

End-user Friendly UI Modelling Language for Creation

and Supporting Evolution of RIA

Chris D’Souza
1
, Athula Ginige

2
 and Danny Liang

2

1School of Business, Australian Catholic University, 40 Edward Street, North Sydney, Australia
2School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia

Keywords: Rich Internet Application (RIA), End-user Modelling Language, Evolution.

Abstract: End users have a comprehensive understanding of business needs which is often hard to fully capture. One

possible solution to this is empowering end-users to create and manage business applications. To empower

end-users the paper presents an end-user friendly UI modelling language. The language facilitates the

creation and supports the evolution of RIAs with changing business needs. The modelling language is based

on various types of structural dependencies among the interface elements in RIAs. These structural

relationships are identified in the paper. It also derives the data model from the end-user UI specifications.

Evolution is discussed from three perspectives, namely, the structural model of interfaces, the behavioural

model of interfaces and the underlying data model.

1 INTRODUCTION

Businesses requirements change frequently and

consequently business applications need to evolve.

End-user development is one way to manage

frequent changes. Since many end-users perceive

applications through UIs, they may be empowered

by letting them specify the structure and the

behaviour of the application through UI elements.

The paper presents an end-user friendly UI

modelling language to facilitate the creation and

evolution of a class of current web applications

called Rich Internet Applications (RIAs). RIAs are

web applications with desktop like user interfaces

and response times (Busch and Koch, 2009). Several

web engineering methods have been proposed to

model RIAs. The important ones are OOWS

(Valverde et al., 2009), OOH4RIA (Garrigós et al.,

2009; Melia et al., 2010), UWE-R (Busch and Koch,

2009), WebML Extension (Bozzon et al., 2006) and

OOHDM Extension for RIA (Urbieta et al., 2007).

These methods are helpful to IS experts such as

designers and developers. However end-users do not

possess the skills required to intricately model the

requirements using sophisticated modelling methods

though they have an expert understanding of new

and existing requirements. Further these methods do

not facilitate evolution (Liang and Ginige, 2007).

Several technological frameworks also exist that

enable developers to expedite the RIA development

process. Two prominent examples include

Microsoft’s Silverlight (Silverlight, 2010) and

JavaFX based on Java technology (JavaFx, 2007).

However these frameworks are platform specific and

hence not transformable from one model to another.

Some UI modelling languages also exist. E.g. the

USer Interface eXtensible Markup Language

(USIXML) uses a User Interface Description

Language (UIDL) allowing designers to apply

development of user interfaces at various levels of

abstractions (Limbourg et al., 2005). Similarly the

User Interface Markup Language (UIML) provides

support to designers in modelling the structure, style,

display content and the behaviour of the UI elements

in multiple computing platforms (Farooq Ali et al.,

2005). The eXtensible Interface Markup Language

(XIML) is another UI modelling language with

design time and runtime support for designers

(Puerta and Eisenstein, 2003). These UI modelling

languages support model driven engineering

approaches. However most of these UI description

languages are meant for designers. Hence an end-

user friendly UI modelling language is proposed to

fill the gap that exists between UI modelling

languages for designers and end-users.

An overview of the suggested approach for

developing RIAs is as follows. Expert end-users use

a GUI based Integrated Developmental Environment

190 D’Souza C., Ginige A. and Liang D..
End-user Friendly UI Modelling Language for Creation and Supporting Evolution of RIA.
DOI: 10.5220/0004078201900198
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 190-198
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

to generate an end-user friendly textual model of the

expected UI in the form of one or more pages in the

application. The textual model of the UIs is then

processed by an engine to derive abstract and

concrete UI models for each page along with the

underlying data model. However the scope of this

paper is restricted to the textual representation of the

UI model of a single page and its effect on the data

model, leaving aside its engineering details and

validations for future work.

The paper is organized as follows: Section 2

contains a discussion on related work on RIA UI

modelling and UI modelling lanaguages in general.

Section 3 briefly discusses the research

methodology. Section 4 classifies structural

relationships among UI elements. Section 5

discusses the developmnt of the end-user friendly UI

modelling lanaguage models based on structural

relationships among UI elements. Section 6 contains

the conclusion and future work.

