study where the proposed approach is used to develop a typical online shopping application
with the aim to validate and verify the feasibility and the effectiveness of the approach.

1 INTRODUCTION

In the last years, Model Driven Engineering (MDE)
approaches have been used to quickly and easily de-
velop, update and evolve Web Applications (WAs). In
this way, it has been possible to meet the increasing
necessity for a rapid customization of WAs according
to the changeability of the market requests.

Despite the ample diffusion of MDE principles ap-
plied to the development of WAs (Ceri et al., 2000;
Bernardi et al., 2010), the adoption of these ap-
proaches in the context of process-centric WAs (Rets-
chitzegger and Schwinger, 2000) has not largely been
investigated and still suffers from a lack of uniformity
in terms of languages, technologies and models dur-
ing the entire development life-cycle.

Moreover, the generation of the business process
management components is still not completely auto-
mated and needs several manual customizations that
are often not trivial and require the developers to it-
erate the generation steps several times. This lack of
adequate round-trip engineering support still thwarts
the benefits arising from the MDE adoption.

Nevertheless, the most limiting aspect for a
widespread adoption of MDE in industrial contexts is
the lack of flexibility in the process definition. There-
fore, it is necessary the integration of MDE approach-

es with adequate metamodels for process representa-
tion that ensure flexibility.

In this paper, we propose an approach based on
the integration of three MDE metamodels used to rep-
resent the structure of information, service and pre-
sentation layers of a WA with the metamodel of De-
clare (Pesic, 2008; Pesic et al., 2007; van der Aalst
et al., 2009), a declarative language to represent busi-
ness processes. This approach enables the automatic
generation of a fully working prototype of a process-
centric WA. The use of MDE technologies in conjunc-
tion with a declarative process modeling language al-
lows the developers to represent the behavior of a
WA with a high level of flexibility as a compact set
of constraints (Zugal et al., 2011). Furthermore, this
approach allows the developers and the designers to
work on the process only at the model level without
spending any effort customizing and maintaining the
generated code.

The paper is structured as follows. In Section 2,
we discuss the related work. In Section 3, we de-
scribe the proposed metamodels, their integration and
the generation approach. Section 4 discusses the ap-
plication of our approach to a case study while Sec-
tion 5 provides some conclusive notes and remark.

340 L. Bernardi M., Cimitile M. and M. Maggi F..
Model Driven Development of Process-centric Web Applications.
DOI: 10.5220/0004069903400346
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 340-346
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

The topic of the integration of process modeling tech-
niques with MDE approaches for the development of
WAs is not new in literature. In (Merialdo et al.,
2003), the authors use a workflow conceptual model
supporting the interaction between the hypertext and
an underlying workflow management system. In
(Koch et al., 2004), an approach is proposed based
on the integration of the Object-Oriented Hyperme-
dia method (OO-H) and the UML-based Web En-
gineering (UWE). In (Torres and Pelechano, 2006),
Business Process Management (BPM) (Weske, 2007)
and Object Oriented Web Solution (OOWS) (Fons
et al., 2003) are combined: model-to-model trans-
formations are used to generate a navigational model
from the BPM definition while model-to-text trans-
formations are used to produce an executable process
definition in BPEL. This approach has been extended
in (Brambilla et al., 2006).

The integration of MDE with process modeling
languages proposed in literature has always been
based on procedural notations. In our approach, we
decided to integrate the MDE methodology with De-
clare, a declarative process modeling language pro-
posed by Pesic and van der Aalst in (Pesic, 2008;
Pesic et al., 2007; van der Aalst et al., 2009). Declare
was adopted because it is equipped with a powerful
graphical notation together with a formal Linear Tem-
poral Logic (LTL) semantics. Based on its formal se-
mantics, tools for the execution and the verification of
Declare models have been developed1 that are useful
in simulation and rapid prototyping to provide formal
verification of process properties. Moreover, our pre-
liminary studies shows several advantages, concern-
ing maintenance, quality and development effective-
ness, deriving by the adoption of MDE methodology
in combination with a declarative language.

3 THE APPROACH

In this paper, we propose an MDE approach for de-
veloping WAs based on four integrated metamodels
each one associated to a corresponding Domain Spe-
cific Language (DSL) describing a particular aspect
of the WA: (i) an information layer metamodel, used
to represent domain elements and their relationships;
(ii) a service layer metamodel used to model and ex-
press system operations and business logic; (iii) a pre-
sentation layer metamodel introducing the concepts
of Views, Sub-views, Canvas, Widgets and a model-
based component hierarchy to describe how the user

1http://www.win.tue.nl/declare

interface is structured and how it behaves; and (iv) a
process layer based on the Declare metamodel, inte-
grated with the previous ones, that allows us to repre-
sent the business process underlying the WA as a set
of constraints.

In the definition of the WA information layer
metamodel, our aim is to use a common set of mod-
eling concepts that allow us to define sound and rich
information models. In order to define the necessary
constructs and modeling primitives, we decided to ad-
here to the well known object-oriented standard, i.e.,
to the semantics and notation provided by the UML
class diagrams. The information layer metamodel
resembles the standard Entity-Relationship model,
widely used and accepted for information modeling
tasks. An excerpt of this model is shown in Fig. 1-(a).
Here, the main concept is the Classifier that models a
generic domain object specialized as an Entity (rep-
resenting the super-class of unique and persistent ob-
jects in the WA domain model). A relationship speci-
fication is represented as an Association in the model.
It specifies minimum and maximum cardinality of re-
lationship roles, caching attributes, mappings to the
relational model and other properties useful to support
the generation of the source code and of the other arti-
facts needed for the WA development. The ValueOb-
ject metaclass can represent a TransferObject (needed
to handle values), a PrimitiveType (mapped to a lan-
guage type) or a UserDefinedType that refers to types
that need special treatment (e.g., binary objects, im-
ages, internationalized text). The metamodel also in-
troduces the Operation concept representing behav-
iors that refer to the elements of the information layer
metamodel.

Fig. 1-(b) shows the metamodel used to represent
the service layer of the WA. The main metaclass is
ServiceDefinition, defined as an externally accessible
entry point in the WA specifying a set of behaviors ad-
hering to a well known interface. This interface and
its properties, specified through the ServiceOperation
metaclass, allow the designer to customize the ser-
vice behavior in several ways. Each ServiceOperation
can specify a behavior directly or delegate it to one or
more operations of a DataAccessObject (DAO).

The presentation layer metamodel, shown in Fig.
1-(c), is devoted to the description of the presentation
layer. The UIRoot is the entry point of this layer. It is
centered on the Activity concept regarded as either a
user activity requiring human intervention or a batch
activity that can be performed automatically by the
process execution engine. The Activity metaclass is
the root of a hierarchy of several kinds of predefined
activities such as BatchActivity, CRUDActivity (as-
sociated by the code generator to the CRUD services

Model�Driven�Development�of�Process-centric�Web�Applications

341

Figure 1: The four linked metamodel.

delegated to DAO classes), ListActivity, TableActiv-
ity, GridActivity and ViewActivity. These gather data
from the elements of the information model using dif-
ferent kinds of layouts (i.e., lists, tables, views). An-
other important aspect of the presentation layer meta-
model is the navigability: each Activity can spec-
ify transitions towards other activities and the post-
conditions that must be satisfied on the output data.
This is particularly important to ensure the informa-
tion exchanges among instances of activities as spec-
ified by the process definition. As further discussed
in the next section, the code generator is responsible
for the generation of the ProcessManager code that
dynamically injects ActivityTransition instances into
ProcessActivity objects by querying the Declare En-
gine. Finally, when the user chooses to execute an ac-
tivity, the ProcessManager collects the referenced in-
put instances and process variables by wrapping them
into a context object, and expose them to the target
activity.

We chose to describe the processes underlying a
process-centric WA through Declare, a user-friendly
constraint-based language. We do not describe the
language in detail (we refer the reader to (Pesic, 2008;
Pesic et al., 2007; van der Aalst et al., 2009) for more
information about the language) but we will explain
the main concepts through the process layer meta-
model reported in Fig. 1-(d). In this metamodel, a
Process is composed of a set of possible events and
constraints on events. The Constraint metaclass is the
abstract root of a rich set of constraints (e.g., Prece-
dence, NotCoexistence) each one having a well de-

fined LTL semantics and a graphical representation
as specified by the Declare language definition. On
the other hand, an Event puts together a ProcessActiv-
ity instance with an ActivityState representing a valid
state in which that activity can be at a given time.
The ProcessActivity is linked to the information layer
metamodel mapping attributes to the input/output pa-
rameters of the ServiceOperation. It specifies the be-
havior associated to the ProcessActivity itself. Each
ProcessActivity is also linked to the presentation layer
being associated to a single UIRoot containing several
inner activities. These activities can be created by us-
ing the Attribute information thus allowing the user to
interact with the process.