2 RELATED WORK

Valverde and Pastor (2009) provide a specification

of RIA UI meta-model as a combination of static

views and dynamic views. The static view identifies

the fundamental UI element types in a web

application while the dynamic view identifies the

fundamental behavioural changes to the UI due to

user interaction. They then integrate the meta-model

with the OOWS method to engineer the web

application. Sections 2.1 and 2.2 provide an

overview of Valverde and Pastor’s RIA UI meta-

model. Section 2.3 discusses current UI modelling

languages while Section 2.4 discusses end-user

empowerment through end-user friendly modelling

language.

2.1 Static View of the UI Meta-Model

The UI can be defined as a composition of widgets

(Valverde and Pastor, 2009). A widget is a visual

component of the UI. Its main responsibility is to

handle data and user interactions. A widget is

abstracted as an entity with a set of properties. Five

types of widgets are identified based on their

interactive functionality:

Data View Widget: This widget displays data.

Input Widget: Allows user to input data.

Navigation Widget: The navigation widget captures

the target from which the UI is perceived.

Service Widget: Service widgets initiate the

execution of a service from the business logic.

Layout Widget: This widget contains other widgets.

2.2 Dynamic View of the UI
Meta-Model

When a user interacts with the widgets, events are

triggered which causes reactions on either the same

widget or on other widgets (Valverde and Pastor,

2009). The reactions are in the form of:

Property Change: This reaction results in a change

of the UI properties of any target widget.

Data Request on Demand: This reaction results in

a request for information from the server to a data

view, if it is not already available on the client side.

Functional Invocation: This results when a service

widget triggers an event resulting in a requests-

response communication with the business logic.

Input Validation: This reaction results in a

validation of input data and a message if there is a

problem with input data.

Navigation: The navigation reaction results in

changing the point from which the application’s UI

is perceived by the user due to an event triggered

from a navigation widget.

In addition, the dynamic view uses event rules to

define reactions on target widgets for each event

from a source widget.

2.3 UI Modelling Languages

UI modelling languages are generally employed to

enable designers to generate UIs from various

models such as domain, presentation and task. The

generated UIs can then be customized by the

designer to expedite the UI development.

Teallach, for example enables designers in

building a UI from task, domain and presentation

models at logical and physical levels and also maps

the concepts from one model to another (Griffiths et

al., 2001). USIXML is another UI description

language that expresses and manipulates UIs at

different levels of abstractions (Limbourg et al.,

2005). These levels include Task & Concept (T&C),

abstract UI (AUI), concrete UI (CUI) and Final UI

(FUI) level. The T&C level describes common end-

user interaction task objects in a given domain. The

AUI level defines interaction space objects by

grouping task objects according to requirements but

without considering the specificities of layout and

navigational elements. The CUI level defines objects

from the AUI level with layout and navigation

specifications but without considering the platform

in which the rendering occurs. The FUI level defines

End-user Friendly UI Modelling Language for Creation and Supporting Evolution of RIA

191

the CUI objects with respect to a specific computing

platform. All UIDLs aim to provide designers a

mechanism to bridge the time gap that exists

between the user-interface engineering tasks of

design, development, and evaluation. To reduce the

time gap, UIDLs derive the UIs from domain model

and task models. However end-users are not experts

in these models. End-users on the other hand may be

empowered by providing a UI language from which

domain and other models could be derived.

2.4 Empowering End-users through
End-user Friendly Modelling
Language

Ko et al. (2011) observed that not much research has

been done on end-user modelling of requirements

and specification for interactive and web-based

applications. Providing natural language like

descriptions of requirements is one approach to

enable end-user modelling, where in domain level

keywords are mixed with the user defined terms in

the language (Liu and Lieberman, 2005, Little and

Miller, 2006). Liang and Ginige (2007) use a Smart

Business Object Modelling Language (SBOML)

which uses succinct, pseudo-English sentences to

model relations among business objects. E.g. the

SBOML statement “in organisation,

employee has first name, last name

might have many office (has room

number, building id)” is user friendly as it

is easily understood by end users. SBOML develops

a platform specific model of a web application from

its SBOML specification and supports rendering of

the UI based on default mappings between data

elements and UI elements. Though SBOML is not a

UI modelling language it demonstrates that web

applications can be built by empowering end-users

to exploit their requirements’ expertise.

3 RESEARCH METHODOLOGY

The research methodology is based on the

ontological models identified in the Unifying

Reference Framework (Calvary et al., 2003). The

Unifying Reference Framework is commonly used

for the design time and run time adaptations of UIs

targeting multiple platforms. The ontological model

in the Unifying Reference Framework is

independent of any domain and interactive system

and has been applied in UI description languages

such as USIXML (e.g. see Limbourg et al., 2005).

The framework recommends abstracting the UI

models in separate layers. The separation of levels is

essential for model driven engineering, reuse and the

evolution of applications.

To empower end-users, an end-user UI

modelling level is proposed to be situated over

Valverde and Pastor’s (2009) meta-model of the

RIA UI. Hence the proposed RIA development

process is as shown in Table.

Table 1: Proposed RIA UI Developmental Process.

End-User Friendly UI Model

Valverde & Pastor’s (2009) RIA UI Model

Concrete Model

Final Implementation

A UI modelling language may be termed user

friendly if an application can be described with a UI

perspective that is familiar to the end-user, enables

tweaking of the application so that it fits one's

personal needs and enables automation of repeated

tasks(Cypher, 1993). These principles can be used

during the evaluation phase of UI engineering.

4 STRUCTURAL

RELATIONSHIPS AMONG UI

ELEMENTS

This section identifies the structural relationships

among widgets in UIs. It is important to identify the

various structural relationships among widgets in the

UI model because when the application evolves the

relationships need to be redefined to support the new

behavioural expectations. The following types of

structural relationships are identified:

4.1 No Relationship

A widget has no relationship with any other widget

except its container widget if no other widget’s

existence is dependent on it or if its own existence is

not dependent on any other widget.

4.2 Container Relationship

Two widgets are in a container relationship if one

widget is contained within the other widget. Hence

two types of widgets may be defined:

Container: A widget in a container relationship is

the container if it contains the other widget. Every

web page has at least one container widget. A

container widget may have container relationships

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

192

with other widgets.

Widget: This represents any widget in a container.

4.3 Computational Relationship

Two widgets are in a computational relationship if

they are related by a computational expression. The

relationship results in two types of widgets:

Computationally dependent: A widget in a

computational relationship is computationally

dependent if it uses a computational expression.

Computationally independent: A widget in a

computational relationship is computationally

independent if does not use a computational

expression.

Consider a text field that displays the “total years

of experience” of an employee by computing the

value from two columns, “starting year” and “ending

year”, of an “experiences” widget (see Figure 1).

Here “total years of experience” is computationally

dependent on “experiences”, the computationally

independent widget.

4.4 Logical Relationship

A widget is in logical relationship if its existence is

dependent on a logical expression. Two types of

widgets may be defined:

Logically dependent: A widget in a logical

relationship is logically dependent if its existence is

dependent on a logical expression being evaluated to

be true.

Logically independent: A widget in a logical

relationship is logically independent if it exists

independently of the value of the logical expression.

Consider a text widget “Number of children” that

appears when the value of a “marital status” radio

button widget is set to “married”. Here “Number of

children” is logically dependent on “Martial status”,

the logically independent widget.

4.5 Event Relationship

A widget is in an event relationship with another if it

is set to raise an event that causes reactions on the

other widget. Two types of widgets may be defined

based on event relationships:

Event generating widget: A widget in an event

relationship that generates the event.

Event target widget: A widget in an event

relationship on which a reaction is applied.

By default all navigation widgets are event

generating types. Furthermore, all input widgets are

event generating types though not all of them may

require the events to be handled. In addition every

web page is assumed to generate an “on page load

event” to cause the loading of data on the page.

4.6 Pop-up Relationship

A widget is in a pop-up relationship with another

widget if the other widget appears as a pop-up page.

Two types of widgets are defined based on the pop-

up relationship:

Pop-up generating widget: A pop-up event

generating widget.

Pop-up page: An event target widget that manifests

as a page that pops-up on the occurrence of the

event. Pop-ups are frequently used to create

contextual menus, confirmation dialog boxes or

validation messages.

5 DEVELOPING AN END-USER

FRIENDLY UI MODELLING

LANAGUAGE

An approach to end-user empowerment is to create

applications from a UI perspective, using an end-

user friendly modelling language. The modelling

language must also be capable of supporting the

evolution of an application in the form of addition,

deletion and editing of widgets in the UI. The UI

model will also have an impact on the underlying

data model and the behavioural model. These issues

are discussed next.