3.1 Code Generation

The proposed approach adopts MDE technologies to
enable the automatic generation of a fully working
workflow-enabled WA starting from its design mod-
els. At the heart of our solution there is a genera-
tive approach centered on the four linked metamodel
illustrated in the previous section. These metamod-
els are provided as input to a code generator that
is able to generate the implementation for a target
platform adopting different well-known architectural
patterns. In our case, a J2EE spring-based platform
was selected as target; it exploits the Command-based
Model-View-Controller design to build the UI, an
aspect-orientation approach to modularize persistence
and logging, and dependency injection to increase
flexibility and reuse. The approach is conceived to

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

342

fulfill two goals: first, the use of DSL editors sup-
ports the designers with precise specifications driving
the modeling of all the aspects of the WA (i.e., in-
formation, service, presentation and process points of
view); second, it allows them to link the models of
the WA, written using the DSL editor, to the code au-
tomatically generated from the models by the target
platform.

The model-to-text transformations are imple-
mented as a hierarchy of templates written in the
Xpand language. There are several templates used to
generate the UI views and the navigational bars that
allow users to move through the application contents.
In particular, for each Entity defined in the informa-
tion model, a page containing a CRUDActivity is gen-
erated. This CRUDActivity is built by composing a
ListActivity (to implement the retrieve operation) and
a contextual menu on the Entity instances that allows
the execution of the other CRUD operations. A navi-
gational bar with links to those pages is generated by
another template and injected into each view of the
application, allowing the user to quickly reach and
manage the contents.

Another key page generated is the PendingTasks
page, in which all process instances (grouped by pro-
cess) are shown (using a TableActivity). On each in-
stance a contextual menu is built. This menu mixes
a static part (containing process management actions
such as start, stop or remove activities) and a dynamic
one obtained by querying at runtime the Declare En-
gine component. This dynamic portion shows only
the valid steps that can be executed.

In order to support the approach, a prototypical
MDE tool was developed. The core layer of our gen-
eration environment is based on the Eclipse Model-
ing Platform including the Xtext framework, needed
to develop the DSL Editors, and the Xpand frame-
work, used to drive the generation tasks. On top of
it, the code generation layer contains the Xpand Tem-
plate manager component. It is responsible of apply-
ing templates on the user models in order to gener-
ate the needed resources. During this step, several
resource-specific generators are used. The IDE inte-
gration layer is comprised of four DSL editors (one
for each metamodel). They are built using the Xtext
framework and integrated into the tool thus allowing
the developer to model the application and to start the
generation process. The platform also supports the
reconciliation of changed artifacts with respect to the
models changes.

WebApplication Onl ineShopp ing f
Namespace da t amode l f
Entity Order f

S t r i n g name , d e s c r i p t i o n ;
L i s t<I t emLine> l i n e s oppositeEnd(I t e m L i n e .

r e f e r e n c e d I n O r d e r) ; g
Entity I t e m L i n e f

Order r e f e r e n c e d I n O r d e r oppositeEnd(Order . l i n e s) ;
I t em i t em ;
Long q u a n t i t y ;
Operation BigDecimal l i n e P r i c e () ; g
Entity I n v o i c e f

Customer c u s t o m e r ;
Order o r d e r I d ;
BigDecimal t o t a l p r i c e , v a t ; g

a b s t r a c t Entity I t em f
S t r i n g name , d e s c r i p t i o n ;
BigDecimal p r i c e ;
L i s t<I t e m P r o p e r t y> p r o p e r t i e s oppositeEnd(i t em) ; g

Entity Book ex tends I t em f . . . g
Entity I t e m P r o p e r t y f

I t em i t em oppositeEnd(p r o p e r t i e s) ;
S t r i n g p r o p e r t y , v a l u e ; g

Entity Customer f
Date b i r t h D a t e p a s t
Gender sex ! c h a n g e a b l e
CustomerName name
L i s t<Address> a d d r e s s e s oppositeEnd(c u s t o m e r) ; g
Enum Gender f FEMALE("F") , MALE("M") g
UserDefinedType Address f . . . g

. . .
g

g

Figure 2: An excerpt of the DSL describing the information
model.