5.1 Contextualizing UI Relationships

The UI of an application is represented in the form

of one or more pages. A page may contain at least

one container widget and a container widget may

have container relationships with other container

widgets. Furthermore widgets in computational

relationship, logical relationship, event relationship

and pop-up relationship can be widgets in a

container. Finally a pop-up target widget may be

perceived as a page. The structural representation of

the relationships among the UIs in an application

may be stored at the abstract and concrete level

using XML notation so that they can be easily

transformed from one model form to another.

5.2 Language Support for Creation

Consider the UI of an application to manage

employee details (see Figure 1). The UI has data

End-user Friendly UI Modelling Language for Creation and Supporting Evolution of RIA

193

view widgets for “F.Name”, “Experiences” table and

“Total Years of Experiences”. Assume “Number of

kids” is a logically dependent widget on “Marital

status”. “Number of kids” is an input cum data view

widget. Also assume “Total Years of Experiences”

is computationally dependent on the “Experiences”

table using a computational relationship involving

data from “Starting Year” and “Ending Year”

columns of the “Experiences” widget to calculate the

total years of experience. When “Click here for

experiences” widget is clicked, it opens a pop-up

page.

Figure 1: UI of an application.

A page may contain additional widgets to supply

“information” or to receive “confirmation”.

Information widgets are data-view widgets

providing helpful information about other widgets.

E.g. the “Number of Kids” widget has an

information widget represented by the yellow

triangle to inform the user to enter a positive integer

in the “number of kids” widget. A confirmation

widget is a data-input widget generally used to

gather confirmation of terms and conditions before

proceeding with the navigation.

5.2.1 Script for Creation

Script 1 defines the end-user model of the

application illustrated in Figure 1. The modelling

language has a small set of keywords to sufficiently

define the structural relationships identified in

Section 4 and its consequential mapping to UI

widgets discussed in Section 2.1.

The script defines an application using one or

more statements. A statement ends with a semi-

colon. Flower brackets in a statement represent a

container widget. Properties of a widget are

represented within round brackets. Multiple

properties are separated by a comma. A property

may have sub-properties which are represented

within nested round brackets.

Script 1: Modelling creation of the UI

01 In application <application_id>

02 create page<Employee Details>

03 (on load event,

04

05 for each <Employee>

06 {

07 (

08 <Accept usage terms>((Uni-choice:

09 <Accept usage terms>), hide

10 label, confirmation widget);

11 <F. Name> (String, read);

12 <Marital status>

13 (Uni-choice: (<Single> (checked),

14 <Married>), on set event);

15

16 <Number of kids>

17 (String, read-write,

18 logically dependent on

19 <Marital status> set equal to

20 <”Married”>, info widget

21 (<Number of kids must be more

22 than or equal to 0>));

23 <Click here for experiences>

24 (link, on click event, to pop-up

25 page<Experiences>

26 {

27 <Experiences> (table(
28 <Starting year> (integer);

29 <Ending year> (integer);

30 <Designation> (String)

31));

32

33 <Total Years of experience>

34 (integer,

35 computationally depended on

36 (sum (subtract

37 (<Experiences: Ending year>,

38 <Experiences: Starting year>

39))))

40 })

41)

42 }

43)

In the script, underlined text represents keywords

of the language. Line 1 identifies the application.

Line 2 identifies the page. Lines 3 to 43 describe the

properties of the page. Line 3 states that the page is

set to have an on load event. Line 5 uses keywords

to describe a widget which is identified as a

container in line 6. The keywords "for each" convey

additional information to generate widgets for

navigation from one employee detail to another.

Lines 7 to 41 describe the properties of the

container. They describe five widgets, namely

“Accept usage terms”, "F. Name", "Marital status",

“Number of kids" and "Click here for experiences".

Line 10 identifies “Accept usage terms” as a

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

194

confirmation type widget. Line 20 indicates

“Number of kids” has an information widget

attached to it. Lines 25 to 40 describe the

"Experiences" container" and it’s associated

widgets. The container is also defined to be in a

pop-up page in line 24.

The language can also capture optional data type

and the read/write properties of widgets, See line 11

for an example of a string data element with a read

property and line 8 for a uni-choice data type to

represent a choice among one or many alternatives.

The language also supports navigation widget

properties. E.g. Line 24 uses keyword "link" to

define a hyperlink type of navigational widget.

5.2.2 Deriving the Structural UI Model

The structural relationships among the widgets in the

UI can be automatically derived from the language.

Figure 2 represents the structural object model of the

UI defined by Script 1. Though Figure 2 is shown in

UML notation, it may be represented in XML form

for easy storage and manipulation to other levels of

abstractions.

Figure 2: Structural object model of the UI.

The structural object model may contain

additional widgets not explicitly defined by the end-

user. E.g. the “Previous employee navigation-service

widget” is not user defined. This is generated due to

the keywords “for each” on line 5 in Script 1 which

is mapped to two buttons “previous’ and “next” in

Figure 1. Similarly the structural object model may

define other implicit widgets such as a default

header widget for the title of the page. In addition all

events associated with an interface are identified in

the structural object model. Some widgets such as

the information widget (see line 20 in Script 1) have

an implicit event associated with it which is picked

up in the structural object model.

5.2.3 Deriving the Data Model

A data model can be derived from the structural

object model. Figure 3 represents the data model

derived from the structural object model in Figure 2.

All data bearing widgets, except computationally

dependent widgets, and widgets with “information”

property or “confirmation” property are included in

the data model. E.g. a widget such as “Accept usage

terms” is not meant for supplying or accessing

domain data. Domain tables are identified from

container widgets. Thus two tables “Employees” and

“Experiences” are identified. The relationship

between tables in the data model is captured from

the nesting of container widgets and the

multiplicities are derived from keywords such as

“table” in line 27 in Script 1.

Figure 3: Initial data model of the application.

5.2.4 Language Support for the Behavioural
Model

A behavioural model is required to support UI tasks.

Script 2 contains a partial behavioural model of the

application illustrated in Figure 1. The general form

of the behaviour model is: “on a widget’s event,

apply reaction(s) over target widget(s)”. End users

may create the behavioural model by using the

structural object model of the UI as the reference.

The script uses UI widgets and events defined in the

structural object model along with widget reactions.

For example lines 6 to 8 in Script 2 specify that

when the “set event” occurs on the “marital status

data input widget”, “property change reaction” is

applied over “Number of kids data input widget”.

Similarly Script 2 may be continued for other event

generating widgets.

End-user Friendly UI Modelling Language for Creation and Supporting Evolution of RIA

195

Script 2: Partial behavioural model of the UI

01 In application <application_id>

02 on <employee details container page>

03 load event

04 apply data_request_reaction over

05 page <employee details>;

06 on<marital status data input widget>

07 set event

08 apply property_change_reaction over

09 <Number of kids data input widget>;

10 ...(continues for other widgets)

5.3 Language Support for Addition of
Widgets

The changing business requirement can result in

addition of new interfaces to an application. Figure 4

illustrates a case for evolution of an application by

the addition of new widgets. The dotted horizontal

line in the figure separates pre and post additions.

The new additions are in the form of:

a) a “L. Name” text field for data viewing;

b) a navigation link from the “L. Name” label to the

experiences page;

c) a new column, “Role” in the Experiences table.

The corresponding end-user model for the evolution

of the application is presented in Script 3. The

language details of Script 3 are not explained here as

they are similar to that of Script 1.

The addition of new widgets causes

consequential changes to the structural object model

the details of which have not been provided for

economy of space.

Figure 4: Evolution by addition of UI widgets.

Script 3: Addition of widgets

01 In application <application_id>

02 on page <Employee Details>(

03 for each <Employee> {

04 add <L. Name>

05 (string, read);

06 add <L. Name> (link , on click,

07 to pop-up page <experiences>),

08 after

09 <First Name>

10 });

11 on page <Experiences>(

12 add table(<Experiences>:<Role>

13 (string, read,

14 after

15 <Experiences>:<Designation>

16))

17)

5.3.1 Effect of Addition on the Data Model

When new widgets are added, its effect on the data

model must be captured. The data model gets

affected only if new domain data bearing widgets

are added to the UIs. Furthermore this may also

result in the creation of new data tables if the user

adds container widgets.