4 THE CASE STUDY

We evaluated the feasibility and the effectiveness of
our approach through an example application that il-
lustrates its main steps, starting from the definition
of the models to the execution of the code generation
tasks. The example concerns a typical use case for
ordering a product in an online shop.

Fig. 2 shows an excerpt of the DSL instance used
to represent the information model of the proposed
example. In this model, the main concepts of the do-
main are represented by entities (Order, ItemLine, In-
voice and a small Item hierarchy) linked together by
several Association classes. Secondary concepts such
as Address, Country and CustomerName are value
objects that do not need object identity properties or
persistence and hence are represented by means of the
PrimitiveType, UserDefinedType and Enum classes.
The model also allows us to specify generic collec-
tions in order to represent sets of objects of given
types. These collections are used to express an Asso-
ciation having roles involving multiple objects (such
as the aggregation between Order and Item or the
composition between Item and Property).

The service model imports the information model
of Fig. 2 and defines the operations needed to im-
plement the business logic of our online shopping ex-
ample. The model defines a DAO for each Entity in
the model and introduces a mapping between Service

Model�Driven�Development�of�Process-centric�Web�Applications

343

(a) The Declare process model. (b) An excerpt of the DSL describing the Declare
model.

Figure 3: Declare model of the online shopping example.

and DAO classes. Each DAO in the model introduces
CRUD operations for the entities and each ServiceOp-
eration specifies dependencies on them. The model
also includes the definition of three services (Cus-
tomerService, OrderService and InvoiceService) used
to manage customer information, order management
and invoice issuing respectively.

The Declare process model underlying the online
shopping WA (depicted in Fig. 3-(a)) is represented
as a set of events (e.g., Choose Item) and a set of con-
straints (e.g., not succession) on events. In the model,
the precedence constraint between Choose Item and
Send Order indicates that the buyer cannot send an
order without having chosen at least an item. More-
over, the absence constraint associated to Send Order
(labeled with 0..1) means that Send Order can be exe-
cuted at most once in a process instance. The not suc-
cession between Send Order and Choose Item speci-
fies that when an order has been sent it is not possible
to choose further items anymore. It is possible for the
buyer to register an account at any point in time in
the process and more than once. It is possible, how-
ever, to pay only once, as indicated by the absence
constraint associated to Pay Order. Moreover, it is
possible to pay only after the registration and after
having sent an order (as indicated by the precedence
constraints between Register and Pay Order and be-
tween Send Order and Pay Order respectively). In
any point of the process, the buyer can cancel the or-
der but this can be done only after having sent an order
(as indicated by the precedence between Send Order
and Cancel Order). After having canceled an order it
is not possible to pay anymore (as indicated by the not
succession constraint between Cancel Order and Pay
Order). It is possible for the buyer to ask for a receipt
more than once but only after having payed (as indi-
cated by the precedence between Pay Order and Ask
for Receipt). In Fig. 3-(b), we show the definition of
the SendOrder activity and of the constraints defined
on it.

The online shopping application has been made up

of 13kLOC of code of which only a small ratio was
manually customized by hand (less than 1kLOC). The
overall model of the application included 9 entities, 9
DAOs and 4 services. For each Entity, a CRUDActiv-
ity was automatically generated with its gap classes
allowing for the customization. The process was com-
prised of 6 events and 9 constraints. After the gen-
eration, the entire application was comprised of 54
classes and 12 interfaces; 22 classes were generated
as prescribed by the Generation Gap pattern to allow
for the customization of data objects, services and ac-
tivities behaviors.