Script 3 causes changes to the initial data model

in the form of alternations to the Employees and

Experiences table structures. The altered data model

is shown in Figure 5.

Figure 5: The altered data model.

5.3.2 Effect of Addition on the Behavioural
Model

The behavioural model of the UI also gets affected

due to the addition of new widgets. Users may

recreate the behavioural model using the existing

behaviour model as a template. New creation is

preferred over editing of the existing behavioural

model because additions of new widgets may affect

the behaviour of old widgets too.

5.4 Language Support for Deletion of
Widgets

The deletion of widgets involves deleting at least

one widget from the UI. It does not mean deleting

events or editing existing properties of a widget.

Permissions to delete depend on the structural

relationship types which are maintained in the

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

196

structural object model.

Widgets with no relationships can be safely

deleted without affecting other widgets. Container

widgets cannot be deleted unless its widgets are first

deleted. The widgets in a container can be deleted if

they are not involved in other relationships. Widgets

in logical or computational relationships cannot be

deleted unless their dependencies are taken care

before the deletion. Similarly widgets in event

relationships or pop-up relationships may be deleted

only after the dependencies are removed. In

summary, no widget can be deleted unless it has no

relationships with other widgets.

5.4.1 Effect of Deletion on the Data
Model

When a widget gets deleted, the structural object

model is re-created. This may have an impact on the

data model. E.g. if the deleted widget is a source

widget for domain data, the corresponding data

model field too will be deleted. Hence data-bearing

widget deletion will have an impact on the domain

data model, resulting in a logical deletion of a

database table field. If a container widget is deleted

it may result in the deletion of a database table itself.

However physical deletions should be avoided to

maintain the integrity of legacy data.

5.4.2 Effect of Deletion on the Behavioural
Model

UI widget deletions will cause changes to the

behaviour of the application. Hence the behavioural

model of the system will have to be recreated.

Further details are not provided since the modelling

of the behavioural process is similar to that

discussed earlier.

5.5 Language Support for Editing of
Widgets

Editing of a widget means changing the properties of

a widget or changing the events and the reaction to

the events associated with an event generating

widget.

Widgets with no relationships can be safely

edited without affecting other widgets. Containers

cannot be edited to be non container widgets unless

it’s containing widgets are first deleted. Widgets in

computational relationships must be edited together.

Similarly widgets in logical relationships must be

edited together as the widgets are related by a logical

expression.

Editing of an event generating widget involves

either adding an event or changing an event.

Changing an event can be perceived as deletion of

an event followed by an addition of a new event. If

an event is deleted from a navigation widget it may

result in the navigational widget’s target widget to

be unattached to any other widgets of the page.

However the target widget must not be inaccessible

since it is not deleted. Such unlinked widgets must

be maintained in the structural object model for

possible future editing by the end-user.

5.5.1 Effect of Editing on the Data Model

The editing of widgets does not change the structure

of the data model as no new widgets are added nor

any widget deleted. Any change in the data model as

a result of renaming of the widgets may be avoided

by representing the database tables’ names

independently of the user-defined names of the

associated interfaces. However the behavioural

model needs redesign as in other cases.

5.5.2 Effect of Editing on the Behavioural
Model

UI editing will cause changes to the behaviour of the

application. However further details are not provided

since the modelling of the behavioural process is

similar to that discussed earlier.

6 CONCLUSIONS

This paper presents an end-user friendly UI

modelling language for creating and supporting the

evolution of RIA with changing requirements. The

textual model of the UIs can be processed by an

engine to derive the UI model for each page along

with the underlying data model. For this we have

identified various types of structural relationships

among UI widgets which are important for

managing evolution. When requirements evolve

adding, editing or deleting widgets in a UI must be

performed while managing existing relationships.

The language described in the paper is end- user

friendly. Further it is possible to derive the

underlying data model from the UI specification.

Future work will address engineering approaches

and the evaluation of the efficacy of the language

with respect to user-friendliness, generation of the

structural relationships and end user understanding

of the created models.

End-user Friendly UI Modelling Language for Creation and Supporting Evolution of RIA

197

REFERENCES

Bozzon, A, Comai, S, Fraternal, P & Carughi, GT. 2006.

Conceptual Modeling and Code Generation for Rich

Internet Applications. International Conference on

Web Engineering, July 11 - 14 2006 Menlo Park,

California, USA. ACM, 353-360.

Busch, M & Koch, N 2009. Rich Internet Applications:

State-of-the-Art. Munich, Germany: Institute for

Informatics, Ludwig-Maximilians-Universität.

Calvary, G, Coutaz, J, Thevenin, D, Limbourg, Q,

Bouillon, L & Vanderdonckt, J 2003. A Unifying

Reference Framework for multi-target user interfaces.

Interacting with Computers, 15, 289-308.

Cypher, A 1993. Watch What I Do: Programming by

Demonstration. Cambridge, Massachusetts & London,

England: MIT Press.

Farooq Ali, M, Pérez-quiñones, M A & Abrams, M 2005.

Building Multi-Platform User Interfaces with UIML.

Multiple User Interfaces. John Wiley & Sons, Ltd.

Garrigós, I, Meliá, S & Casteleyn, S 2009. Adapting the

Presentation Layer in Rich Internet Applications. Web

Engineering. Springer Berlin / Heidelberg.

Griffiths, T, Barclay, P J, Paton, N W, McKirdy, J,

Kennedy, J, Gray, P D, Cooper, R, Goble, CA & da

Silva, PP 2001. Teallach: a model-based user interface

development environment for object databases.

Interacting with Computers, 14, 31-68.

JavaFx. 2007. JavaFx [Online]. Oracle. Available: http://

javafx.com/ [Accessed March 19 2012].

Ko, A J, Abraham, R, Beckwith, L, Blackwell, A, Burnett,

M, Erwig, M, Scaffidi, C, Lawrance, J, Lieberman, H,

Myers, B, Rosson, MB, Rothermel, G, Shaw, M &

Wiedenbeck, S 2011. The state of the art in end-user

software engineering. ACM Comput. Surv., 43, 1-44.

Liang, X D & Ginige, A. 2007. Enabiling an End-User

Driven Approach for Managing Evolving User

Interfaces in Business Web Applications: A Web

Applicaiton Architecture using Smart Business Object.

International Conference on Software and Data

Technologies, 2007 Barcelona. 70-78.

Limbourg, Q, Vanderdonckt, J, Michotte, B, Bouillon, L

& López-Jaquero, V 2005. USIXML: A Language

Supporting Multi-path Development of User Interfaces

Engineering Human Computer Interaction and

Interactive Systems. In: Bastide, R, Palanque, P &

Roth, J (eds.) Engineering Human Computer

Interaction and Interactive Systems. Springer Berlin /

Heidelberg.

Little, G & Miller, R C. 2006. Translating keyword

commands into executable code. ACM Symposium on

User Interface Software and Technology, 2006. 135–

144.

Liu, H & Lieberman, H. 2005. Programmatic semantics

for natural language interfaces. ACM Conference on

Human Factors in Computing, 2005. 1597–1600.

Melia, S, Gomez, J, Perez, S & Diaz, O 2010.

Architectural and Technological Variability in Rich

Internet Applications. Internet Computing, IEEE, 14,

24-32.

Puerta, A & Eisenstein, J. 2003. Developing a Multiple

User Interface Representation Framework for Industry.

Available: http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.145.6974&rep=rep1&type=pdf [Acce-

ssed 28 April 2012].

Silverlight. 2010. Get Started with Silverlight [Online].

Microsoft. Available: http://www.silverlight.net/

[Accessed March 19 2012].

Urbieta, M, Rossi, G, Ginzburg, J & Schwabe, D. 2007.

Designing the Interface of Rich Internet Applications.

5th Latin American Web Congress (LA-Web'07),

2007 UNLP, Buenos Aires. IEEE, 144-153.

Valverde, F, Panach, I, Aquino, N, Pastor, O, Macías, JA,

Granollers Saltiveri, A & Latorre, PM 2009. Dealing

with Abstract Interaction Modeling in an MDE

Development Process: A Pattern-Based Approach:

New Trends on Human–Computer Interaction.

Springer London.

Valverde, F & Pastor, O 2009. Facing the Technological

Challenges of Web 2.0: A RIA Model-Driven

Engineering Approach Web Information Systems

Engineering - WISE 2009. Springer Berlin /

Heidelberg.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

198

http://www.silverlight.net/