Fig. 4 is a screenshot of the resulting online shop-
ping WA. In particular, it shows the CRUDActivity
of entity Item of the information model. The Items
List includes a set of items and for each of them the
contextual item menu reports the CRUD operations
that are available for it. The upper part of the figure
shows the navigation bar that is automatically gener-
ated from the information model (with a button for
each Entity of the model) and injected into each UI
activity to allow navigation: in this case, the appli-
cation administrator is able to execute CRUD opera-
tions on each Entity. The PendingTasks button (in the
navigation bar) lists the active process instances for
ProcessOrder.

As Fig. 5 shows, for each process (in the exam-
ple ProcessOrder), a ListActivity is used to list the
corresponding active instances. This list reports, for
each process instance, the process instance id, the ti-
tle, the history of the activities already executed (Ac-
tivity Path), the associated items (quantity and ID)
and the current state (the customization class in this
case was created to indicate quantity and ID of the se-
lected items). The example shows that in the process
order number 258762 three items have been chosen
and that this order is valid and running. In the figure,
also the contextual menu for this order is shown. The
static part of the menu includes the actions for pro-
cess management (stop, edit and remove). The dy-
namic part (queried using the Declare Engine) shows

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

344

Figure 4: The online shopping example: the auto-generated CRUDActivity of Entity Item.

Figure 5: The online shopping example: the possible actions on a running process instance.

that in this process instance it is only possible to exe-
cute Choose Item again, Send Order to buy the items
or Register according to the reference Declare process
model.

5 CONCLUSIONS

This paper proposes an approach based on the integra-
tion of four MDE metamodels representing the main
components of a WA and the declarative process mod-
eling language Declare. The approach is assessed de-
scribing a typical online shopping WA. This appli-
cation shows the applicability of the approach and
underlines some advantages deriving by its adoption.
First, we found that our set of metamodels was very
effective to model a process-centric WA. Indeed, we
observed that in the online shopping application only
a small ratio of LOC had to be manually customized.
This is a valuable advantage for the developers in the
implementation and the maintenance of a WA. The
integration of different metamodels supports a clear
separation of concerns and enables not only the reuse
of the analysis models but also the reuse of the design
models (e.g., customer sign in and checkout models)
in different contexts.

REFERENCES

Bernardi, M. L., Cimitile, M., Distante, D., and Mazzone, F.
(2010). Web applications design evolution with UWA.
In WSE, pages 3–12.

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I.
(2006). Process modeling in web applications. ACM
TOSEM, 15:360–409.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web mod-
eling language (webml): a modeling language for
designing web sites. In Web Modeling Language
(WebML): a modeling language for designing Web
sites, pages 137–157.

Fons, J., Pelechano, V., Albert, M., and Pastor, Ó. (2003).
Development of web applications from web enhanced
conceptual schemas. In Conceptual Modeling - ER,
pages 232–245. Springer.

Koch, N., Kraus, A., Cachero, C., and Meliá, S. (2004).
Integration of business processes in web application
models. J. Web Eng., 3:22–49.

Merialdo, P., Atzeni, P., and Mecca, G. (2003). Design and
development of data-intensive web sites: The araneus
approach. ACM Trans. Internet Technol., 3:49–92.

Pesic, M. (2008). Constraint-Based Workflow Management
Systems: Shifting Controls to Users. PhD thesis, Beta
Research School for Operations Management and Lo-
gistics, Eindhoven University of Technology.

Pesic, M., Schonenberg, H., and van der Aalst, W. M. P.
(2007). Declare: Full support for loosely-structured

Model�Driven�Development�of�Process-centric�Web�Applications

345

processes. In IEEE International EDOC Conference
2007, pages 287–300.

Retschitzegger, W. and Schwinger, W. (2000). Towards
modeling of dataweb applications - a requirement’s
perspective.

Torres, V. and Pelechano, V. (2006). V.: Building business
process driven web applications. In Springer Berlin /
Heidelberg, pages 322–337.

van der Aalst, W., Pesic, M., and Schonenberg, H. (2009).
Declarative workflows: Balancing between flexibility
and support. Computer Science - Research and Devel-
opment, 23:99–113.

Weske, M. (2007). Business Process Management: Con-
cepts, Languages, Architectures. Springer.

Zugal, S., Pinggera, J., and Weber, B. (2011). The impact of
testcases on the maintainability of declarative process
models. In BMMDS/EMMSAD, pages 163–177.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

346

